
Efficient Simulation of Agent-Based Models on Multi-GPU
and Multi-Core Clusters

Brandon G. Aaby, Kalyan S. Perumalla and Sudip K. Seal
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

perumallaks@ornl.gov, sealsk@ornl.gov

ABSTRACT
An effective latency-hiding mechanism is presented in the

parallelization of agent-based model simulations (ABMS) with

millions of agents. The mechanism is designed to accommodate

the hierarchical organization as well as heterogeneity of current

state-of-the-art parallel computing platforms. We use it to explore

the computation vs. communication trade-off continuum available

with the deep computational and memory hierarchies of extant

platforms and present a novel analytical model of the tradeoff. We

describe our implementation and report preliminary performance

results on two distinct parallel platforms suitable for ABMS:

CUDA threads on multiple, networked graphical processing units

(GPUs), and pthreads on multi-core processors. Message Passing

Interface (MPI) is used for inter-GPU as well as inter-socket

communication on a cluster of multiple GPUs and multi-core

processors. Results indicate the benefits of our latency-hiding

scheme, delivering as much as over 100-fold improvement in

runtime for certain benchmark ABMS application scenarios with

several million agents. This speed improvement is obtained on

our system that is already two to three orders of magnitude faster

on one GPU than an equivalent CPU-based execution in a popular

simulator in Java. Thus, the overall execution of our current work

is over four orders of magnitude faster when executed on multiple

GPUs.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – Simulation,

Operational Analysis; D.4.4 [Operating Systems]:

Communications Management – Buffering, Message Sending,

Network Communication; D.4.8 [Operating Systems]

Performance – Operational Analysis; I.6.1 [Simulation and

Modeling] General; I.6.3 [Simulation and Modeling]

Applications

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Agent-based simulation, GPU, Cluster, Threads, MPI, CUDA,

Latency hiding, Computational hierarchy, Multi-core

1. INTRODUCTION
The study of human social behavioral systems is finding renewed

interest in many applications including military, homeland

security, and socioeconomic scenario analyses. Simulation is the

most generally applied approach to studying such systems. While

computational social science has been actively studied for over

three decades, experiments in computational social science so far

have only been at small scales – a few thousands of interacting

entities [1-4]. Lately, there has been a general surge to represent

and capture detailed effects at much larger scale, such as at

population counts of cities, states, nations or even the world (106-

109) [5]. Computational aspects that were not prominent at

smaller scales are now becoming pronounced at large scales.

1.1 Computational Challenge
Emerging computational platforms are being built with

compounds of hierarchical processing elements. For example,

clusters of commodity nodes with multiple graphics cards afford

multiple levels of tightly and loosely coupled processing

elements, with a variety of memory access types and

synchronization primitives. Processor clusters, with each

processor containing many cores, are another commodity platform

that affords high performance albeit with a different type of

execution hierarchy.

Inter-element communication latencies are also varied, ranging

from nanoseconds to hundreds of microseconds. For example,

threads within a block of NVIDIA’s Common Unified Data

Architecture (CUDA) have very fast access to a shared memory

segment, whereas Message Passing Interface (MPI)-based

communication across GPU nodes typically consumes hundreds

of microseconds.

The challenge is compounded by the fact that computation within

each agent’s state update in an ABMS can be very fine-grained,

taking little more than a few microseconds. When states are

decomposed across the hierarchies, synchronization across time-

stepped updates to the partitioned states can become a significant

source of overhead.

A solution is needed to simultaneously address the challenges of

latency spectrum, hierarchical organization as well as

heterogeneity. Ideally, a single, unified, parameterized solution

would be useful that can be easily instantiated, customized, and

auto-tuned for any given, specific compound computational

platform instance. This paper presents preliminary results from

one such attempt.

1.2 Related Work
Several modeling frameworks are available for modeling and

simulating social systems such as NetLogo[1], Mason[6], Repast

J/.Net[3], Swarm [7]. SPADES [8], JAMES [9], and

HLA_AGENT [10]. Also, GPUs have been recently used for

ABMS [11, 12].

While parallel execution has not been a major focus of ABMS

toolkits in general, a few recent systems have explored

parallel/distributed implementations. These include SEAS [13]

for disaggregate and aggregate behavioral models interacting with

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

actual individuals, and a distributed agent simulator [14]. An

agent-based simulation optimized for large shared-memory

platforms is described in [15] and a parallel, Java-based agent

simulation system is described for disease propagation in [16].

The dynamics of multi-agent based simulation execution on grid

environments was analyzed in [17, 18]. By contrast, our focus is

on high-performance computing and on heterogeneous platforms,

with special emphasis on latency hiding for maximal concurrency.

The problem of performance optimizations of stencil based

computations – an area of active research for years – bears

resemblance to the parallel execution challenge of ABMS. For

example, “ghost cell expansions” (GCE) [19] was proposed for

performance improvements for a two dimensional synthetic

problem without any time evolution. Automatic parallelization of

stencil computation was reported in [20] in the context of a one

dimensional Jacobi code on a 32 node (single core) platform.

More recently, a detailed empirical study of stencil computation

optimization on several multi-core CPU based architecture (but

restricted to a single GPU) was reported in [21]. Another related

work is a framework for high-order stencil computations [22].

Although similar in some ways, stencil-based computations are

distinct from parallel agent-based simulations, as discussed next.

