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ABSTRACT

The π-Calculus is a modeling formalism for concurrent pro-
cesses. Realized as part of the plug-in based modeling and
simulation framework james ii, we propose an architecture
for π-Calculus-based modeling and simulation, which sup-
ports both flexibility and efficiency. Facilitating the design
of new π-Calculus-based formalisms and simulators is of par-
ticular relevance in the field of computational systems biol-
ogy, for which many different π-Calculus dialects and simu-
lators have been and still are being developed. Therefore, a
flexible representation of π-Calculus models is used, which
is illustrated by a mapping from the biochemical variant of
the π-Calculus to the representation. Simulation engines are
exchangeable and even automatically configurable according
to the task at hand.

Moreover, we present three different simulator implemen-
tations, working on the model representation. Efficiency
denotes that our architecture supports the implementation
of high-performance simulators. In order to assess efficiency,
we perform experiments with these simulators and compare
the results to the current cutting edge implementation in
the field, the Stochastic Pi Machine.

Categories and Subject Descriptors

I.6.7 [Simulation Support Systems]: Environments; I.6.7
[Simulation Languages]; I.6.8 [Types of Simulation]:
Discrete-event; G.4 [Reusable Software]

General Terms

pi-Calculus, Simulation environment

Keywords

Process algebra, pi-Calculus, Discre-event simulation, Sim-
ulation environment, Software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

1. INTRODUCTION
The plethora of existing modeling formalisms is a chal-

lenge for the development of modeling and simulation tools.
In order to conduct experiments, tools have to be adapted to
the specific needs of a formalism. The modeling and simu-
lation framework james ii [12] represents a general solution
for this problem, by providing a plug-in based architecture
that allows the integration of diverse formalisms and tools
into one experiment structure. While experimentation is fa-
cilitated, the user still has to put effort into the structuring
and implementation of the required plug-ins in order to face
specific characteristics of the desired formalism. However,
this effort can be reduced by structuring plug-ins accord-
ing to similar characteristics that a family of formalisms is
sharing to facilitate the implementation of new dialects.

The multiple variants of the π-Calculus [20] form a family
of formalisms [24, 25, 13, 14]. They are used in diverse fields,
e.g., performance analysis of networks [28] and systems bi-
ology [27]. The latter will be focus of this paper, since it
demands a flexible and efficient architecture for the exper-
imentation with the π-Calculus. Flexibility is necessary, to
facilitate the realization of the many dialects, proposed in
the context of systems biology [26, 21, 25, 13, 14]. Effi-
ciency is required, to simulate complex models comprising
thousands of molecules and reactions.

The first step in order to achieve flexibility is the clear
distinction between model and simulation engine offered by
james ii. It allows the creation of a general model repre-
sentation for the desired formalism, while leaving the exe-
cution strategy exchangeable. To support the user during
the implementation of π-Calculus dialects, a model repre-
sentation is required, allowing mappings from those dialects
to the model representation. This representation should re-
flect just the major characteristics of the π-Calculus in order
to avoid restrictions of flexibility, while keeping the need for
adaptations for new dialects as small as possible. To struc-
ture the simulation engine, essential issues during a simula-
tion run with π-Calculus dialects have to be identified. This
allows the exchange of components for a flexible combina-
tion of solutions facing them. Thereby, specific components
can be created to face specific characteristics of a π-Calculus
dialect, while other components may be reused.

In addition, a structured simulation engine supports effi-
ciency. It allows the realization of different execution strate-
gies and to adjust simulator configurations to the character-
istics of the executed model. Furthermore, the integration
of the strategies in one framework supports the direct com-
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parison of their performance. Combined with the less effort
for the implementation of new components (compared to the
implementation of a full simulator), this facilitates identifi-
cation of new promising execution strategies.

We propose an architecture for experimentation with the
π-Calculus, providing flexibility and efficiency. It has been
realized within the plug-in based modeling and simulation
framework james ii. Hence, it offers james ii’s full set of
features like flexible creation of experiments [10], and coarse-
grained experiment execution [16].

We explain the architecture in two parts. The first part
is focused on the model representation for the π-Calculus
based on Java classes. Therefore, we describe the biochemi-
cal variant of the π-Calculus [21] and propose a mapping to
the model representation. Furthermore, an outlook to other
π-Calculus dialects is given. Since the focus is on the map-
ping, the description of the biochemical π-Calculus will not
include the semantics or the abstract simulator. Further in-
formation about these aspects can be found in [20] and [21].
The class based structure enhances flexibility by allowing
the exchange of components and supporting extension by
inheritance. The second part is focused on the simulation
engine. Based on the model representation, we present a
simulation engine architecture, providing a flexible and ex-
tensible combination of simulator components. We realized
different implementations for these components, with the
aim of creating combinations to allow an efficient simula-
tion. A performance study with two biochemical models
shows how components can be evaluated. A comparison to
the results of the actual state of the art stochastic π-Calculus
simulator [22] proves the efficiency of our concept. We finish
with a short discussion of related work and some concluding
remarks.

2. BIOCHEMISTRY IN THE PI-CALCULUS
The π-Calculus was introduced by Milner as a formalism

for modeling concurrent systems [20]. In 2001 Regev and
Shapiro suggested that, since also molecular solutions are
concurrent systems, formalisms from that field in particular
the π-Calculus can be applied to the modeling of biochem-
istry [27]. Driven by this new application area, a dialect
of the π-Calculus, the biochemical form, evolved, which ex-
plicitly regards species and reactions. It adopts the ideas of
the stochastic π-Calculus [24], which introduces stochastic
rates, and thus allows for a formal mapping to Continuous
Time Markov Chains. By this, based on a stochastic simu-
lator [22] and the Stochastic Simulation Algorithm (ssa) [7],
quantitative trajectories reflecting the dynamic behavior of
models can be obtained. Since in this paper we focus on
the area of computational systems biology, we purely base
our investigations on the biochemical form. In the follow-
ing, we first introduce the syntax of the biochemical form
and two example models, which are also used for perfor-
mance experiments in Section 3.2. Then, we introduce a
class based model representation for the biochemical form
and provide a general mapping from models to the model
representation. It allows to automatically create classes out
of textual π-Calculus models. A corresponding compiler has
been implemented in james ii.

