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ABSTRACT 
An effective latency-hiding mechanism is presented in the 

parallelization of agent-based model simulations (ABMS) with 

millions of agents. The mechanism is designed to accommodate 

the hierarchical organization as well as heterogeneity of current 

state-of-the-art parallel computing platforms. We use it to explore 

the computation vs. communication trade-off continuum available 

with the deep computational and memory hierarchies of extant 

platforms and present a novel analytical model of the tradeoff. We 

describe our implementation and report preliminary performance 

results on two distinct parallel platforms suitable for ABMS: 

CUDA threads on multiple, networked graphical processing units 

(GPUs), and pthreads on multi-core processors. Message Passing 

Interface (MPI) is used for inter-GPU as well as inter-socket 

communication on a cluster of multiple GPUs and multi-core 

processors. Results indicate the benefits of our latency-hiding 

scheme, delivering as much as over 100-fold improvement in 

runtime for certain benchmark ABMS application scenarios with 

several million agents.  This speed improvement is obtained on 

our system that is already two to three orders of magnitude faster 

on one GPU than an equivalent CPU-based execution in a popular 

simulator in Java.  Thus, the overall execution of our current work 

is over four orders of magnitude faster when executed on multiple 

GPUs. 

Categories and Subject Descriptors 
D.4.8 [Operating Systems]: Performance – Simulation, 

Operational Analysis; D.4.4 [Operating Systems]: 

Communications Management – Buffering, Message Sending, 

Network Communication; D.4.8 [Operating Systems] 

Performance – Operational Analysis; I.6.1 [Simulation and 

Modeling] General; I.6.3 [Simulation and Modeling] 

Applications 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Agent-based simulation, GPU, Cluster, Threads, MPI, CUDA, 

Latency hiding, Computational hierarchy, Multi-core 

1.  INTRODUCTION 
The study of human social behavioral systems is finding renewed 

interest in many applications including military, homeland 

security, and socioeconomic scenario analyses.  Simulation is the 

most generally applied approach to studying such systems.  While 

computational social science has been actively studied for over 

three decades, experiments in computational social science so far 

have only been at small scales – a few thousands of interacting 

entities [1-4].  Lately, there has been a general surge to represent 

and capture detailed effects at much larger scale, such as at 

population counts of cities, states, nations or even the world (106-

109) [5].  Computational aspects that were not prominent at 

smaller scales are now becoming pronounced at large scales. 

1.1  Computational Challenge 
Emerging computational platforms are being built with 

compounds of hierarchical processing elements.  For example, 

clusters of commodity nodes with multiple graphics cards afford 

multiple levels of tightly and loosely coupled processing 

elements, with a variety of memory access types and 

synchronization primitives.  Processor clusters, with each 

processor containing many cores, are another commodity platform 

that affords high performance albeit with a different type of 

execution hierarchy. 

Inter-element communication latencies are also varied, ranging 

from nanoseconds to hundreds of microseconds.  For example, 

threads within a block of NVIDIA’s Common Unified Data 

Architecture (CUDA) have very fast access to a shared memory 

segment, whereas Message Passing Interface (MPI)-based 

communication across GPU nodes typically consumes hundreds 

of microseconds. 

The challenge is compounded by the fact that computation within 

each agent’s state update in an ABMS can be very fine-grained, 

taking little more than a few microseconds.  When states are 

decomposed across the hierarchies, synchronization across time-

stepped updates to the partitioned states can become a significant 

source of overhead. 

A solution is needed to simultaneously address the challenges of 

latency spectrum, hierarchical organization as well as 

heterogeneity.  Ideally, a single, unified, parameterized solution 

would be useful that can be easily instantiated, customized, and 

auto-tuned for any given, specific compound computational 

platform instance. This paper presents preliminary results from 

one such attempt. 

1.2  Related Work 
Several modeling frameworks are available for modeling and 

simulating social systems such as NetLogo[1], Mason[6], Repast 

J/.Net[3], Swarm [7]. SPADES [8], JAMES [9], and 

HLA_AGENT [10].  Also, GPUs have been recently used for 

ABMS [11, 12]. 

While parallel execution has not been a major focus of ABMS 

toolkits in general, a few recent systems have explored 

parallel/distributed implementations.  These include SEAS [13] 

for disaggregate and aggregate behavioral models interacting with 
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actual individuals, and a distributed agent simulator [14].  An 

agent-based simulation optimized for large shared-memory 

platforms is described in [15] and a parallel, Java-based agent 

simulation system is described for disease propagation in [16]. 

The dynamics of multi-agent based simulation execution on grid 

environments was analyzed in [17, 18].  By contrast, our focus is 

on high-performance computing and on heterogeneous platforms, 

with special emphasis on latency hiding for maximal concurrency. 