Studies on stencil-based computations are generally based on

constant-sized neighborhood dependencies that remain static

throughout an execution. Availability of data at neighbor locations

is guaranteed at each time step. This is not true for ABMS where

the agents are mobile. In ABMS, the region of data dependency is

not fixed and can potentially span the whole computational

domain. This results in highly non-trivial spatial and temporal

data dependencies. Consequently, the communication-

computation tradeoff strategies discussed in the stencil

computation literature do not necessarily carry over to the needs

of ABMS. Existing work on performance optimization of stencil

based computation, as detailed above, has largely been empirical

in nature [21] and focused on synthetic, reduced-dimensional

problems [19, 20].

Stencil optimization strategies have neither focused on nor

exploited the full hierarchical organization of current processor

platforms and memory architectures. We are also not aware of

work that proposed a generalized solution that applies equally

well across a variety of architectures (such as CPUs and GPUs);

our approach does apply. We are also not aware of prior work

that can apply the same template recursively at multiple levels of

computational hierarchy, with varying characteristics of memory

latencies and capacities, processor speeds, and network latencies

and bandwidths. Our focus is on developing a single solution that

can be reused despite variations in target platform characteristics

due to heterogeneity and hierarchy.

Automatic ghost zone optimization [23] also addresses latency

problems in stencil computations. However, unlike our approach,

it is not generalized to heterogeneous, deeper hierarchies of

computation and communication architectures.

1.3 Contributions
Here, we present a latency-hiding mechanism designed to exploit

and seamlessly adapt to the hierarchical organization and

heterogeneity of emerging high performance computing

platforms. We call it the “B+2R latency-hiding scheme.” It is

based on the well-known principle of computation vs.

communication tradeoff (or, the duplication of some computation

to gain some concurrency to offset communication latencies).

While being simple to articulate, it is rather complex to implement

in heterogeneous platforms. For example, while concurrency

considerations require larger cached-block sizes, memory

limitations constrain the cached block-size; this conflict of

considerations needs to be addressed in implementation carefully.

As an example, we had to address this conflict in our CUDA-

based implementation, in which traditional ping-pong approach of

read-write buffer swaps across iterations limited the size of blocks

that could be handled by each thread or block within the limits of

shared memory. Once implemented, despite implementation

complexity, however, it is relatively easy to fine tune for optimal

performance on a variety of platforms. The scheme also affords

excellent performance even in the most challenging ABMS

scenarios characterized by very fine computation granularity.

To the best of our knowledge, the work reported in this article is

among the first to execute ABMS on multiple GPUs

communicating over a network. It is based on a novel analytical

model (discussed in a latter section) that is applicable to arbitrary

levels of computational and memory hierarchy.

The analytical model proposed here reduces to previous models

on computation vs. communication tradeoff on stencil-based

computations [19] while validating, both analytically and

empirically, the degradation of the payoffs [24] with increasing

expansion levels. We also believe that this is among the first

ABMS to execute multiple regular (CPU-based) threads over

distributed memory platforms, optimized to sustain fine

granularity.

We present our preliminary findings in the context of a well-

known ABMS benchmark application as well as a complex model

of current interest in social sciences [25], to demonstrate

significant runtime improvements via latency hiding.

2. LATENCY HIDING SCHEME

2.1 Latency Problem
ABMS toolkits typically provide an interface in which agents are

organized in a grid, and agents interact with each other, typically

within some specific distance of reach in a neighborhood region.

As with other grid-based models, due to partitioning of the global

state across processors, the state of adjacent cells in the

neighborhood of some cells may be remotely located outside of

that processor. In time-stepped parallel execution of agent-based

simulations, copies of off-processor neighbor states are fetched

and used within a time step. A synchronization primitive such as

parallel barrier is used to align all processing elements after every

time step. The problem in scaling this approach is that the

communication and synchronization costs can become quite large

when hierarchical, heterogeneous computing elements are used,

resulting in large slowdowns as opposed to speedups for fine-

grained agent models. As will be seen from performance data in

later sections, the naïve approach of synchronizing after every

iteration is vastly sub-optimal. A technique is needed to offset

this cost, and hide the large inter-element latencies.

2.2 Our Solution Approach
Given a grid of agents, we can logically separate the grid into

dependent blocks allotted to independent processing elements.

These blocks clearly have data dependencies across each other as

agent state updates bordering a given block depend upon the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

current state of agents in neighboring blocks. Here, we use an

approach in which sub-grids of this grid, B, can be padded on the

sides by R layers of surrounding data. These R layers of

surrounding data encapsulate remote agents to be simulated by

neighboring blocks allotted to other independent processing

elements. Computation on local agents can then be increased by

R iterations before having to re-synchronize with off-processor

cells. Since a given B+2R block captures all surrounding data for

local simulation, communication between nodes is also decreased.

The R layers induce resilience to error locally, and thus offer

latency hiding, both in terms of communication (exchanging data

fewer number of times, albeit a larger amount of data per

exchange) and synchronization (synchronizing less often, only

once every R iterations).

As a simple illustrative example, Figure 1 shows a 3×3 grid

separated into blocks to be processed by P processing elements in

two different contexts, with and without the latency hiding

scheme implemented. Block1,1 of the conventional approach

(Figure 1) simulates B×B agents with communication between

boundary agents necessary at every simulation time step. By

contrast, Block1,1 of the latency hiding scheme (Figure 2)

simulates a larger number of agents (B+2R)×(B+2R), but

requiring less frequent communication with neighboring blocks,

only once every R time steps.

 Figure 1: Traditional approach with synchronization

between every time-step
Figure 3 illustrates error propagation at successive (up to R)

simulation time steps. Error propagates inward, one layer per

iteration, but never enters the central B×B block that is mapped to

this processing element. Thus, after R iterations, a valid B×B

block remains at the center, evolved by R iterations, for

subsequent synchronization with neighboring blocks.