2.1 The Biochemical Form
The main idea of the biochemical form is to omit explicit

reaction rules and instead to define processes that describe

Dc ::= x : r ∈ R reaction definition

Ds ::= A(x̃) , P species definition

P ::= (νDc)P new reaction
| S solution
| M summation

S ::= S1 | S2 parallel composition
| A(x̃) molecule
| 0 empty solution

M ::= M1 + M2 choice
| π.P reaction capability

π ::= x?ỹ receive
| x!ỹ send

Figure 1: The biochemical form of the π-Calculus,
with A ∈ Proc, x, x̃, ỹ ∈ Chans, and R = R

+ ∪ {∞}.

species regarding their interaction capabilities [27]. The
syntax of the biochemical form is presented in Figure 2.1.
It is based on two infinite sets, the set of channel names
x, y ∈ Chans and the set of process names A ∈ Proc, which
are used to identify reactions and species, respectively. Re-
actions are composed by a channel name x̃ ∈ Chans and
a stochastic rate constant r ∈ R, with R = R

+ ∪ {∞},
i.e. the rates of reactions can either be positive real num-
bers or infinite, the latter denoting immediate interactions.
A species definition provides a name A ∈ Proc, formal pa-
rameters x̃ ∈ Chans, and a process P . Actual parameters
of a species are the names of reactions it can be evolved
in. With process P a species’ reaction capabilities are de-
scribed. Process (νx : r)P introduces a new reaction, with
scope to P , i.e. reaction x can only occur in the context of P .
Tuples (νD̃s) denote sequences of ν-operators. Solutions are
parallel compositions of molecules. With

∏
n

i=1
Ai(x̃i) we de-

note solutions of n molecules and with 0 the empty solution.
Summations define an exclusive choice between different re-
action capabilities. This means, that a single molecule can
choose to take part in exactly one reaction by which it is
consumed. With

∑
n

i=1
πi.Si, we refer to a summation with

n interaction capabilities. In the biochemical form all re-
actions are binary, i.e. they have exactly two reactants, a
sender and a receiver. Senders can deliver reaction names to
receivers, which can be used by the latter for further interac-
tion. Which role in a communication a molecule takes, is up
to the modeler. After two molecules interacted, they each
proceed with a single solution, providing their successors.
The union of both successor solutions defines the set of re-
action products. Molecules also have the ability to perform
sequences of interactions. More precisely, successors are not
solutions but sheer interaction choices without parameters
or names.

A program in the biochemical form is a tuple ∆ =
(∆c, ∆s, S), where ∆c is a set of reaction definitions, ∆s a set
of species definitions, and S a parallel composition, defining
the initial solution of the model. A program is considered
well-formed if every species has a unique name, for every
molecule a species definition exists, and for every species
definition A(x̃) , P it holds that P only refers to names in
∆c or in x̃ and the names in ∆c and x̃ are distinct. Thus,
two molecules can be considered to be of the same species if
both their names and their actual parameters equal. Such
notion of equality allows to identify molecules without using
the usual structural congruence of the π-Calculus, which im-
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Channels

i on1 : 1 0 . 0 , i on2 : 1 0 0 . 0
d ion1 : 5 0 . 0 , d ion2 : 5 . 0

Process definitions

Mg( ) , i on1 ? ( ) .MgP( )

MgP( ) , i on2 ? ( ) .Mg2P( ) + d ion1 ? ( ) .Mg( )

Mg2P( ) , d ion2 ? ( ) .MgP( )

Cl ( ) , i on1 ! ( ) . ClM ( ) + ion2 ! ( ) . ClM ( )

ClM ( ) , d ion1 ! ( ) . Cl ( ) + d ion2 ! ( ) . Cl ( )

Initial solution

∏
1000

i=1
(Mg( ) | Cl ( ) )

Figure 2: A model of the Magnesium ionization in
the biochemical form.

plies high computational costs [15] - an idea, which is heavily
used in the context of efficient simulators, see e.g. [22]. No-
tice, however, that, when omitting structural congruence,
reaction sequences require special attention, as they intro-
duce successors without explicit names or parameters. We
treat this exception in the context of mapping models to our
model representation, see Section 2.2.

As already mentioned in Section 1, we omit the for-
mal semantics of the biochemical form here. However, by
the following example, we provide an impression on how
the calculus works: Consider the solution A() | B(), with

A() , x!(z).(νx : r)A() and B(y) = x?(y).B(y), with chan-
nels x, y, z defined in ∆c. When replacing molecules by
their definition, we obtain x!(z).(νx : r)A() | x?(y).B(y).
One interaction on x reduces the prefixes and we obtain
(νx : r)A() | B(z). To ensure that (νx) introduces a fresh
name, we extend the scope of the ν-operator and perform
a renaming on the definition of A(), such that we obtain
(νx′ : r)(x′!().(νx′ : r)A() | x?(z).B(z)), when replacing
molecules by their definition once more. This does not al-
low for any further interaction.

In the following, we, present two models, that on one hand
shall provide a deeper insight into the formalism and on the
other hand form the bases of our performance experiments
in Section 3.2.

Example: Magnesium. Our first example considers a sim-
ple model of the ionization processes in a solution with Mag-
nesium and Chlorine, which is characterized by the following
two reversible reactions:

Mg + Cl
10
−−⇀↽−−
50

Mg+ + Cl−

Mg+ + Cl
100
−−⇀↽−−

5

Mg 2+ + Cl−

Our model is presented in Figure 2. It comprises five species
definitions Mg(), MgP(), Mg2P(), Cl(), and ClM() and four
reactions with names ion1, ion2, dion1 and dion2 for ioniza-
tion and de-ionization of Magnesium, respectively. When
interacting on ion, Mg() gains an ion and Cl() loses one,
as denoted by their respective successors MgP() and ClM().
All other interactions work analogously. The initial solution
contains 1000 molecules of Magnesium and Chlorine.