The problem of performance optimizations of stencil based 

computations – an area of active research for years – bears 

resemblance to the parallel execution challenge of ABMS. For 

example, “ghost cell expansions” (GCE) [19] was proposed for 

performance improvements for a two dimensional synthetic 

problem without any time evolution. Automatic parallelization of 

stencil computation was reported in [20] in the context of a one 

dimensional Jacobi code on a 32 node (single core) platform. 

More recently, a detailed empirical study of stencil computation 

optimization on several multi-core CPU based architecture (but 

restricted to a single GPU) was reported in [21]. Another related 

work is a framework for high-order stencil computations [22].  

Although similar in some ways, stencil-based computations are 

distinct from parallel agent-based simulations, as discussed next. 

Studies on stencil-based computations are generally based on 

constant-sized neighborhood dependencies that remain static 

throughout an execution. Availability of data at neighbor locations 

is guaranteed at each time step. This is not true for ABMS where 

the agents are mobile. In ABMS, the region of data dependency is 

not fixed and can potentially span the whole computational 

domain. This results in highly non-trivial spatial and temporal 

data dependencies. Consequently, the communication-

computation tradeoff strategies discussed in the stencil 

computation literature do not necessarily carry over to the needs 

of ABMS. Existing work on performance optimization of stencil 

based computation, as detailed above, has largely been empirical 

in nature [21] and focused on synthetic, reduced-dimensional 

problems [19, 20]. 

Stencil optimization strategies have neither focused on nor 

exploited the full hierarchical organization of current processor 

platforms and memory architectures.  We are also not aware of 

work that proposed a generalized solution that applies equally 

well across a variety of architectures (such as CPUs and GPUs); 

our approach does apply.  We are also not aware of prior work 

that can apply the same template recursively at multiple levels of 

computational hierarchy, with varying characteristics of memory 

latencies and capacities, processor speeds, and network latencies 

and bandwidths.  Our focus is on developing a single solution that 

can be reused despite variations in target platform characteristics 

due to heterogeneity and hierarchy. 

Automatic ghost zone optimization [23] also addresses latency 

problems in stencil computations.  However, unlike our approach, 

it is not generalized to heterogeneous, deeper hierarchies of 

computation and communication architectures. 

1.3  Contributions 
Here, we present a latency-hiding mechanism designed to exploit 

and seamlessly adapt to the hierarchical organization and 

heterogeneity of emerging high performance computing 

platforms. We call it the “B+2R latency-hiding scheme.”  It is 

based on the well-known principle of computation vs. 

communication tradeoff (or, the duplication of some computation 

to gain some concurrency to offset communication latencies). 

While being simple to articulate, it is rather complex to implement 

in heterogeneous platforms. For example, while concurrency 

considerations require larger cached-block sizes, memory 

limitations constrain the cached block-size; this conflict of 

considerations needs to be addressed in implementation carefully.  

As an example, we had to address this conflict in our CUDA-

based implementation, in which traditional ping-pong approach of 

read-write buffer swaps across iterations limited the size of blocks 

that could be handled by each thread or block within the limits of 

shared memory.  Once implemented, despite implementation 

complexity, however, it is relatively easy to fine tune for optimal 

performance on a variety of platforms.  The scheme also affords 

excellent performance even in the most challenging ABMS 

scenarios characterized by very fine computation granularity. 

To the best of our knowledge, the work reported in this article is 

among the first to execute ABMS on multiple GPUs 

communicating over a network. It is based on a novel analytical 

model (discussed in a latter section) that is applicable to arbitrary 

levels of computational and memory hierarchy. 

The analytical model proposed here reduces to previous models 

on computation vs. communication tradeoff on stencil-based 

computations [19] while validating, both analytically and 

empirically, the degradation of the payoffs [24] with increasing 

expansion levels.  We also believe that this is among the first 

ABMS to execute multiple regular (CPU-based) threads over 

distributed memory platforms, optimized to sustain fine 

granularity. 

We present our preliminary findings in the context of a well-

known ABMS benchmark application as well as a complex model 

of current interest in social sciences [25], to demonstrate 

significant runtime improvements via latency hiding. 

2.  LATENCY HIDING SCHEME 

2.1  Latency Problem 
ABMS toolkits typically provide an interface in which agents are 

organized in a grid, and agents interact with each other, typically 

within some specific distance of reach in a neighborhood region.  

As with other grid-based models, due to partitioning of the global 

state across processors, the state of adjacent cells in the 

neighborhood of some cells may be remotely located outside of 

that processor.  In time-stepped parallel execution of agent-based 

simulations, copies of off-processor neighbor states are fetched 

and used within a time step.  A synchronization primitive such as 

parallel barrier is used to align all processing elements after every 

time step.  The problem in scaling this approach is that the 

communication and synchronization costs can become quite large 

when hierarchical, heterogeneous computing elements are used, 

resulting in large slowdowns as opposed to speedups for fine-

grained agent models.  As will be seen from performance data in 

later sections, the naïve approach of synchronizing after every 

iteration is vastly sub-optimal.  A technique is needed to offset 

this cost, and hide the large inter-element latencies. 