For a given grid split into N×N logical blocks, this scheme is

implemented homogenously across all blocks. Once again, only

after exactly R iterations is synchronization necessary. This

synchronization is the gathering or scattering of agent state

information to neighboring blocks

Data allotted to and surrounding a given block’s valid B×B, i.e.

((B+2R)2-B2), is refilled with state information from neighboring

blocks’ B×B. Subsequently, execution can continue for another R

time steps before this synchronization is required once again.

With this conceptual framework, we present a simple algorithm in

Figure 4 by which simulation continues. Referring to Figure 3, it

is necessary to only update the largest data square containing

valid, correctly-simulated agents. After i iterations, we are

required to update a square of size (B+2(R-i))×(B+2(R-i)). Note

that in this algorithm update and communicate are

implementation-specific. These will be further discussed in our

implementation and benchmarks.

 Figure 2: Our B+2R scheme for latency-hiding to

sustain multiple time-steps per synchronization

Figure 3: Error propagation at consecutive simulation

time-steps

Let Te be total number of iterations in the simulation

1 For all blocks Blockij in the given agent grid G
1.1 Let (tli, tlj) be the top left index of Blockij
1.2 Let (bri, brj) be the bottom right index of Blockij
1.3 For t=0 to Te/R
1.4 For r=R-1 down to 0
1.5 Update(tli-r, tlj-r, bri+r, brj+r)
1.6 Communicate(tli, tlj, bri, brj, r)
1.7 Barrier()

Figure 4: Generalized latency-hiding scheme

2.3 Analytical Model
Let F be the total run time for a logical block of size B. Then, F is

the sum of computation time Fc and communication time Fm for R

simulation time steps:

c mF F F{ �

For R iterations, each subsequent iteration needs to only update

remaining valid data, as previously discussed. Thus, total

computation time is the aggregate time to update progressively

smaller blocks. Note that cf is the computation cost function for

a given block size of agents.

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

 B

 R

 B+2R

 R

Direction of error

propagation in R

B×B

sub-block mapped

to processing

element p

R layers of

lagging cells

xxx

Block0,0

P0,0

Block0,1

P0,1

Block0,2

P0,2

Block1,0

P1,0

Block1,1

P1,1

Block1,2

P1,2

Block2,0

P2,0

Block2,1

P2,1

Block2,2

P2,2

B+2R

R R

xx

Block0,0

P0,0

Block0,1

P0,1

Block0,2

P0,2

Block1,0

P1,0

Block1,1

P1,1
Block1,2

P1,2

Block2,0

P2,0

Block2,1

P2,1

Block2,2

P2,2

B

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

(2) (2 1) (2 2) (2)c c c c cF f B R f B R f B R f B R R{ � � � � � � � � � � �"

The computational time increases as the square of the grid size.

Therefore, if a is an implementation-specific computation

constant,

1

2() (2)c c c

R

i

f x ax F f B R i

 � { � �¦

2 3 2 2 2

1

(2) [(2 2)
4 2

3 3
(2)]

R

i

a B R i a R B R B B R B

 � � � � � � �¦

Now, the communication cost required after R time steps must be

expressed separately for CPU and GPU platforms due to

configuration-specific details. For example, in the case of the

CUDA environment for GPU, block’s shared memory is flushed

immediately after kernel invocations. We represent these as
1mF

and
2mF respectively (CPU and GPU) where wf and rf are

general write and read representations for communication cost

between blocks for both CPU and GPU. Let b and c be platform-

specific communication overhead constants (typically determined

empirically). Communication cost is expressed (either read or

write) as fwr below.

()wrf y by c �

1

2
2

2
2() (2)2m w rF f B fB R B R B� � �{ � �

2

2
22 2() ()m w rF f B f B R B� �{ �

After some algebra, we finally obtain the final solution as a cubic

equation. For CPU-based parallelism, this is expressed as FCPU,

and for GPU-based parallelism FGPU .

3 2 2 24 2[(2 2) (2)] [8]
3 3CPUF a R B R B B R B b BR c � � � � � � �

3 2 2 2
2

4 2[(2 2) (2)] []
3 3

2GPUF a R B R B B R Bb cRB � � � � � � � �

The remarkable part of this equation is the cubic nature of

dependence of the runtime on R, which indicates two traits. The

first is that data-parallel execution on all platforms shall

experience a decrease in overall execution time as R increases to

some finite integer. The second is that there will also exist an R

value at which the platform no longer favors computation over

communication; in other words, there will be a fixed R for a given

B for which optimal performance is achieved. Later, in the

performance study, we in fact observe the fall and rise of runtime

with R, as predicted by the analytical model. These inferences are

in fact in line with the observation and empirical findings in

stencil-based computations as well, although our model is more

general in nature.

2.4 Latency Parametric Range
Let us define a platform level as a computation and

communication interface in a parallel computing hierarchy. Two

examples of such a hierarchy are shown in Figure 5 and Figure 6.

The value range of R for a given block size is constrained by B at

any given level. The restriction is that, at any level, the range of R

is limited such that a given block cannot encroach upon a

neighboring block’s execution. This gives 1�5i�%i/2 for any given

level i. Furthermore, at level i, it must be enforced for correct

execution that level i+1 not update more iterations than its parent

level’s: Ri+1�5i.

2.5 Mobility and Neighborhood Reach > 1
Mobility of agents in the grid is modeled by copying the state of

the agent from the source grid cell to the destination grid cell to

which the agent moves. The selection of the destination is usually

based on vacancy determination procedures combined with some

randomization. The reach within the neighborhood of an agent is

the extents to/by which the influence of the agents actions

extends. Both the neighborhood reach as well as the mobility

aspects share the notion of bounding box of influence of some D

cells around a given grid cell. Both of these aspects are easily

accommodated by the B+2R scheme with one constraint on R,

namely, R must be a integral multiple of the neighborhood reach

or mobility extent D. This constraint accommodates all local state

update functions as well as remote movement functions.