This model is interesting for performance experiments, be-
cause of the low amount of channels, while containing many
processes. This allows a specific investigation of the influ-
ence of many processes in the system to the performance of

GeneA

GeneB

GeneC

ProteinA

ProteinB

ProteinC

Figure 3: The Repressilator - genes produce proteins
inhibiting the protein production of their neighbors.

Channels

a : 1 . 0 , b : 1 . 0 , c : 1 . 0
p : 0 . 1 , r : 0 . 0 0 01 , d : 0 . 0 0 1

Process definitions

Gene (me , pe ) , p ? ( ) . ( Prot ( pe ) |Gene (me , pe ) )
+ me?( ) . r ? ( ) . Gene (me , pe )

Prot ( ta ) , ta ! ( ) . Prot ( ta ) + d ? ( ) . 0

T( ) , p ! ( ) .T( ) + r ! ( ) .T( ) + d ! ( ) .T( )

Initial solution

Gene ( a , b ) | Gene (b , c ) | Gene ( c , a )

Figure 4: A model of the Repressilator in the bio-
chemical form.

the simulation engine, since the influence of the channels is
negligible.

Example: Repressilator. The Repressilator is a biologi-
cally inspired model, which represents a prototype example
of oscillatory systems [4]. Its main idea is depicted in Fig-
ure 3: three genes produce proteins that inhibit the protein
production of their neighbors. In order to implement the
Repressilator, we define two species Gene(me,pe) and Pro-
tein(ta). Parameters me and pe represent the inhibition re-
actions of the gene itself and its peer, respectively. Parame-
ter ta captures the reaction, which inhibits the target of the
protein. The three channels a,b, and c identify the actual
inhibition reactions involving the three genes. Channels p,
r, and d represent the protein production, the re-activation
of genes after inhibition, and the decay of proteins, respec-
tively.

Species Gene(me,pe) has two interaction capabilities: it
can either produce a protein with its peers pe as target for
inhibition by interaction on channel p, or it gets inhibited on
channel me. When inhibited it can only be re-activated by
interaction on channel r. A protein can either block its target
gene by sending on channel ta or decay on channel d. We
introduce process T() as an artificial partner for interactions
on channels p, r, and d, by this unary reactions are modeled.

The standard variant of this model contains three genes
and proteins and six channels. They can be increased very
easily, by enlarging the cycle. This allows a scaling of the
processes and channels in the system, which is beneficial for
investigating the performance of the simulation components
with differently sized models.

2.2 Model Representation
Our model representation is a simple class hierarchy, de-

signed as an interface between models and simulators. It
provides all fields and methods, that are needed by a simu-
lator to process models. A model is represented by classes,

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8820 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8820 



which inherit from the model representation, accordingly.
The basic idea, is to create classes for all summations, par-
allel compositions, and reaction capabilities in a model. Fur-
thermore, we represent channels as objects. By this, we in-
troduce a clear distinction between names and channels, i.e.
a channel object is a value of a name and bindings assign
channel objects to names. The advantage is, that then the
ν-operator does not lead to any dynamic name changes, but
can be represented by allocating freshly created objects to
names. In the following, we first describe the model repre-
sentation and then the mapping of the biochemical form.

The model representation is presented in Figure 5. Classes
PiChannel and StoPiChannel, represent channels or channels
with rates, respectively. The class BasicConstruct provides
basic fields and functionality, common to all syntactic con-
structs, apart from channels. For our simulators, it is of
advantage to reflect models in a parse-tree-like structure.
Thus, we introduce the field parent, which holds in case of
e.g. a molecule the solution it is in or in case of a reac-
tion capability the choice it is part of. Class PiAction pro-
vides the method perform to execute communications and
the field channel, reflecting the channel on which commu-
nication happens. Classes PiSend and PiReceive represent
reaction capabilities of corresponding type. Processes in-
herit either from class PiSummation, where the field actions

lists a choice’s reaction capabilities, or class PiParallel, with
the field processes, which refers to the set of molecules, that
a parallel composition comprises. Parameters of classes
can be general objects not strictly channels as in standard
π-Calculus processes, which increases the extensibility for
other π-Calculus variants, such as [13, 14].

+getParent()

+setParent()

-parent

BasicConstruct

PiProcess

+getChannel()

#initSuccessors()

+getSuccessors()

+perform()

-channel

-successors

PiAction

+getProcesses()

-processes

PiParallel

+getActions()

-actions

PiSummation

PiSend PiReceive

PiChannel

+getRate()

-rate

StoPiChannel

Figure 5: Class diagram for the model representa-
tion.

The mapping of models is presented in Figure 6. We dis-
tinguish between mappings of programs J·K, species defini-

tions SJ·K, f̃ , κ, processes PJ·K, b̃, f̃ , κ, and reaction capabil-

ities AJ·K, b̃, f̃ , κ. Mappings create classes, that inherit from
the model representation, correspondingly. Thereby, param-
eter κ reflects the name of a class. In order to obtain unique
class names, we use the following convention: classes repre-
senting species definitions A(x̃) get the name A. Classes rep-
resenting sends or receives are associated with names κ a i,
where κ is the name of the summation, that contains the
action, and i the position of the action in the summation.
Classes representing the successors of actions are identified
by κ Succ, where κ is the name of the action. Parameters

b̃ and f̃ , capture all names accessible by a class, where the
first represents the tuple of free names, i.e. all names in
∆c of a program and the latter the tuple of bound names,
i.e. those names, which are introduced by bindings like ν-
operators, species parameters, or receive parameters. When
mapping a single program, parameter f̃ is always associated
with the same tuple. By contrast, b̃ may need to be ex-
tended. Consider e.g. the species A(x) , (νy : r)x?(x).P .
Initially, we obtain a tuple of bound names (y). However, P

can also access x, such that for the mapping of P , the value
of parameter b̃ has to be (x, y).