2.2  Our Solution Approach 
Given a grid of agents, we can logically separate the grid into 

dependent blocks allotted to independent processing elements. 

These blocks clearly have data dependencies across each other as 

agent state updates bordering a given block depend upon the 
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current state of agents in neighboring blocks. Here, we use an 

approach in which sub-grids of this grid, B, can be padded on the 

sides by R layers of surrounding data. These R layers of 

surrounding data encapsulate remote agents to be simulated by 

neighboring blocks allotted to other independent processing 

elements.  Computation on local agents can then be increased by 

R iterations before having to re-synchronize with off-processor 

cells. Since a given B+2R block captures all surrounding data for 

local simulation, communication between nodes is also decreased.  

The R layers induce resilience to error locally, and thus offer 

latency hiding, both in terms of communication (exchanging data 

fewer number of times, albeit a larger amount of data per 

exchange) and synchronization (synchronizing less often, only 

once every R iterations). 

As a simple illustrative example,  Figure 1 shows a 3×3 grid 

separated into blocks to be processed by P processing elements in 

two different contexts, with and without the latency hiding 

scheme implemented. Block1,1 of the conventional approach 

(Figure 1) simulates B×B agents with communication between 

boundary agents necessary at every simulation time step. By 

contrast, Block1,1 of the latency hiding scheme (Figure 2) 

simulates a larger number of agents (B+2R)×(B+2R), but 

requiring less frequent communication with neighboring blocks, 

only once every R time steps. 

 

 Figure 1: Traditional approach with synchronization 

between every time-step 
Figure 3 illustrates error propagation at successive (up to R) 

simulation time steps. Error propagates inward, one layer per 

iteration, but never enters the central B×B block that is mapped to 

this processing element.  Thus, after R iterations, a valid B×B 

block remains at the center, evolved by R iterations, for 

subsequent synchronization with neighboring blocks. 

For a given grid split into N×N logical blocks, this scheme is 

implemented homogenously across all blocks. Once again, only 

after exactly R iterations is synchronization necessary. This 

synchronization is the gathering or scattering of agent state 

information to neighboring blocks 

Data allotted to and surrounding a given block’s valid B×B, i.e. 

((B+2R)2-B2 ), is refilled with state information from neighboring 

blocks’ B×B. Subsequently, execution can continue for another R 

time steps before this synchronization is required once again. 

With this conceptual framework, we present a simple algorithm in 

Figure 4 by which simulation continues. Referring to Figure 3, it 

is necessary to only update the largest data square containing 

valid, correctly-simulated agents. After i iterations, we are 

required to update a square of size (B+2(R-i))×(B+2(R-i)). Note 

that in this algorithm update and communicate are 

implementation-specific. These will be further discussed in our 

implementation and benchmarks. 

 

 

 Figure 2: Our B+2R scheme for latency-hiding to 

sustain multiple time-steps per synchronization 

 

Figure 3: Error propagation at consecutive simulation 

time-steps 

Let Te be total number of iterations in the simulation 

1 For all blocks Blockij in the given agent grid G 
1.1 Let (tli, tlj) be the top left index of Blockij 
1.2 Let (bri, brj) be the bottom right index of Blockij 
1.3 For t=0 to Te/R 
1.4 For r=R-1 down to 0 
1.5  Update( tli-r, tlj-r, bri+r, brj+r ) 
1.6 Communicate( tli, tlj, bri, brj, r ) 
1.7 Barrier() 

Figure 4: Generalized latency-hiding scheme 

2.3  Analytical Model 
Let F be the total run time for a logical block of size B.  Then, F is 

the sum of computation time Fc and communication time Fm for R 

simulation time steps: 

c mF F F{ �  

For R iterations, each subsequent iteration needs to only update 

remaining valid data, as previously discussed. Thus, total 

computation time is the aggregate time to update progressively 

smaller blocks. Note that cf  is the computation cost function for 

a given block size of agents. 
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The computational time increases as the square of the grid size. 

Therefore, if a is an implementation-specific computation 

constant, 
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Now, the communication cost required after R time steps must be 

expressed separately for CPU and GPU platforms due to 

configuration-specific details. For example, in the case of the 

CUDA environment for GPU, block’s shared memory is flushed 

immediately after kernel invocations. We represent these as
1mF

and
2mF respectively (CPU and GPU) where wf and rf  are 

general write and read representations for communication cost 

between blocks for both CPU and GPU. Let b and c be platform-

specific communication overhead constants (typically determined 

empirically). Communication cost is expressed (either read or 

write) as fwr below. 