Thus, the scheme is generalized, and can support “stencils” that

reach more than one cell in any direction, and it is not limited to a

neighborhood of one cell away.

3. ALGORITHMIC IMPLEMENTATION
FRAMEWORK

We have implemented this scheme in two hierarchical parallel

processing platforms that are the most commonly available. The

first is the multi-GPU platform and the second is the multi-core

platform. The null hypothesis is that communication and/or

synchronization costs are high on these platforms, and that these

costs can be hidden by using our latency hiding scheme. We will

first discuss the implementation frameworks for both platforms,

followed by performance studies on both.

3.1 Implementation on Hierarchical Multi-
GPU, Multi-core Platforms

At the lowest level in a multi-CPU multi-GPU configuration are

GPU threads (e.g., NVIDIA’s CUDA threads). Even at this

granularity, the B+2R scheme can be implemented at multiple

levels: the CUDA block level and the CUDA thread level. A

given thread can operate over a block of data in shared memory.

Assigning threads to a 2-D space of B+2R allows for R correct

iterations before communication between threads. At the block

level, we once again overlap computation to avoid unnecessary

communication between blocks. This follows for multi-GPU

configurations whereby synchronization occurs via successive

kernel calls. Once again, a large domain can be split up across

GPUs for computation while employing this latency tolerant

scheme across networked nodes. Further up the tree the

methodology is still useful.

At the level of each core in a multi-core platform, we can exercise

speed improvements by latency-hiding. This logically continues to

the socket level such that a given node can employ these

techniques at every computational level providing latency

tolerance over the entire data domain.

These hierarchical configurations illustrated in Figure 5 and

Figure 6.

Prior to implementing the scheme on GPUs on multiple nodes, we

first investigate the implementation of the scheme on a single

GPU. Once we establish a sound framework by which GPU

exhibits this latency hiding scheme, we use MPI for inter-node

GPU communication. This will be discussed in the performance

study.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

Figure 5: Multi-node, multi-core hierarchy

Figure 6: Multi-node, multi-GPU hierarchy

3.2 Latency Hiding per GPU

3.2.1 Block Level
The simplest implementation on the GPU is remaining one level

higher from the deepest in the hierarchy, the CUDA block level.

In this configuration, a physical dataset is split into b×b blocks

containing an equal number of threads. Then, each agent is

mapped to a single thread. This affords a simple one-to-one

mapping at the thread level within the CUDA kernel. Maximum

concurrency is therefore determined by physical block size.

Figure 7: GPU block-level latency-hiding workflow
Simulation data provided either by a parent level or initialized on

the GPU is linearly stored in CUDA global memory.

Subsequently, the computation kernel is invoked global

iterations/R times. Within this kernel, blocks are allotted

(B+2R)×(B+2R) shared memory for computation. Following a

read from global memory and successive thread synchronization,

each thread updates its assigned agent and synchronizes with

other threads R times before a write back of size B×B to global

memory ensuring correct execution. This organization is depicted

in Figure 7

3.2.2 Block to Thread Level
The second way in which we implement latency hiding is by

letting the block level be a logical intermediary for latency hiding

at the thread level. Given the workflow in Figure 7, we append

latency hiding on the thread level by further dividing block shared

memory into logically smaller thread blocks. Bb is the block size

mapped to CUDA blocks and Rb is the corresponding padding

layer width for each such block. In this scenario, threads

contrastingly operate over multiple data. Kernel invocations still

serve as block level synchronization; however, individual threads

access a third physical data structure for inter-thread

communication.

Figure 8: Thread-level latency-hiding workflow
Let Rt be the value of R used at the thread level. Within the

CUDA kernel, an initial copy from global memory into block

shared memory is succeeded by a copy from block shared

memory to thread shared memory. Note that if Rt > 1, it is

required that the total amount of thread shared memory per

CUDA block exceeds the amount of block shared memory. As a

result, we encounter current GPU hardware limitations preventing

full hierarchical latency hiding. Importantly, we have exercised

the ability to implement the latency hiding scheme even at the

lowest hierarchical level. Figure 8 illustrates this extension.

3.3 Multi-Core Multi-GPU Implementation
with MPI

On top of the implementation for latency hiding on a single GPU,

we build the remaining framework around this for both multi-

GPU and, also substitute the CUDA thread implementation with a

pthreads-based CPU thread implementation for multi-core

configurations. Both the multi-GPU and multi-core frameworks

utilize MPI for inter-node communication.

On a cluster of nodes, a socket allocates memory according to its

subsection of the whole computation domain. For instance, if the

whole computation size is 1024×1024 agents and 4 nodes of a

cluster are utilized, each node would accordingly allocate memory

for 256×256 agents. From here, we either execute the simulation

via a single GPU by passing this memory to GPU global memory,

or we execute on the CPU by using POSIX pthreads. After RCPU

or RGPU iterations, we post non-blocking MPI_Irecvs and

MPI_Isends to tasks according to their logical 2D rank. Each node

then repopulates its ((B+2R)2-B2) data, and execution continues.

xx

Bb+2Rb Split into t×t

logical thread blocks

Total block shared

memory

xxx

xxx

.…

Additional shared

memory

per thread

Bt+2Rt

t×t Thread blocks

Rt State updates

Rt State updates

xx
xx

Split into b×b

logical blocks

Global memory

xx

xx

.…

Shared memory

per block

B+2R

b×b blocks

R state updates

R state updates

Multi-Node

Node (Multi-GPU)

GPU

Block

........ Thread

........