Our presentation of the mapping follows the idea of meta
modeling, i.e. we present pseudo-code to transform pro-
grams into Java classes. We make use of the following
notations: ∀e ∈ E denotes an iteration over all elements
in E. Thereby, E can be either a set or a tuple. Func-
tions class, init, and func generate classes, constructors,
and methods, respectively. Function class awaits three pa-
rameters, the name of the class, the class to inherit from,
and a code sequence describing the content of the class.
Similarly, function init has two parameters, a tuple of pa-
rameter names and a function body. Function func ex-
tends on init by an additional parameter for the function
name. With return, we define the return value of a func-
tion. Function set creates assignments, where the first pa-
rameter represents the variable name and the second the
value. Function new denotes class instantiation, where the
first parameter provides the name of the class and the
second a tuple, holding the actual parameters of the in-
stance. Constant this represents the self-reference of an
object. With new T[], we refer to the generation of an ar-
ray of type T. We denote field c to be an array with c [] ,
while referring to its i-th element with c[ i ]. We omit types,
when obvious from the description of the model representa-
tion. With (a1, . . . , an) ∪ (b1, . . . , bm), we denote the tuple
(a1, . . . , an, b1, . . . , bn), and with (a1, . . . , an) \ (b1, . . . , bm)
the tuple (a1, . . . , an′) where for all a ∈ {a1, . . . , an′} it holds
that a ∈ {a1, . . . , an} and a 6∈ {b1, . . . , bm}. The operator
a ⊕ b describes the extension of tuple a by all elements in
tuple b, which are not in a, i.e. it abbreviates a ∪ (b \ a).

Programs (∆c, ∆s, S) are transformed by first mapping
all species definitions in ∆s, with a tuple of all names in
∆c, and then creating a class Init for the initial solution S,
which inherits from PiParallel. The constructor of Init is im-
plemented to introduce channels according to the definitions
in ∆c and to assign molecules to the array processes accord-
ing to the initial solution S. Thereby, to create molecule
A(ỹ), the class defining species A(x̃) is instantiated with the
values of the names ỹ, the channels in ∆c, and this, the lat-
ter denoting a molecule’s parent. As the root of a model,
the initial solution has no parent, such that the parameter
p of the constructor is ignored.

The mapping of species definitions A(x̃) , P is rather
indirect by mapping process P with bound names x̃ and
name A. The idea is that, conceptually, A(x̃) only provides
a mapping from actual parameters to formal ones, which
can be directly implemented in the constructor of a class
representing P .

Processes preceded by a sequence of ν-operators are
mapped by deriving either PiParallel or PiSummation ac-
cording to the process type. In case of a summation, classes
are created for each contained reaction capability. Thereby,
as discussed above, the list of bound names is extended
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by the newly introduced names in the definitions of the ν-
operator. In case of a parallel composition, classes for the
contained molecules do not need to be created, since their
species are already mapped as discussed above. For either
process type, the constructor is implemented to provide pa-
rameters for the values of the bound and free names b̃∪f̃ and
a parent p, the latter being directly assigned to field parent.
Variables are created for all those names, which are newly
introduced by the definitions of the ν-operator, analogously
to the extension of b̃. Furthermore, for each channel defini-
tion of the ν-operator, a new channel object is created with
the corresponding rate and assigned to the corresponding
name. In case of mapping a parallel composition, molecules
are created and assigned to the array processes, in the same
way as done in the initial solution. Similarly, for a summa-
tion, the instances of the corresponding action classes are
generated and assigned to the array actions.

A send action is mapped by first transforming its succes-
sor process, with the same bound and free names as the
action and an identifier following our naming convention,
and then creating a class, which inherits from PiSend. The
latter contains fields for all accessible names b̃ ∪ f̃ and also
a constructor with a parent p and names b̃∪ f̃ as formal pa-
rameters. The parameters are assigned to the corresponding
fields and the channel on which the sending is performed is
set. Function perform is implemented to instantiate and as-
sign the successor and to return the channels, which are
to deliver on interaction. Since no channels are received,
parameter cs [] of perform is ignored. Receive actions are
implemented similarly, but due to the receive parameters,
the tuple of bound names is extended. Function perform is
implemented to assign the received channels objects to the
names in ỹ. The instantiation of the class of the successor
process is adapted accordingly. Notice, that by generally
mapping successors to processes, we automatically solve the
problem of action sequences. Consider e.g. the species defi-
nition A(x̃) , x!().y!(). For the successor of the first action,
we create class A a 1 Succ, with access to the same names as
class A, representing A(x̃).

Mapping of variants. The formalism SpacePi extends on
the π-Calculus by associating processes and channels with
spatial information [13]. A mapping to our model represen-
tation has been realized by encoding the spatial information
into the model classes. This includes position and move-
ment information for the extensions of PiSummation and
PiParallel, as well as a range for PiAction to denote the
sphere of influence of an action.

Beta-binders [25] introduces a new layer into the π-
Calculus by wrapping π-Calculus processes into boxes (Bio-

Processes). For a mapping of Beta-binders to our model
representation, new classes had to be introduced, to rep-
resent the BioProcesses, holding references to the internal
π-Calculus processes, as well as to the external interface,
see [18]. Additional abstract classes for the representation
of hide, unhide, and expose actions had to be introduced as
well.

