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ABSTRACT 

The adoption of the Service Oriented Architecture (SOA) as the 

foundation for developing a new generation of software systems 

poses important challenges in system design. While simulation 

tools serve a principal role in design, there is a growing 

recognition that simulation of Service-Based Software Systems 

(SBS) requires modeling capabilities beyond those that are 

developed for the traditional distributed software systems. In this 

paper, a novel simulator is developed based on the SOC-DEVS 

co-design approach and realized as an extension to the SOA-

compliant DEVS simulator. The tool supports DEVS simulation 

modeling of not only the services consistent with Service-

Oriented Computing (SOC) concepts and principles, but also the 

networked hardware components on which services must execute 

on. An example model for a voice communication system is 

developed to illustrate the kind of hardware and software 

components that can be modeled and simulated.   

Categories and Subject Descriptors 

I.6.2 [Simulation and Modeling]: Application; I.6.3 [Simulation 

and Modeling]: Model Development – modeling methodologies; 

I.6.5 [Simulation and Modeling]: Simulation Languages; I.6.7 

[Simulation and Modeling]: Simulation Support Systems – 

environments. 

General Terms 

Design, Verification. 

Keywords 

Co-design, DEVS/DOC, DEVS-Suite, Service-Based Software 

System (SBS), Service Oriented Architecture (SOA), SOA-DEVS 

(SOAD), SW/HW Simulation. 

 

 

 

1. INTRODUCTION 
Service Oriented Architecture (SOA) [7] is an attractive approach 

for developing enterprise scale distributed software systems. It 

emphasizes loosely coupled, protocol independent distributed 

system development with the “software as service” concept – a 

self-contained component provided as a publishable contract for 

use by independent subscribers. SOA has evolved to address the 

demand to develop & deploy large scale software systems that are 

cost effective to reuse, maintain and easily adaptable to 

infrastructure change. A key promise of SOA is supporting on-

demand Quality of Service (QoS) for given business logics. 

Maintaining QoS, however, is a challenging task as it depends on 

the system architecture. Design decisions spanning software, 

hardware, and their combination have significant roles in 

achieving the desired runtime QoS. To attain a level of tractability 

in developing such systems, the use of modeling and simulation 

tools can aid in exploring alternative designs, 

In the remainder of this section, we will present our motivation 

for developing an SOA-compliant simulator which supports co-

design concept. In Section 2, we describe background closely 

related to this paper. In Section 3, the basic approach for Service-

Based Software System co-design is described. In Section 4, the 

model components for the SOC-DEVS simulator are detailed. In 

Section 5, an example model is developed and simulation results 

are presented and discussed. In Section 6, we present our 

conclusions and future work. 

1.1 Motivation  
In the design of Service-Based Software Systems (SBS) capable 

of satisfying multiple QoS attributes, simulation-based modeling 

is desirable as simulation can play a central role in enabling 

tradeoff study among time-based QoS attributes. To build 

Service-Based Software Systems with capability to support 

multiple QoS, simulation can play an important role in system 

architectural design verification and validation. The idea is to 

develop a model of the system under design using a simulator that 

supports SOA concepts and principles. Service models can 

capture the fundamental dynamics among SOA components and 

the system behavior can be observed under various configurations 

and the resultant impact on the QoS. Such a simulator enables 

analysis and design capabilities by aiding in design, 

implementation and testing of the Service-Based Software 

Systems. This is an important tool for architectural design 

validations that are impractical to support with actual service 

deployment.  
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For SOA-compliancy, it is important to capture service 

functionality with direct representation of SOA artifacts like the 

service publisher, service subscriber, and service broker. In 

addition, the relationship among the publisher, subscriber and 

broker needs to be accounted in the simulator such that it allows 

the application model builders to concentrate on application 

specification rather than on the details for SOA compliancy. From 

system architecture, design and development perspective, system 

specification with separation of hardware and software is 

important. Ability to model software and hardware separately and 

their combined interaction have important practical use. For 

example, the users can select services and list their desired QoS 

under the presence of some uncontrollable, but predictable 

environmental fluctuations [18]. System resources such as 

available memory, CPU speed, network bandwidth etc. are 

important environmental factors. Such environmental factor 

fluctuations manifests through resource constraints of the 

execution environment of services as results of complex 

interactions among services. However, to provide the service 

level agreement on QoS and support resource management, a 

simulator supporting not only software, but also hardware aspect 

of the system is needed. Without this capability the system design 

is incomplete since resultant QoS of complex software-software 

and software-hardware interactions with the resource conflicts 

cannot be adequately accounted for. In essence, an appropriate 

level of abstraction for models with SOA compliancy along with 

a capability to separately model software and hardware with 

support for model synthesis is critical for understanding any SBS 

design. 