Multi-Socket

Multi-Core

Thread

Multi-Node

........

........

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

3.4 CUDA Restrictions and Memory
Considerations

The current state of GPU hardware and software configurations

imposes some restrictions on the flexibility of our scheme at both

the block and thread levels The two most important factors

limiting maximum concurrency not present in recent CPU cluster

configurations are the number of threads per block, and the

maximum amount of memory that can be allocated on a per block

basis. For the 8800 GTX GPU, the maximum number of threads

per block can be as large as 512. However, given that we are

operating on a logically 2-dimensional grid, this number is

reduced to the smallest square less than 512, 484. Thus, we can

operate with at most 22×22 threads per block. For our block level

implementation, this was a limiting factor unexpressed in CPU

implementations.

Implementation of the scheme down to the thread level, however,

presented the largest barrier. It is known that operations in the

shared memory space of a GPU are much faster than operations

on the global address space. For maximal computational speed,

therefore, we attempt to perform most computation on shared

memory. Referring back to Figure 8 and prior discussion, we

observe that extra shared memory is required for thread level

implementation. Here, we now qualify this restriction.

For a physical data grid split into blocks of size Bb with block

level reach Rb, each CUDA block requires (Bb+2Rb)
 2 bytes of

shared memory. In addition, for thread blocks of size Bt with

thread level reach Rt and t2 threads per block, we require

t2(Bt+2Rt)
2 bytes of shared memory. Finally, typically employed

methods for intra-block computation require separate read and

write memory spaces. In other words, it is common to “ping-

pong” computation between two memory spaces. If we employed

this configuration (requiring another t2(Bt+2Rt)
2 bytes of shared

memory) we would have minimal concurrency (number of threads

per block less than or equal to 4) and a maximum thread reach, Rt,

of 2. This would not be sufficient enough to investigate latency

hiding at the thread level. We therefore implemented a method by

which typical ping-pong fashion is not required, discussed in the

next section. After this optimization, the number of threads could

be increased up to 16 threads per block, giving a maximum Rt of

4.

3.5 Minimizing Memory Requirements
In shared memory units, a larger value of R results in increased

concurrency, since the communication cost is negligible within

the shared memory unit. However, increasing R also increases the

amount of additional memory used for latency hiding. Thus, it is

important to find ways to minimize the memory usage while still

increasing R.

Such as problem arises in a CUDA-based implementation, in

which the shared memory size is limited, and hence must be

carefully organized for the threads to perform their concurrent

computation. Traditional update schemes employ a read buffer

and a write buffer for evolving an N×N grid, requiring 2N2

memory variables. Instead, if an in place update scheme exists, it

can be used to avoid another copy of the entire grid. We

developed such an in-place update scheme, as shown in Figure 9,

and used it to reduce the memory needs, and consequently

increase the concurrency afforded by the latency hiding scheme,

which reduces the temporary storage from N2 down to N+1.

Given a 2D grid of cells for parallel update, we can use (N+1)×V

registers for complete state update instead of using N×N extra

registers. This method is depicted in Figure 9 where white cells

are “to be updated” and yellow are already updated. These

updates occur in linear fashion and we store data as needed in

additional registers.

Figure 9: Memory minimization for thread-level

computation. Blue cells are temporary registers, yellow

are already updated, white are to be updated, and

orange is currently being updated

4. EXPERIMENTATION PLATFORM

4.1 Hardware
GPU and CPU experiments have been run on the National Center

for Computational Science (NCCS) LENS cluster. The platform

was suitable because, as a data analysis cluster, not only were we

able to access multi-node and multi-core functionality employed

on many clusters, but it also afforded the use of recent NVIDIA

8800 GTX (2 per node) GPUs. Each offers 768MB of onboard

memory, 128 stream processors, and a core clock speed of

575MHz. In regard to CPU experiments, each node contains four

quad-core 2.3 GHz AMD Opteron processors with 64 GB of

memory.

4.2 Software
For our single and multi-GPU runs, we use the NVIDIA Toolkit

and SDK (nvcc compiler). Concurrent execution on the multi-

CPU level is obtained through POSIX pthreads (16 per node with

16 cores per node). Finally, inter-node communication is handled

through MPI (Open MPI specifically). All runs were conducted on

a 64-bit Linux cluster.

5. APPLICATIONS AND SCENARIOS
With the goal to reduce communication latency at the cost of

increased computation, we choose scenarios that are fine- to

medium-grained in computation. The first benchmark is a

relatively well known model, namely, John Conway’s Game of

Life. The second is a recent, more complex model, called

Leadership. The details of both models are discussed next.

5.1 Game of Life
The Game of Life (GOL) is a scenario in which a 2-dimensional

spatial grid of cells is initially marked dead or alive. At each

simulation time step, cells gather information from surrounding

neighbors and make a Boolean choice. Cells that are occupied and

surrounded by two or three neighbors remain occupied, otherwise,

remove themselves from the grid. Unpopulated cells with exactly

three neighbors become occupied.

N

(3, 0)

(1, 0)

(0, 0)

(2, 0)

(3, 1)

(1, 1)

(0, 1)

(2, 1)

(3, 3)

(1, 3)

(0, 3)

(2, 3)

(3, 2)

(1, 2)

(0, 2)

(2, 2)

0 1 3 2

L

Value

(1,0)

Value

(0,0)
Value

(0,1)
Value

(0,2)
Value

(0,3)

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

Figure 10. Snapshots of grid for Game of Life: empty

cells are in black; live cells are blue; recently-dead cells

are red; green just became alive.