3. SIMULATION OF THE PI-CALCULUS
Due to the attention of the π-Calculus in the field of sys-

tems biology, different simulation engines [2, 21, 22] have
been proposed. All of them execute two different tasks,
in each simulation step. Firstly, the type of the next re-
action (i.e., the next channel on which two processes will

J({x1 : r1, . . . , xn : rn}, ∆s,
∏

n

i=1
Ai(x̃i))K ,

∀D ∈ ∆s SJDK, (x1, . . . , xn)
class I n i t PiParallel

in i t (p)
∀x ∈ (x1, . . . , xn) var x (new StoPiChannel (r ) )
∀i ∈ {1, . . . , n} set pro c e s s e s [ i ] (
new Ai x̃i ∪ (x1, . . . , xn) ∪ (this))

SJA(x̃) , P K, f̃ , κ , PJP K, x̃, f̃ , A

PJ(ν∆c)
∏

n

i=1
Ai(x̃i)K, b̃, f̃ , κ ,

class κ PiParallel

in i t b̃ ∪ f̃ ∪(p)
set parent p

∀x ∈ (x1, . . . , xn) \ (b̃ ∪ f̃), ∆c = (x1 : r1, . . . , xn : rn) var x
∀x : r ∈ ∆c set x (new StoPiChannel (r ) )
∀i ∈ {1, . . . , n} set pro c e s s e s [ i ] (

new Ai x̃i ∪ f̃ ∪ (this))

PJ(ν(x1 : r1, . . . , xm : rm))
∑

n

i=1
πi.PiK, b̃, f̃ , κ ,

∀i ∈ {1, . . . , n} Jπi.PiK, b̃ ⊕ (x1, . . . , xm), f̃ , κ a i
class κ PiSummation

in i t x̃ ∪(p)
set parent p

∀x ∈ (x1, . . . , xm) \ (b̃ ∪ f̃), ∆c = var x
∀x : r ∈ ∆c set x (new StoPiChannel (r ) )
∀i ∈ {1, . . . , n} set ac t i on s [ i ] (

new κ a i b̃ ⊕ (x1, . . . , xm) ∪ f̃ ∪( this ) )

AJx!ỹ.P K, b̃, f̃ , κ ,

PJP K, b̃, f̃ , κ Succ
class κ PiSend

∀x ∈ b̃ ∪ f̃ var x

in i t b̃ ∪ f̃ ∪(p)
set parent p

∀x ∈ b̃ ∪ f̃ set this . x x
set channel x

func perform cs [ ]

set s u c c e s s o r s (new κ Succ b̃ ∪ f̃ )
return new StoPiChannel [ ] x̃

AJx?ỹ.P K, b̃, f̃ , κ ,

PJP K, b̃ ⊕ ỹ, f̃ κ Succ
class κ PiReceive

∀x ∈ b̃ ⊕ ỹ ∪ f̃ var x

in i t b̃ ∪ f̃ ∪(p)
set channel x

∀x ∈ b̃ ∪ f̃ set this . x x
func perform cs [ ]
∀i ∈ {1, . . . , n}, ỹ = {y1 . . . , yn} set yi cs [ i ]

set s u c c e s s o r s (new κ Succ b̃ ⊕ ỹ ∪ f̃ )

Figure 6: Mapping the biochemical form to the
model representation.

communicate) has to be calculated. Secondly, according to
this reaction, the communication has to be executed and
required updates on the model structure have to be per-
formed. While various approaches for handling both tasks
of a π-Calculus simulation engine exist [7, 8, 6, 21, 22], so
far the implemented solutions just focused on realizing fixed
combinations of components. However, simulator compo-
nents used during a simulation run can influence the results
of the simulation experiment. Bias can result from a sloppy
implementation, from differences in the accuracy, from bugs,
or from unexpected behaviour due to the interaction of com-
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ponents. These problems can hamper the performance or in-
fluence the validity of the simulation. Hence, a flexible com-
bination of solutions for the two tasks is required, allowing
reusability, extensibility, and exchangability. Therefore, we
created a flexible and extensible structure for implementing
accordant simulation engines and components, The concrete
components have been realized as plug-ins of james ii. For a
further increase of flexibility, existing plug-ins facing general
issues of simulation, e.g., random number generators [5] or
event-queues [11] can be reused, extended, or exchanged as
well. The opportunities to configure experiments in james ii

like flexible instrumentation and observation of simulations,
coarse-grained parallel execution, or dynamic calculation of
required replications and simulation end times are applicable
for experiments with the π-Calculus as well.

3.1 Simulation Components
Each π-Calculus simulator is based on BasicPiProcessor.
To handle the first phase, which highly depends on the

reaction method (e.g., Gillespie’s method), the BasicPiPro-
cessor holds a reference to an object implementing the in-
terface IReaction. The interface offers the method react,
which is called by the simulator to calculate the next com-
municating channel. Thereby, different implementations of
IReaction can be combined with different simulators. Based
on the next channel, the simulator randomly selects a pair
of actions communicating on that channel.

The implementation of the second phase is realized in the
extensions of BasicPiProcessor. This includes performing
the actions and creating the successor processes as described
in Section 2. Furthermore, updates have to be executed
on the model structure and on the information required to
select the communicating actions in the future simulation
step.

So far we implemented three simulation engines for the
π-Calculus as well as three reaction methods. They work on
the model representation introduced in section 2. We will
give a brief overview over those components and discuss how
they have have been adapted to simulate further π-Calculus
dialects.

Communication Based Simulation.

Algorithm 1 Pseudocode for the execution of a simulation
step with the ComFS.

communication based ( P iPa r a l l e l proc , ( PiChannel
, PiSend , PiReceive ) [ ] map) {

( PiChannel , i n t ) [ ] c = communicationCounts (map) ;
( PiSend , PiReceive ) pa i r = getCommunication ( c ) ;
performCommunication ( pa i r ) ;
updateModel ( process , f i r s t ( pa i r ) ) ;
updateModel ( process , second ( pa i r ) ) ;
PiSend [ ] s ender s = newSenders ( pa i r ) ;
PiReceive [ ] r e c e i v e r s = newReceivers ( pa i r ) ;
put (map, sender s ×channel ge tRece iv e r s (map) ) ;
put (map, r e c e i v e r s ×channel getSenders (map) ) ;
put (map, sender s ×channel r e c e i v e r s ) ;

}

The communication focused simulator (ComFS) main-
tains a map where the pairs of actions able to communi-
cate are stored, sorted by their channel (see Algorithm 1).
During a simulation step, the counts of the possible commu-
nications for each channel are retrieved and used as input

Algorithm 2 Pseudocode for the individual based update
of the model structure after a communication happened.