( )wrf y by c � 

1

2
2

2
2( ) (2 )2m w rF f B fB R B R B� � �{ � �  

2

2
22 2( ) ( )m w rF f B f B R B� �{ �  

After some algebra, we finally obtain the final solution as a cubic 

equation.  For CPU-based parallelism, this is expressed as FCPU, 

and for GPU-based parallelism FGPU . 

3 2 2 24 2[ (2 2) ( 2 ) ] [8 ]
3 3CPUF a R B R B B R B b BR c � � � � � � �

 

3 2 2 2
2

4 2[ (2 2) ( 2 ) ] [ ]
3 3

2GPUF a R B R B B R Bb cRB � � � � � � � �
 

The remarkable part of this equation is the cubic nature of 

dependence of the runtime on R, which indicates two traits. The 

first is that data-parallel execution on all platforms shall 

experience a decrease in overall execution time as R increases to 

some finite integer. The second is that there will also exist an R 

value at which the platform no longer favors computation over 

communication; in other words, there will be a fixed R for a given 

B for which optimal performance is achieved. Later, in the 

performance study, we in fact observe the fall and rise of runtime 

with R, as predicted by the analytical model.  These inferences are 

in fact in line with the observation and empirical findings in 

stencil-based computations as well, although our model is more 

general in nature. 

2.4  Latency Parametric Range 
Let us define a platform level as a computation and 

communication interface in a parallel computing hierarchy.  Two 

examples of such a hierarchy are shown in Figure 5 and Figure 6.  

The value range of R for a given block size is constrained by B at 

any given level.  The restriction is that, at any level, the range of R 

is limited such that a given block cannot encroach upon a 

neighboring block’s execution. This gives 1�5i�%i/2 for any given 

level i. Furthermore, at level i, it must be enforced for correct 

execution that level i+1 not update more iterations than its parent 

level’s: Ri+1�5i. 

2.5  Mobility and Neighborhood Reach > 1 
Mobility of agents in the grid is modeled by copying the state of 

the agent from the source grid cell to the destination grid cell to 

which the agent moves.  The selection of the destination is usually 

based on vacancy determination procedures combined with some 

randomization.  The reach within the neighborhood of an agent is 

the extents to/by which the influence of the agents actions 

extends.  Both the neighborhood reach as well as the mobility 

aspects share the notion of bounding box of influence of some D 

cells around a given grid cell.  Both of these aspects are easily 

accommodated by the B+2R scheme with one constraint on R, 

namely, R must be a integral multiple of the neighborhood reach 

or mobility extent D.  This constraint accommodates all local state 

update functions as well as remote movement functions. 

Thus, the scheme is generalized, and can support “stencils” that 

reach more than one cell in any direction, and it is not limited to a 

neighborhood of one cell away. 

3.  ALGORITHMIC IMPLEMENTATION 
FRAMEWORK 

We have implemented this scheme in two hierarchical parallel 

processing platforms that are the most commonly available.  The 

first is the multi-GPU platform and the second is the multi-core 

platform.  The null hypothesis is that communication and/or 

synchronization costs are high on these platforms, and that these 

costs can be hidden by using our latency hiding scheme. We will 

first discuss the implementation frameworks for both platforms, 

followed by performance studies on both.  

3.1  Implementation on Hierarchical Multi-
GPU, Multi-core Platforms 

At the lowest level in a multi-CPU multi-GPU configuration are 

GPU threads (e.g., NVIDIA’s CUDA threads). Even at this 

granularity, the B+2R scheme can be implemented at multiple 

levels: the CUDA block level and the CUDA thread level. A 

given thread can operate over a block of data in shared memory. 

Assigning threads to a 2-D space of B+2R allows for R correct 

iterations before communication between threads. At the block 

level, we once again overlap computation to avoid unnecessary 

communication between blocks. This follows for multi-GPU 

configurations whereby synchronization occurs via successive 

kernel calls. Once again, a large domain can be split up across 

GPUs for computation while employing this latency tolerant 

scheme across networked nodes.  Further up the tree the 

methodology is still useful. 

At the level of each core in a multi-core platform, we can exercise 

speed improvements by latency-hiding. This logically continues to 

the socket level such that a given node can employ these 

techniques at every computational level providing latency 

tolerance over the entire data domain. 

These hierarchical configurations illustrated in Figure 5 and 

Figure 6. 