5.2 Leadership
The Leadership (LDR) model (developed as part of a US DARPA

project) in , is a computationally involved model in which each

agent computes an objective function for every iteration. In the

model, reproduced below, each agent maximizes its utility in

order to decide on the best behavior to adopt at any moment in the

simulation:

{ 1,0,1}Order O � �

{ 1,0,1}Behavior B � �

{ 1,0,1}Propensity P � �

| |

2

O B
Loyalty L O

�

(1)previous lLambda MO O G G � �

| |

2

O B
Coercion C R

�

| |

2

P B
Idealogy I

�

2 2 21 l c iUtility U w L w C w I � � �

Given an order O, of interest is the variation of behavior B that is

chosen by each individual to maximize the individual’s utility U.

Lambda’s time dependence induces variation of B over time.

When Ml is defined as the mean loyalty of neighbors, the variation

of B is less interesting, as lambda follows some sort of a diffusion

process which can be expected to converge to an overall average

across all individuals. To accommodate some dynamics, we make

one change, namely, Ml is defined as the maximum loyalty,

instead of mean loyalty, among neighbors. The rationale behind

this variation is that the neighbor with the largest loyalty, even if

there is only one, potentially has an overbearing influence on all

its neighbors. Our implementation is initialized with constants:

O=1, R=0.25, Wl=0.33, Wc=0.33, Wi ������ DQG� / ���1. P is

uniformly randomized across the population.

6. PERFORMANCE STUDY
In our performance study, we use “improvement level” as the

metric to observe the decrease in run time that our latency-hiding

provides over traditional technique with no latency-hiding. This

is given by the following equation.

(%) 100
no latency hiding

latency hiding

RunTime
Improvement Level

RunTime
 u

Note that an improvement level L=100% implies that the run

times with and without latency hiding are the same, and any level

L>100% implies a reduction in run time of latency hiding over

that of no latency hiding by a factor of L/100.

(a) Initial behavior map

divided along a country

border; loyal behaviors are

below the diagonal (blue)

(b) Behavior smoothens after

a few time steps, but neutral

behaviors emerge along

diagonal

(c) Fluctuations and growth of

neutral behavior outward

from the diagonal is observed

(d) Neutrality waves are

regenerated despite

intermediate ebbs

Figure 11: A simulation of the leadership model: blue

shows loyalty to leadership, green shows neutrality and

blue shows anti-order stance. Sustained waves to/away

from neutrality indicate prolonged “unrest”

6.1 Single GPU
To initially conduct our performance study, we benchmarked the

GOL scenario on a single GPU on a single node of the LENS

cluster. For both block- and thread-level schemes, we ran a range

of agent populations, with multiple R values, and varying number

of threads per block, T. Observed phenomena are generally static

for varying populations, i.e. the only observed performance

difference as population increases is expected and observed

runtime increase. All benchmarks presented in this subsection are

for approximately one million agents, and simulated for 256

global iterations. This equates to 256/R kernel invocations for

varying R.

6.1.1 Thread Level Latency Hiding
We started by investigating latency hiding at the deepest

hierarchical level, the CUDA thread level, followed by

empirically uncovering both the nature of the latency hiding

scheme at this level and restrictions inherent to the GPU CUDA

architecture. At the thread level, for a fixed number of threads (T2

threads in operation for a given T), in line with our hypothesis, we

observe a decrease in runtime as R increases from 1 (essentially

no latency hiding) to 2. We also see communication cost decrease

with increasing R as expected. As R increases beyond 2, however,

execution time increases and levels off. This indicates multiple

phenomena. For the GPU architecture, at R=2, we quickly reach

the point at which trading communication for computation affords

speedup. Also, we would expect that as R is increased,

computation cost would eventually overtake the reduced

communication cost, resulting in an increase in runtime with no

upper bound. Given our restrictions on shared memory and the

ability of the GPU to quickly perform arithmetic, we do not

observe this expected increase. At R=2 with 4 threads per block

(2x2) in operation, we observe the most efficient execution.

Finally, after measuring synchronization cost amongst GPU block

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

threads, we find it to be negligible in comparison to either

memory reads/writes or computation. Thus, the additional

overhead incurred by implementing thread-level latency hiding

does not afford additional speedup.

6.1.2 Block Level Latency Hiding
At the block level, we see communication cost decrease and

overall runtime decrease up to a given R (see Figure 12). We also

notice, importantly, the stark contrast between overall runtime

when comparing block and thread level latency hiding. As

previously stated, the increased overhead incurred by

implementation of the scheme at the thread level hinders

performance. This manifests itself as an order of magnitude

difference. We therefore conclude that thread level

implementation is not useful for optimal speedup, and for our

subsequent benchmarks on multiple nodes of the LENS cluster,

we implement the scheme only at the block level.

Figure 12: Improvement of GPU block level latency-

hiding compared to traditional (no latency-hiding)
With this initial single GPU study, we turn to our benchmarks of

both the GOL and LDR models on a larger, multi-GPU and multi-

CPU scale (16 nodes of the LENS cluster). The first set of these

benchmarks, discussed next, uses a single GPU on each of the 16

nodes.

6.2 Multi-Node, One-GPU per Node
We ported the single GPU latency hiding scheme to one

hierarchically higher level on the LENS cluster of GPUs. Within

this new framework, we effectively increase maximum number of

agents simulated on a single GPU (approximately 16 million in

our studies) multiplied by 16 (nodes).

Both the LDR and GOL scenarios were benchmarked. Once

again, because of shared memory limitations, we here present data

for each GPU simulating approximately 1 million agents. These

benchmarks are represented in Figure 13 and Figure 14

respectively.