updateModel ( P iPa r a l l e l process , PiAction ac t i on ) {
PiProcess succ = act i on . ge tSucce s so r ;
succ . setParent ( p roce s s ) ;
p roce s s . g e tProce s s e s . add ( succ ) ;
p roce s s . g e tProce s s e s . remove ( ac t i on . getParent ) ;

}

for the reaction method. Thereby the actual communication
pair is selected, and executed. The model structure is up-
dated (see Algorithm 2) according to the actions contained
in the communication pair. This part is done individual
based, by adding the successor processes to and removing
the parent processes of the actions from the top most par-
allel process. To update the map of communication pairs,
the pairs comprising new sender and retriever actions have
to be created. This is done, by calculating the cross product
of the new senders and retrievers with the corresponding ac-
tions that use the same channel. Since the creation of the
pairs demands to associate each possible sender with each
possible receiver, the algorithm has to tackle a combinatorial
explosion. However, despite those efficiency issues the sim-
ulator showed the benefits of its design during the creation
of a simulator for the space π-Calculus [17].

Channel Based Simulation.

Algorithm 3 Pseudocode for the execution of a simulation
step with the ChanFS.

channe l based ( P iPa r a l l e l process ,
( PiChannel , int , int , i n t ) [ ] map) {

( PiChannel , i n t ) [ ] c = communicationCounts (map) ;
( PiSend , PiReceive ) pa i r = getCommunication ( c ) ;
performCommunication ( pa i r ) ;
updateModel ( process , f i r s t ( pa i r ) ) ;
updateModel ( process , second ( pa i r ) ) ;
PiSend [ ] s ender s = newSenders ( pa i r ) ;
PiReceive [ ] r e c e i v e r s = newReceivers ( pa i r ) ;
for ( PiAction ac t i on ∈ ( sender s ∩ r e c e i v e r s ) )

add act ion ( act ion , map) ;
}

Algorithm 4 Pseudocode for the update of the inputs,
counts, and mixes for the ChanFS.

add act ion ( PiAction act ion ,
( PiChannel , int , int , i n t ) [ ] map) {

i n t mix = getMixOnChannel (map, c ) ;
i n t outs = getOuputOnChannel (map, c )
i n t i n s = getInputOnChannel (map, c )
PiProcess parent = act i on . getParent
i f ( ac t i on i n s t an c e o f PiSend ) {

outputs = outputs + 1 ;
mix = mix + getReceiversOnChannel ( parent , c ) ;

} else {
inputs = inputs + 1 ;
mix = mix + getSendersOnChannel ( parent , c ) ;

}
put (map, ( ac t i on . getChannel , ins , outs , mix ) ;

}

The channel focused simulator (ChanFS) implements the
management of channel information proposed by spim [21],
to avoid the combinatorial explosion (see Algorithm 3). In
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#getCommunication()

+performCommunication()

BasicPiSimulator

FirstReactionMethod DirectReactionMethod NextReactionMethod StandardReactionMethod

-updateModel()

CommunicationFocusedSimulator

-updateModel()

-addAction()

ChannelFocusedSimulator

-updatePop()

-addAction()

PopulationFocusedSimulator

+react()

«interface»

IReaction

Figure 7: Class diagram for the simulation engines.

contrast to storing the communication pairs, now the chan-
nel map just contains three information about each channel.
These information are the count of receivers on the channel
(input), the count of senders on the channel (ouput), and the
count of communication pairs which are part of the same
summation (mix). The count of possible communicating
pairs on a channel can be calculated by input∗output−mix.
The selection and execution of the communication, as well
as the update of the model structure is done similar to the
ComFS. To update the map, instead of creating each com-
munication pair, just the inputs, ouputs, and mixes have to
be recalculated (see Algorithm 4), which avoids the expen-
sive cross product. Thereby, the algorithm postpones the
handling of the communication pairs until they have been
selected to be the next communication. Hence, no unnec-
essary pairs are created. This simulator has been used as
the base for the Simulator component of a distributed Beta-
binders simulator [18].

Population Based Simulation.

Algorithm 5 Pseudocode for the execution of a simulation
step with the PopFS.

populat ion based ( ( PiProcess , i n t ) [ ] populat ion
( PiChannel , int , int , i n t ) [ ] map) {

( PiChannel , i n t ) [ ] c = communicationCounts (map) ;
( PiSend , PiReceive ) pa i r = getCommunication ( c ) ;
performCommunication ( pa i r ) ;
updatePop ( populat ion , f i r s t ( pa i r ) ) ;
updatePop ( populat ion , second ( pa i r ) ) ;
PiSend [ ] s ender s = newSenders ( pa i r ) ;
PiReceive [ ] r e c e i v e r s = newReceivers ( pa i r ) ;
for ( PiAction ac t i on ∈ ( s ender s ∩ r e c e i v e r s ) )

add act ion ( act ion , populat ion , map) ;
}

The population focused simulator (PopFS) is inspired by
the latest version of spim [22]. It exploits the structure of
π-Calculus models comprising more than one process of the
same species (see Section 2.1) to execute those populations

of processes more efficiently (see Algorithm 5). It is an ex-
tension of the ChanFS and uses a map containing a represen-
tative for each set of structural congruent processes as well
as the corresponding count. A translation from the model
to this map and vice versa, is possible. Hence, only the
representatives have to be handled, which reduces the re-
quired operations during the update of the model structure
(see Algorithm 6). In the worst case, if no congruent pro-

Algorithm 6 Pseudocode for the population based update
of the model structure after a communication happened.

updatePop ( ( PiProcess , i n t ) [ ] populat ion , PiAction
ac t i on ) {

PiProcess succ = act i on . ge tSucce s so r ;
i f ( conta ins ( populat ion , succ ) )

i n c r e a s e ( populat ion , succ ) ;
else

add ( populat ion , succ ) ;
PiProcess parent = act i on . getParent ;
i f ( count ( populat ion , parent ) = 0)

remove ( populat ion , succ ) ;
else

dec rea se ( populat ion , parent ) ;
}

cesses exist, the algorithm works similar to the ChanFS, by
adding and removing processes from the population. Other-
wise, just the corresponding numbers of the processes are
manipulated, which reduces computation time. Further-
more, the updates of inputs, outputs, and mixes is less
time-consuming, since the accordant methods do not have
to be called for each single action. By considering the corre-
sponding count, only actions contained in the representative
summations, have to be handled.