Prior to implementing the scheme on GPUs on multiple nodes, we 

first investigate the implementation of the scheme on a single 

GPU. Once we establish a sound framework by which GPU 

exhibits this latency hiding scheme, we use MPI for inter-node 

GPU communication. This will be discussed in the performance 

study. 
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Figure 5: Multi-node, multi-core hierarchy 
 

 

 

Figure 6: Multi-node, multi-GPU hierarchy 

3.2  Latency Hiding per GPU 

3.2.1 Block Level 
The simplest implementation on the GPU is remaining one level 

higher from the deepest in the hierarchy, the CUDA block level. 

In this configuration, a physical dataset is split into b×b blocks 

containing an equal number of threads. Then, each agent is 

mapped to a single thread. This affords a simple one-to-one 

mapping at the thread level within the CUDA kernel. Maximum 

concurrency is therefore determined by physical block size. 

 

Figure 7: GPU block-level latency-hiding workflow 
Simulation data provided either by a parent level or initialized on 

the GPU is linearly stored in CUDA global memory. 

Subsequently, the computation kernel is invoked global 

iterations/R times. Within this kernel, blocks are allotted 

(B+2R)×(B+2R) shared memory for computation. Following a 

read from global memory and successive thread synchronization, 

each thread updates its assigned agent and synchronizes with 

other threads R times before a write back of size B×B to global 

memory ensuring correct execution. This organization is depicted 

in Figure 7 

3.2.2 Block to Thread Level 
The second way in which we implement latency hiding is by 

letting the block level be a logical intermediary for latency hiding 

at the thread level. Given the workflow in Figure 7, we append 

latency hiding on the thread level by further dividing block shared 

memory into logically smaller thread blocks. Bb is the block size 

mapped to CUDA blocks and Rb is the corresponding padding 

layer width for each such block.  In this scenario, threads 

contrastingly operate over multiple data. Kernel invocations still 

serve as block level synchronization; however, individual threads 

access a third physical data structure for inter-thread 

communication. 

 

Figure 8: Thread-level latency-hiding workflow 
Let Rt be the value of R used at the thread level.  Within the 

CUDA kernel, an initial copy from global memory into block 

shared memory is succeeded by a copy from block shared 

memory to thread shared memory. Note that if Rt > 1, it is 

required that the total amount of thread shared memory per 

CUDA block exceeds the amount of block shared memory.  As a 

result, we encounter current GPU hardware limitations preventing 

full hierarchical latency hiding. Importantly, we have exercised 

the ability to implement the latency hiding scheme even at the 

lowest hierarchical level. Figure 8 illustrates this extension. 

3.3  Multi-Core Multi-GPU Implementation 
with MPI 

On top of the implementation for latency hiding on a single GPU, 

we build the remaining framework around this for both multi-

GPU and, also substitute the CUDA thread implementation with a 

pthreads-based CPU thread implementation for multi-core 

configurations.  Both the multi-GPU and multi-core frameworks 

utilize MPI for inter-node communication. 

On a cluster of nodes, a socket allocates memory according to its 

subsection of the whole computation domain. For instance, if the 

whole computation size is 1024×1024 agents and 4 nodes of a 

cluster are utilized, each node would accordingly allocate memory 

for 256×256 agents. From here, we either execute the simulation 

via a single GPU by passing this memory to GPU global memory, 

or we execute on the CPU by using POSIX pthreads. After RCPU 

or RGPU iterations, we post non-blocking MPI_Irecvs and 

MPI_Isends to tasks according to their logical 2D rank. Each node 

then repopulates its ((B+2R)2-B2) data, and execution continues. 
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3.4  CUDA Restrictions and Memory 
Considerations 

The current state of GPU hardware and software configurations 

imposes some restrictions on the flexibility of our scheme at both 

the block and thread levels The two most important factors 

limiting maximum concurrency not present in recent CPU cluster 

configurations are the number of threads per block, and the 

maximum amount of memory that can be allocated on a per block 

basis. For the 8800 GTX GPU, the maximum number of threads 

per block can be as large as 512. However, given that we are 

operating on a logically 2-dimensional grid, this number is 

reduced to the smallest square less than 512, 484. Thus, we can 

operate with at most 22×22 threads per block. For our block level 

implementation, this was a limiting factor unexpressed in CPU 

implementations. 

Implementation of the scheme down to the thread level, however, 

presented the largest barrier. It is known that operations in the 

shared memory space of a GPU are much faster than operations 

on the global address space. For maximal computational speed, 

therefore, we attempt to perform most computation on shared 

memory. Referring back to Figure 8 and prior discussion, we 

observe that extra shared memory is required for thread level 

implementation. Here, we now qualify this restriction. 