The speedup bars clearly highlight the dramatic gains afforded by

the latency hiding scheme when multiple GPUs are used across

MPI. It is evident here that communication latency hiding

represented by Rm (for the parameter R at the MPI/node-level) is

the dominant factor in speedup for both scenarios. As expected,

inter-node communication is much more expensive with respect to

wall time. Also we observe strong performance benefits when

applying this scheme across nodes (up to two orders of magnitude

on GOL).

Figure 13: Improvement of latency-hiding compared to

no latency-hiding for GOL simulated on 16 GPUs of the

LENS cluster

Figure 14: Improvement of latency-hiding compared to

no latency-hiding for LDR simulated on 16 GPUs of the

LENS cluster
With this relatively small dataset, however, we do not observe the

point at which computation catches up with communication. A

key hypothesis is that there will be a fixed point at which this

tradeoff becomes unfavorable to runtime, i.e., we no longer

benefit from the scheme. This will be discussed in the next

section.

6.3 Multi-Node Multi-Core
Not constrained by the memory configurations of the 8800 GTX

GPU, on multi-core platform, we are able to scale simulation size

to over 109 agents. In similar fashion to GPU benchmarks, we test

both the LDR and GOL models. These are represented in Figure

15 and Figure 16. Most notable in this configuration is large

scalability of our scheme. Similar to multi-GPU execution,

latency hiding at the MPI level is most dominant factor in model

speedup. In Figure 17 we observe the point at which the

communication vs. computation continuum no longer affords

increased speedup. For R>256 at the MPI task level, computation

costs finally offset communication costs. This was predicted via

the analytical model, and is now quantified.

0%

50%

100%

150%

200%

250%

300%

T=4 T=8 T=16

Im
p

ro
v
e

m
e

n
t

L
e

v
e

l

Number of Threads Per Side

GPU Block Level Latency Hiding - 1 mil
Agents

Rt=1 Rt=2 Rt=4

0%

2000%

4000%

6000%

8000%

10000%

12000%

1 2 4 8

Im
p

ro
v
e

m
e

n
t

L
e
v
e

l

MPI Level R (Rm)

Multi-Node GPU GOL - 16 mil Agents

Rt=1 Rt=2 Rt=4

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

2 4 8

Im
p

ro
v
e

m
e

n
t

L
e
v
e

l

MPI Level R (Rm)

Multi-Node GPU LDR - 16 mil Agents

Rt=2 Rt=4 Rt=8

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

Figure 15: Improvement of latency-hiding compared to

no latency-hiding (Rt=1) when GOL is simulated on

multi-core multi-node platform

Figure 16: Improvement of latency-hiding compared to

no latency-hiding (Rt=2) when LDR is simulated on

multi-core multi-node platform

Figure 17: Improvement of latency-hiding compared to

no latency-hiding; shows reduction in runtime with

increasing R, reducing by more than half in the best

case before extra computation costs more than gains

from decreased communication

7. SUMMARY AND FUTURE WORK
We presented a way to scale ABMS on extant multi-CPU and

multi-GPU systems while retaining both model fidelity and high

execution speed of fine to medium granularity models. We are

able to scale these simulations to over one billion agents, to aid in

exploration of emergent phenomena in certain agent models. We

have also presented a flexible way to exploit emerging computing

resources. Here, we are able to utilize up to 256 CPU-cores and/or

16 GPUs concurrently.

With our preliminary implementation and performance study, on

multi-CPU architectures, we have shown large decreases in

runtime by trading communication for computation. This same

method, when applied to multi-GPU systems, allows for speed

increases of over two orders of magnitude. This is all achieved

through a single, unified, parameterized model, applicable on

multiple architectures. Importantly; the method can be used on

many hierarchical computational levels and their combinations,

from CUDA threads to inter-node communication.

It is important to note that the B+2R speedups are relative to no

latency hiding scheme, and that the no latency hiding schemes are

already highly optimized for a single (non-networked) GPU. Our

earlier work [11] on a single GPU already demonstrated three

orders of magnitude faster agent simulations on a single GPU.

Thus, actual (absolute) speedups of our current multi-GPU work

when compared to a CPU-based implementation are over 30×, and

speedups compared to existing CPU-based systems in Java are

over 1000×. In the best case (Figure 13), the speedup of our

scheme over the existing straightforward scheme is over 150×,

which represents over four orders of magnitude improvement over

existing Java-based agent simulations.

This leaves many areas for future work. One of the limitations in

our implementation was coding separately for each platform.

Ideally, it would be useful to have a seamless interface for all

platform levels. OpenCL is one current technology designed to do

this, our future experiments in latency hiding may investigate this

technology. Another desirable feature is to dynamically and

automatically tune R for each level. This would decrease trial and

error methods for finding the most suitable R. Also, with newer

GPU configurations, levels of performance and scale could be

expected to increase. Finally, incorporation of additional ABM-

specific features such as agent mobility and large agent

neighborhoods will be investigated.

ACKNOWLEDGEMENTS
This paper has been authored by UT-Battelle, LLC, under contract

DE-AC05-00OR22725 with the U.S. Department of Energy.

Accordingly, the United States Government retains and the

publisher, by accepting the article for publication, acknowledges

that the United States Government retains a non-exclusive, paid-

up, irrevocable, world-wide license to publish or reproduce the

published form of this manuscript, or allow others to do so, for

United States Government purposes.

This research used resources of the National Center for

Computational Sciences at Oak Ridge National Laboratory, which

is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC05-00OR22725.