Reaction Methods.
To realize reaction methods we implemented three vari-

ants of Gillespie’s algorithm [7] using the notion of the chan-
nel activity to stochastically select the channel on which the
next reaction occurs. The first reaction method (FRM), cal-
culates the delay for each channel and returns the channel
with the minimum delay [7]. The higher the amount of chan-
nels, the less efficient is this method, since the whole list of
channels has to be iterated and for each channel a random
number has to be calculated. The direct reaction method
(DRM) tries to reduce the amount of random number calcu-
lations [8]. Thereby, only two random numbers have to be
taken, independently from the count of channels. The next
reaction method (NRM) reduces the calculation of random
numbers by storing the channels and their time of next event
in an event-queue to avoid unnecessary delay recalculations
[6]. The performance of this method depends on the used
event-queue implementation.

Extensibility.
While the option to encode additional information into
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the model classes is useful to realize different π-Calculus di-
alects, sometimes alterations of the simulators operating on
the classes are required as well. The plug-in based structure
of the simulator allows exchanging components, to reflect
the specific needs of those dialects, while other components
may be reused if no additional adaptations are required.

For the simulation of the space π-Calculus [13], an addi-
tional method to trigger the movements of the processes was
required for the simulator. In addition, the component to
calculate the next reacting channel has been exchanged by a
collision detection, which profits from the format of handling
communication pairs, provided by the ComFS. It could be
integrated very easily by iterating the list of communication
pairs and calculating the distances between them.

For the simulation of Beta-binders [25], the structure of
the simulation engines had to be adapted. A new compo-
nent type the Coordinator was introduced, to organize the
interaction between the BioProcesses, while Simulator com-
ponents are responsible for the execution of the internals of
BioProcesses. Since those internals are based on π-Calculus
processes, just some minor adaptations of the ChanFS were
necessary to realize the Simulator component. Those adap-
tations included interfaces for the communication with the
Coordinator and the handling of additional action types.

3.2 Experiments with the pi-Calculus
A central account in literature on computational experi-

mentation is the handling of side effects [1, 19]. To under-
stand models and algorithms it is essential to investigate the
effects of variable factors on the overall behavior. The pre-
sented architecture offers the opportunity to face this prob-
lem systematically, by using its flexible structure. It is pos-
sible to exchange parts of the simulation engine to identify
the influences of the different components step by step. Fur-
thermore, all these components are brought together in one
framework which improves comparability.

We executed performance experiments in order to show
how different components can be evaluated using the pre-
sented simulator architecture. In addition to the 3 simula-
tors and the 3 different reaction types, at the moment 13
event-queues and 7 random number generator implementa-
tions exist for james ii. Regarding the fact that an event-
queue is only necessary for the NRM, this leads to 315 possi-
ble configurations to test, specific parameters for the differ-
ent components not considered. Since the analysis of such
an experiment would exceed the size of this paper we tested
a smaller selection of the components. During the experi-
ments we executed configurations using all three simulators
and reaction methods as well as three event-queues, includ-
ing a simple list implementation and furthermore two more
sophisticated concepts, the MList [9] and the calendar queue
[3]. Since we were not interested in the simulation output
results, bias from a random number generator was negligi-
ble. Hence, we just used one random number generator, a
Mersenne Twister implementation. To prove that the pro-
posed architecture does not hamper the efficiency of the sim-
ulators, we compared our performance results with results
produced by the latest version (0.05) of spim [22].

The experiments have been executed on an Intel Xeon 8
core processor with 2.5 GHz, 8 GB of RAM, running Ubuntu
9.04 and the Java JDK 6.0 build 13. Scimark [23] produced
a result of 483.6 Megaflops on this machine. For confidential
results, we replicated each simulation run 10 times.

As benchmark, we used the two models described in Sec-
tion 2. From the modeling point of view, the those bench-
mark models may seem too simple. However, to models for
simulation benchmarks different criteria apply. For compa-
rability in each simulation run a similar amount of calcula-
tion steps is needed, which can only be ensured for rather
simple models with predictable behavior. Reproducibility of
benchmark tests is also supported by simple models. Fur-
thermore, we chose models that challenge the simulators by
large amounts of either channels (Repressilator) or processes
(MgCl2). Both models have been validated in [18].

Results.
Throughout all of the experiments, the simulator configu-

rations using the PopFS have been the most efficient simu-
lator configurations of james ii (see Figure 8). For the reac-
tion method components, the picture is not as definite. We
skip a detailed analysis of the experiments with the NRM,
since their performance constantly has been slightly behind
the corresponding experiments with the DRM, with negligi-
ble differences for the different event-queues. The reason for
this behaviour lies in the similar aim of the two methods,
which is the reduction of iterated channels during the calcu-
lation of the next event. Due to the similar aim, the impact
of both methods on the simulation’s performance is similar
as well, while the overhead in our NRM implementation is
slightly higher than in our DRM implementation. However,
notable differences exist in the performance of FRM and
DRM.
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Figure 8: Execution times of the simulation engines
of james ii, all using the DRM (examplarily for other
the methods). Note the logarithmic scale of the du-
ration axis.

The Repressilator model with 3 genes, has been executed
for 500,000 seconds of simulation time. The exchange of the
reaction method has a different impact on the performance
results in connection with different simulators. By switching
from the FRM to the DRM the PopFS got a speedup of 1.2
percent, while the ComFS was 13 percent and the ChanFS
even was 20 percent faster. A reason for this discrepancy
lies in the different format of information the methods re-
trieve from the simulators. The DRM just requires informa-
tion about those channels where change happened during
the last simulation step, while the FRM requires informa-
tion about all channels able to communicate. The PopFS
removes channels with zero communication from its internal
map, to save memory. The other two simulators keep the in-
formation about those channels to speed up future updates.
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This results in an increased list of channels that have to
be iterated by the FRM, hampering its efficiency. Improve-
ments of the simulation engines should include both options
(keeping or skipping channels) for all three simulator types.