For a physical data grid split into blocks of size Bb with block 

level reach Rb, each CUDA block requires (Bb+2Rb)
 2 bytes of 

shared memory. In addition, for thread blocks of size Bt with 

thread level reach Rt and t2 threads per block, we require 

t2(Bt+2Rt)
2 bytes of shared memory. Finally, typically employed 

methods for intra-block computation require separate read and 

write memory spaces. In other words, it is common to “ping-

pong” computation between two memory spaces. If we employed 

this configuration (requiring another t2(Bt+2Rt)
2 bytes of shared 

memory) we would have minimal concurrency (number of threads 

per block less than or equal to 4) and a maximum thread reach, Rt, 

of 2. This would not be sufficient enough to investigate latency 

hiding at the thread level. We therefore implemented a method by 

which typical ping-pong fashion is not required, discussed in the 

next section. After this optimization, the number of threads could 

be increased up to 16 threads per block, giving a maximum Rt of 

4. 

3.5  Minimizing Memory Requirements 
In shared memory units, a larger value of R results in increased 

concurrency, since the communication cost is negligible within 

the shared memory unit.  However, increasing R also increases the 

amount of additional memory used for latency hiding.  Thus, it is 

important to find ways to minimize the memory usage while still 

increasing R. 

Such as problem arises in a CUDA-based implementation, in 

which the shared memory size is limited, and hence must be 

carefully organized for the threads to perform their concurrent 

computation.  Traditional update schemes employ a read buffer 

and a write buffer for evolving an N×N grid, requiring 2N2 

memory variables.  Instead, if an in place update scheme exists, it 

can be used to avoid another copy of the entire grid.  We 

developed such an in-place update scheme, as shown in Figure 9, 

and used it to reduce the memory needs, and consequently 

increase the concurrency afforded by the latency hiding scheme, 

which reduces the temporary storage from N2 down to N+1. 

Given a 2D grid of cells for parallel update, we can use (N+1)×V 

registers for complete state update instead of using N×N extra 

registers. This method is depicted in Figure 9 where white cells 

are “to be updated” and yellow are already updated. These 

updates occur in linear fashion and we store data as needed in 

additional registers. 

 

Figure 9: Memory minimization for thread-level 

computation.  Blue cells are temporary registers, yellow 

are already updated, white are to be updated, and 

orange is currently being updated 

4.  EXPERIMENTATION PLATFORM 

4.1  Hardware 
GPU and CPU experiments have been run on the National Center 

for Computational Science (NCCS) LENS cluster. The platform 

was suitable because, as a data analysis cluster, not only were we 

able to access multi-node and multi-core functionality employed 

on many clusters, but it also afforded the use of recent NVIDIA 

8800 GTX (2 per node) GPUs. Each offers 768MB of onboard 

memory, 128 stream processors, and a core clock speed of 

575MHz. In regard to CPU experiments, each node contains four 

quad-core 2.3 GHz AMD Opteron processors with 64 GB of 

memory. 

4.2  Software 
For our single and multi-GPU runs, we use the NVIDIA Toolkit 

and SDK (nvcc compiler). Concurrent execution on the multi-

CPU level is obtained through POSIX pthreads (16 per node with 

16 cores per node). Finally, inter-node communication is handled 

through MPI (Open MPI specifically). All runs were conducted on 

a 64-bit Linux cluster. 

5.  APPLICATIONS AND SCENARIOS 
With the goal to reduce communication latency at the cost of 

increased computation, we choose scenarios that are fine- to 

medium-grained in computation. The first benchmark is a 

relatively well known model, namely, John Conway’s Game of 

Life.  The second is a recent, more complex model, called 

Leadership. The details of both models are discussed next. 

5.1  Game of Life 
The Game of Life (GOL) is a scenario in which a 2-dimensional 

spatial grid of cells is initially marked dead or alive. At each 

simulation time step, cells gather information from surrounding 

neighbors and make a Boolean choice. Cells that are occupied and 

surrounded by two or three neighbors remain occupied, otherwise, 

remove themselves from the grid. Unpopulated cells with exactly 

three neighbors become occupied. 
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Figure 10. Snapshots of grid for Game of Life: empty 

cells are in black; live cells are blue; recently-dead cells 

are red; green just became alive. 

5.2  Leadership 
The Leadership (LDR) model (developed as part of a US DARPA 

project) in , is a computationally involved model in which each 

agent computes an objective function for every iteration. In the 

model, reproduced below, each agent maximizes its utility in 

order to decide on the best behavior to adopt at any moment in the 

simulation: 

{ 1,0,1}Order O � �  

{ 1,0,1}Behavior B � �  

{ 1,0,1}Propensity P � �  

| |

2

O B
Loyalty L O

�
   

(1 )previous lLambda MO O G G  � �  

| |

2

O B
Coercion C R

�
   

| |

2

P B
Idealogy I

�
   

2 2 21 l c iUtility U w L w C w I  � � �  

Given an order O, of interest is the variation of behavior B that is 

chosen by each individual to maximize the individual’s utility U. 

Lambda’s time dependence induces variation of B over time. 