0%

50%

100%

150%

200%

250%

1 2 3 4

Im
p

ro
v
e

m
e

n
t

L
e
v
e

l

MPI Level R (Rm)

Multi-Node CPU GOL - 1 bil Agents

Rt=1 Rt=2 Rt=4

0%

20%

40%

60%

80%

100%

120%

140%

2 4 8Im
p

ro
v
e

m
e

n
t

L
e
v
e

l

MPI Level R (Rm)

Multi-Node CPU LDR - 1 bil Agents

Rt=2 Rt=4

0%

50%

100%

150%

200%

250%

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

Im
p

ro
v

e
m

e
n

t
Le

v
e

l

MPI Level R (Rm)

Multi-Node CPU GOL - 1 bil Agents

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

REFERENCES
[1] U. Wilensky, "NetLogo," ed. Evanston, IL: Center for

Connected Learning and Computer-Based Modeling,

Northwestern University, 1999.

[2] J. Epstein, "Modeling Civil Violence: An Agent-based

Computational Approach," PNAS, vol. 99, pp. 7243-7250,

2002/05/14 2002.

[3] M. J. North, et al., "Experiences Creating Three

Implementations of the Repast Agent Modeling Toolkit,"

ACM Transactions on Modeling and Computer Simulation,

vol. 16, pp. 1-25, 2006/01/01 2006.

[4] M. J. North and C. M. Macal, Managing Business

Complexity: Discovering Strategic Solutions with Agent-

Based Modeling and Simulation: Oxford University Press,

2007.

[5] DARPA. (2009, US Defense Advanced Research Projects

Agency - Technologies for the Applications of Social

Computing (TASC) [Web]. Available:

http://www.darpa.mil/ipto/solicit/baa/RFI-SN-09-20_PIP.pdf

[6] S. Luke, et al., "MASON: A New Multi-Agent Simulation

Toolkit," in SwarmFest Workshop, 2004.

[7] B. Walter, et al., "UAV Swarm Control: Calculating Digital

Phermone Fields with the GPU," in Interservice/Industry

Training, Simulation and Education Conference (IITSEC),

Orlando, FL, 2005.

[8] P. Riley, "SPADES: A System for Parallel-Agent, Discrete-

Event Simulation," AI Magazine, vol. 24, 2009.

[9] A. M. Uhrmacher and K. Gugler, "Distributed, parallel

simulation of multiple, deliberative agents," Proceedings of

the fourteenth workshop on Parallel and distributed

simulation, Bologna, Italy, 2000.

[10] M. Lees, et al., "Distributed simulation of agent-based

systems with HLA," ACM Trans. Model. Comput. Simul.,

vol. 17, p. 11, 2007.

[11] K. S. Perumalla and B. Aaby, "Data Parallel Execution

Challenges and Runtime Performance of Agent Simulations

on GPUs," Agent-Directed Simulation Symposium, 2008.

[12] R. D'Souza, et al., "SugarScape on Steroids: Simulating Over

a Million Agents at Interactive Rates," AGENT 2007

Conference on Complex Interaction and Social Emergence,

Evanston, IL, 2007.

[13] A. Chaturvedi, et al., "Bridging Kinetic and Non-kinetic

Interactions over Time and Space Continua," in

Interservice/Industry Training, Simulation and Education

Conference, Orlando, FL, USA, 2005.

[14] M. Hybinette, et al., "A Design for a Scalable Agent-based

Simulation System using a Distributed Discrete Event

Infrastructure," Winter Simulation Conference, 2006.

[15] J. Parker, "A Flexible, Large-scale, Distributed Agent-based

Epidemic Model," Winter Simulation Conference,

Piscataway, NJ, 2007.

[16] R. C. Armstrong, et al., "Parallel Computing in Enterprise

Modeling," Sandia National Laboratory, Techincal Report

SAND2008-6172, 2008/08/01 2008.

[17] M. Dawit, "Performance Optimization for Multi-agent Based

Simulation in Grid Environments," IEEE International

Symposium on Cluster Computing and the Grid, 2008.

[18] M. Ripeanu, et al., "Cactus Application: Performance

Predictions in Grid Environments," ed, 2001, pp. 807-816.

[19] C. Ding and Y. He, "A Ghost Cell Expansion Method for

Reducing Communications in Solving PDE Problems,"

Supercomputing, 2001.

[20] S. Krishnamoorthy, et al., "Effective Automatic

Parallelization of Stencil Computations," Programming

Languages Design and Implementation (PLDI), San Diego,

California, USA, 2007.

[21] K. Datta, et al., "Stencil Computation Optimization and

Auto-tuning on State-of-the-Art Multicore Architectures,"

Supercomputing, Austin, Texas, 2008.

[22] H. Dursun, et al., "A Multilevel Parallelization Framework

for High-Order Stencil Computations," in Lecture Notes in

Computer Science. vol. 5704/2009, ed: Springer Berlin /

Heidelberg, 2009, pp. 642-653.

[23] J. Meng and K. Skadron, "Performance Modeling and

Automatic Ghost Zone Optimization for Iterative Stencil

Loops on GPUs," 23rd international Conference on

Supercomputing, Yorktown Heights, NY, USA, 2009.

[24] Z. C. Rojas and M. Hoemmen. (2004, Communication

Savings with Ghost Cell Expansion for Domain

Decompositions of Finite Difference Grids [Project Report].

Available: http://www.cs.berkeley.edu/~ejr/GSI/cs267-

s04/final-projects/mhoemmen-rojas/report.pdf

[25] P. Brecke, et al., "Actionable Capability for Social and

Economic Systems (ACSES)," Seedling Project - Defense

Advanced Research Projects Agency, Project

Report2008/05/01 2008.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8822
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8822