A similar picture arose from the experiments with the Re-
pressilator model with 50 genes, which has been executed
for 50,000 seconds of simulation time. The differences be-
tween the reaction methods have been increased. Even with
the PopFS a considerable speedup of 22.4 percent could be
detected, while the speedup with the other two simulation
engines was over 300 percent. The reason for the increased
speedup result lies in the higher amount of channels that
had to be handled during the execution of the model with
50 genes, leading to a larger list to be iterated by the FRM.
A further interesting result is the significantly better perfor-
mance of the PopFS compared to the other two simulator
implementations (see Figure 8). This result is caused by the
population based approach, playing out its advantages with
a model comprising more processes.

The Repressilator model with 100 genes, has been exe-
cuted for 50,000 seconds of simulation time as well. The
results from the previous experiments are confirmed. The
difference between FRM and DRM is even higher (33.6 per-
cent with the PopFS, over 450 percent with the other two
simulators) with more channels in the model. The PopFS is
even faster (at least 3 times) than the other two simulation
engines, which results from the higher amount of processes.

The MgCl2 model has been executed for 0.04 seconds of
simulation time. The FRM has been the most efficient reac-
tion method, during this experiment. During the executions
with the PopFS, the method has been 8 percent faster than
the DRM. With the other simulators this difference was not
as high, which results from the worse performance of the
simulation engines and therefore, the lesser impact of the
reaction method on the simulation duration. The reason
for the higher efficiency of the FRM lies in the low amount
of channels in the model. Thereby, the part of channels
where a change happens in a simulation step is very small
as well. Thus, the DRM (or NRM) cannot compensate the
overhead required for its strategy to avoid the iteration of all
channels. The experiments with the MgCl2 strengthen the
observation, that a high amount of processes in the model
can have a very high impact on the performance of the sim-
ulation engines. The PopFS was nearly 3 times faster than
the ChanFS and nearly a 1,000 times faster than the ComFS
(see Figure 8). The inefficiency of the latter results from the
combinatorial explosion to create up to 1,000,000 communi-
cation pairs.

Figure 9 shows the performance of the PopFS using the
DRM compared to the results produced by spim. During the
execution of the Repressilator model with 3 genes, spim was
33.5 percent faster. This result reversed, as the complexity
of the model has been increased by adding more processes
and channels. Executing the Repressilator with 50 genes,
james ii was 12.5 percent faster than spim and with 100
genes the difference raise to 31.9 percent. Apparently, the
PopFS using the DRM gains efficiency compared to spim as
the count of channels in the simulated model is increased.
This may be explained by the implementation of the DRM
for spim, where all channel rates are iterated to calculate the
sum of propensities (see [21]). The james ii implementation
avoids this full iteration by keeping a reference to this sum
and updating it in each step. During the executions of the
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Figure 9: Execution times of the PopFS using the
DRM, compared to those of spim.

MgCl2 model, the PopFS has been over 3 times faster than
spim (see Figure 9). Even the ChanFS was slightly more
efficient. This result is a surprising result, since spim as well
follows a population based approach, which should be an
advantage for the simulation of the MgCl2 model. Probably,
there is a feature in the structure of the model that is more
beneficial for the technical details of james ii than those
of spim. A profiling of the simulation engines could give
hints about that feature. However, those experiments would
exceed the size of the paper and thus have to be postponed
to a possibly interesting future discussion on the similarities
and differences of SPiM and our implementation.

All in all, we can draw three conclusions from the exper-
iments. The PopFS has been the most efficient simulator
implementation for the π-Calculus in james ii. It is not as
definite, which reaction method is the most efficient. How-
ever, a rule of thumb would be, that the more channels there
are in the system, the better the DRM is. Finally, during the
experiments it turned out, that spim has been very efficient
with the small Repressilator model, while the best james

ii configuration became more efficient, as the complexity of
the model (processes and channels) has been increased.

4. RELATED WORK
Bloch et. al. [2] presented a stochastic π-Calculus simula-

tor with a divided model structure. One part is responsible
for the static and one part for the dynamic information.
The static part basically contains the same information as
the model representation in the approach we proposed. The
simulator is basically used to calculate the reactions. Since
the dynamic information are hard-coded in the model, an ex-
change of different execution strategies for the same model
as described in Section 3.1 is not possible.

The variants of spim provided the main inspiration for
the ChanFS [21] and the PopFS [22]. However, it does not
support the flexibility of exchanging and extending simula-
tor components. In the latest version it realizes a simulator
similar to the population focused variant presented in sec-
tion 3.1, using the DRM. Furthermore, it has been imple-
mented with the functional programming language Ocaml,
which led to a different model representation based on lists.

5. CONCLUSION AND OUTLOOK
We introduced an architecture for experimentation with

the π-Calculus, realized within the plug-in based model-
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ing and simulation framework james ii. The focus of the
architecture is flexibility and efficiency, to face challenges
like handling many different dialects and simulating com-
plex models, that exist especially in the field of systems bi-
ology. We realized flexibility by using a class based model
representation, allowing extension and forming an interface
between the textual representation of the π-Calculus and
a simulator. Furthermore, we introduced a structure for
the simulation engine, allowing the reuse and exchange of
components. Efficiency is supported by the opportunity to
combine promising components.

We conducted performance experiments and showed, that
combinations of components exist which execute the used
benchamrk models faster than the current state of the art
π-Calculus simulator spim.

Further improvements of efficiency could be realized, by
new components.The flexibility of the simulator structure
could be increased by separating the handling of model
structure (population- or individual-based) and the manage-
ment of communicating actions (channel- or communication-
based). So far, both tasks are hardwired in the specific simu-
lation engine, but could be divided to allow a flexible combi-
nation and to facilitate the implementation of new solutions.
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