When Ml is defined as the mean loyalty of neighbors, the variation 

of B is less interesting, as lambda follows some sort of a diffusion 

process which can be expected to converge to an overall average 

across all individuals. To accommodate some dynamics, we make 

one change, namely, Ml is defined as the maximum loyalty, 

instead of mean loyalty, among neighbors. The rationale behind 

this variation is that the neighbor with the largest loyalty, even if 

there is only one, potentially has an overbearing influence on all 

its neighbors. Our implementation is initialized with constants: 

O=1, R=0.25, Wl=0.33, Wc=0.33, Wi ������ DQG� / ���1. P is 

uniformly randomized across the population. 

6.  PERFORMANCE STUDY 
In our performance study, we use “improvement level” as the 

metric to observe the decrease in run time that our latency-hiding 

provides over traditional technique with no latency-hiding.  This 

is given by the following equation. 

(%) 100
no latency hiding

latency hiding

RunTime
Improvement Level

RunTime
 u

Note that an improvement level L=100% implies that the run 

times with and without latency hiding are the same, and any level 

L>100% implies a reduction in run time of latency hiding over 

that of no latency hiding by a factor of L/100. 

  

(a) Initial behavior map 

divided along a country 

border; loyal behaviors are 

below the diagonal (blue) 

(b) Behavior smoothens after 

a few time steps, but neutral 

behaviors emerge along 

diagonal 

  

(c) Fluctuations and growth of 

neutral behavior outward 

from the diagonal is observed 

(d) Neutrality waves are 

regenerated despite 

intermediate ebbs 

Figure 11: A simulation of the leadership model: blue 

shows loyalty to leadership, green shows neutrality and 

blue shows anti-order stance.  Sustained waves to/away 

from neutrality indicate prolonged “unrest” 

 

6.1  Single GPU 
To initially conduct our performance study, we benchmarked the 

GOL scenario on a single GPU on a single node of the LENS 

cluster. For both block- and thread-level schemes, we ran a range 

of agent populations, with multiple R values, and varying number 

of threads per block, T. Observed phenomena are generally static 

for varying populations, i.e. the only observed performance 

difference as population increases is expected and observed 

runtime increase. All benchmarks presented in this subsection are 

for approximately one million agents, and simulated for 256 

global iterations. This equates to 256/R kernel invocations for 

varying R. 

6.1.1 Thread Level Latency Hiding 
We started by investigating latency hiding at the deepest 

hierarchical level, the CUDA thread level, followed by 

empirically uncovering both the nature of the latency hiding 

scheme at this level and restrictions inherent to the GPU CUDA 

architecture.  At the thread level, for a fixed number of threads (T2 

threads in operation for a given T), in line with our hypothesis, we 

observe a decrease in runtime as R increases from 1 (essentially 

no latency hiding) to 2. We also see communication cost decrease 

with increasing R as expected. As R increases beyond 2, however, 

execution time increases and levels off. This indicates multiple 

phenomena. For the GPU architecture, at R=2, we quickly reach 

the point at which trading communication for computation affords 

speedup. Also, we would expect that as R is increased, 

computation cost would eventually overtake the reduced 

communication cost, resulting in an increase in runtime with no 

upper bound.  Given our restrictions on shared memory and the 

ability of the GPU to quickly perform arithmetic, we do not 

observe this expected increase. At R=2 with 4 threads per block 

(2x2) in operation, we observe the most efficient execution. 

Finally, after measuring synchronization cost amongst GPU block 
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threads, we find it to be negligible in comparison to either 

memory reads/writes or computation. Thus, the additional 

overhead incurred by implementing thread-level latency hiding 

does not afford additional speedup. 

6.1.2 Block Level Latency Hiding 
At the block level, we see communication cost decrease and 

overall runtime decrease up to a given R (see Figure 12). We also 

notice, importantly, the stark contrast between overall runtime 

when comparing block and thread level latency hiding. As 

previously stated, the increased overhead incurred by 

implementation of the scheme at the thread level hinders 

performance. This manifests itself as an order of magnitude 

difference. We therefore conclude that thread level 

implementation is not useful for optimal speedup, and for our 

subsequent benchmarks on multiple nodes of the LENS cluster, 

we implement the scheme only at the block level. 

 

Figure 12: Improvement of GPU block level latency-

hiding compared to traditional (no latency-hiding) 
With this initial single GPU study, we turn to our benchmarks of 

both the GOL and LDR models on a larger, multi-GPU and multi-

CPU scale (16 nodes of the LENS cluster). The first set of these 

benchmarks, discussed next, uses a single GPU on each of the 16 

nodes. 

6.2  Multi-Node, One-GPU per Node 
We ported the single GPU latency hiding scheme to one 

hierarchically higher level on the LENS cluster of GPUs. Within 

this new framework, we effectively increase maximum number of 

agents simulated on a single GPU (approximately 16 million in 

our studies) multiplied by 16 (nodes). 

Both the LDR and GOL scenarios were benchmarked. Once 

again, because of shared memory limitations, we here present data 

for each GPU simulating approximately 1 million agents. These 

benchmarks are represented in Figure 13 and Figure 14 

respectively. 

The speedup bars clearly highlight the dramatic gains afforded by 

the latency hiding scheme when multiple GPUs are used across 

MPI.  It is evident here that communication latency hiding 

represented by Rm (for the parameter R at the MPI/node-level) is 

the dominant factor in speedup for both scenarios. As expected, 

inter-node communication is much more expensive with respect to 

wall time. Also we observe strong performance benefits when 

applying this scheme across nodes (up to two orders of magnitude 

on GOL). 

 

Figure 13:  Improvement of latency-hiding compared to 

no latency-hiding for GOL simulated on 16 GPUs of the 

LENS cluster 

 

 

Figure 14: Improvement of latency-hiding compared to 

no latency-hiding for LDR simulated on 16 GPUs of the 

LENS cluster 
With this relatively small dataset, however, we do not observe the 

point at which computation catches up with communication. A 

key hypothesis is that there will be a fixed point at which this 

tradeoff becomes unfavorable to runtime, i.e., we no longer 

benefit from the scheme. This will be discussed in the next 

section. 

6.3  Multi-Node Multi-Core 
Not constrained by the memory configurations of the 8800 GTX 

GPU, on multi-core platform, we are able to scale simulation size 

to over 109 agents. In similar fashion to GPU benchmarks, we test 

both the LDR and GOL models. These are represented in Figure 

15 and Figure 16.  Most notable in this configuration is large 

scalability of our scheme. Similar to multi-GPU execution, 

latency hiding at the MPI level is most dominant factor in model 

speedup.  In Figure 17 we observe the point at which the 

communication vs. computation continuum no longer affords 

increased speedup. For R>256 at the MPI task level, computation 

costs finally offset communication costs. This was predicted via 

the analytical model, and is now quantified. 
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Figure 15: Improvement of latency-hiding compared to 

no latency-hiding (Rt=1) when GOL is simulated on 

multi-core multi-node platform 

 

Figure 16: Improvement of latency-hiding compared to 

no latency-hiding (Rt=2) when LDR is simulated on 

multi-core multi-node platform 

 

 

Figure 17: Improvement of latency-hiding compared to 

no latency-hiding; shows reduction in runtime with 

increasing R, reducing by more than half in the best 

case before extra computation costs more than gains 

from decreased communication 

7.  SUMMARY AND FUTURE WORK 
We presented a way to scale ABMS on extant multi-CPU and 

multi-GPU systems while retaining both model fidelity and high 

execution speed of fine to medium granularity models. We are 

able to scale these simulations to over one billion agents, to aid in 

exploration of emergent phenomena in certain agent models.  We 

have also presented a flexible way to exploit emerging computing 

resources. Here, we are able to utilize up to 256 CPU-cores and/or 

16 GPUs concurrently. 

With our preliminary implementation and performance study, on 

multi-CPU architectures, we have shown large decreases in 

runtime by trading communication for computation. This same 

method, when applied to multi-GPU systems, allows for speed 

increases of over two orders of magnitude. This is all achieved 

through a single, unified, parameterized model, applicable on 

multiple architectures. Importantly; the method can be used on 

many hierarchical computational levels and their combinations, 

from CUDA threads to inter-node communication. 

It is important to note that the B+2R speedups are relative to no 

latency hiding scheme, and that the no latency hiding schemes are 

already highly optimized for a single (non-networked) GPU.  Our 

earlier work [11] on a single GPU already demonstrated three 

orders of magnitude faster agent simulations on a single GPU.  

Thus, actual (absolute) speedups of our current multi-GPU work 

when compared to a CPU-based implementation are over 30×, and 

speedups compared to existing CPU-based systems in Java are 

over 1000×.  In the best case (Figure 13), the speedup of our 

scheme over the existing straightforward scheme is over 150×, 

which represents over four orders of magnitude improvement over 

existing Java-based agent simulations. 

This leaves many areas for future work. One of the limitations in 

our implementation was coding separately for each platform. 

Ideally, it would be useful to have a seamless interface for all 

platform levels. OpenCL is one current technology designed to do 

this, our future experiments in latency hiding may investigate this 

technology. Another desirable feature is to dynamically and 

automatically tune R for each level.  This would decrease trial and 

error methods for finding the most suitable R.  Also, with newer 

GPU configurations, levels of performance and scale could be 

expected to increase.  Finally, incorporation of additional ABM-

specific features such as agent mobility and large agent 

neighborhoods will be investigated. 
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