Existing work on Service-Based Software System modeling and 

simulation emphasizes on process specification and workflow 

aspect of service. Business Process Execution Language (BPEL) 

[3], Process Specification and Modeling Language, (PSML-S) 

[16] consider process flow to represent service functionality that 

treats QoS primarily in terms of the runtime behavior of the 

software components, with no (or limited) consideration for 

underlying hardware. Select approaches and tools consider 

hardware [14, 2, 9, 12, 13]. For example, Bause et al. [2] use 

OMNeT++ [12] to simulate detailed network protocols. However, 

the service functionality can only be simulated as a process chain 

comparable to BPEL with no direct representation of SOA 

artifacts. In addition, even though network resources (e.g., CPU 

speed, system memory) are accounted [8] for using OMNeT++, 

complex service interactions that dynamically impact system 

resources and hence the impact on QoS cannot be independently 

observed. In [14], service models are developed using SOA 

concepts and principles. However, in terms of hardware, a 

simplified abstraction of a network router is used and the 

limitation of simplified abstractions of hardware is discussed and 

the importance of detailed hardware models is outlined. In 

OMNeT++ [12], OPNET [13], ns-2 [11] detail network protocol 

level simulation is supported. However, the software layer in 

these tools do not account for SOA compliancy. It is also 

important to note that none of the above tools and their underlying 

approaches apply the co-design concept (i.e., systematic sw/hw 

separation and synthesis) as part of modeling methodology. In 

DEVS/DOC [9], co-design concept is applied in a systematic way 

for separately capturing the software-hardware dynamics as well 

as their interactions to simulate object-based distributed software 

systems. The Distributed Co-operative Object (software) and 

Loosely Coupled Network (hardware) modeling layers in 

DEVS/DOC are suitable for validation of design architectures for 

Distributed Object Computing [4] systems. However, since 

DEVS/DOC simulator is intended for distributed objects co-

design [9], its software layer does not account for SOA concepts. 

Thus, it lacks support for simulating SBS architectural designs. In 

another approach [1], hardware is abstracted as a parameterized 

Layered Queuing Network (LQN). However, such approaches 

lack the concept of co-design – i.e., the advantages of a 

systematic separation and synthesis of HW/SW is missing. 

2. BACKGROUND 

2.1 Service Oriented Computing 
Service Oriented Computing (SOC) is the computing paradigm 

based on Service Oriented Architecture (SOA) [7]. It defines a set 

of loosely coupled computational components called “services” 

that interact to provide functional utilities to interested 

subscribers.  All the software resources in SOA are termed as 

services. Each service is a well defined self contained software 

module providing functionality to interested subscribers.  

In SOA, services are defined using standard language (e.g. 

WSDL), provide publishable interfaces, and interact with each 

other (as well as the subscribers) to collectively execute a 

common task.  In addition, each service is independent of the state 

and context of other services – making services stateless. 

Furthermore, the interaction and communication is done using 

protocol (e.g., TCP/IP) independent message scheme (e.g., 

SOAP). Similar to the producer-consumer scenario, service 

executioner and service requester are logically distinguished as – 

Publisher & Subscriber, respectively.  Publisher is the service 

provider whereas Subscriber is the service consumer. The 

subscriber discovers available publisher with the help of the third 

software entity known as the Service Broker. It contains the 

publisher information in its registry which represents the 

published service interfaces of the publishers. To initiate a service 

invocation, the subscriber initiates a communication with the 

broker to search for service availability and if found the service 

information is returned so that the subscriber can directly interact 

with the publisher(s).  In essence, a broker is the fundamental 

component in establishing the dynamic interaction/relation 

between the publisher and the subscriber and thus helps in 

maintaining the loosely-coupled property of SOA. 

2.2 Hardware Software Co-design 
The concept of HW/SW co-design refers to partitioning a system 

under design in terms of hardware and software parts such that 

each can be developed separately and thereafter synthesized with 

the other. Such efforts are aimed at enabling robust system 

designs with emphasis on improving hardware and software 

interaction. The advantage of HW/SW co-design is that it allows 

system architects and system engineers three degrees of freedom 

– i) separate specification of software, ii) separate specification of 

hardware, and iii) synthesis of software and hardware. While (i) 

and (ii) allow flexibility in independent software and hardware 

designs, (iii) provides an important capability to account for 

integrated system behavior under various software and hardware 

configurations. The HW/SW co-design concept [17] has been 

successfully applied in embedded system simulation, design and 

development. 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735 



2.3 SOA-DEVS 
SOA-compliant DEVS (SOAD) [14] refers to a modeling and 

simulation framework targeted for Service-Oriented Computing 

(SOC) systems. The elements of the SOC model specifications are 

based on the conceptual SOA descriptions that are mapped to 

DEVS atomic and coupled models [19]. The resulting SOA-

DEVS services adhere to the combined semantics of DEVS and 

SOA principles. In particular, SOA-compliant message 

abstractions are designed in accordance to the WSDL and SOAP 

specification and exchanged through DEVS ports and couplings. 

To simulate SOC-compliant DEVS models, the DEVS-Suite 

simulator is extended to specify SOA abstractions [10, 6]. The 

simulator supports basic SOA elements including services, service 

registry, service discovery, and messages. The SOAD models 

communicate with messages that represent service description, 

look up, and service messages [14].  Services communicate with 

one another via messages that contain service description or other 

content consistent with a chosen messaging framework. For 

example, a message from the broker to the subscriber is a service 

description which contains an abstract definition (an interface for 

the operation names and their input and output messages) and a 

concrete definition (consisting of the binding to physical transport 

protocol, address or endpoint, and service). The fundamental 

architecture and high-level design of software-based systems can 

be simulated and validated before developing low-level design, 

implementation, and testing. It should be noted that a fundamental 

difference between DEVS and SOA is the ‘broker’ concept. SOA 

is grounded in the separation of publisher and subscriber services 

which can send and receive messages. The message-based 

interactions between the publisher and subscriber services can 

only be established by the broker service. However, while SOAD 

approach noted the importance of co-design, it did not support 

developing co-design simulation models. 

2.4 DEVS/DOC 
DEVS/DOC is a simulator for Distributed Object Computing 

(DOC) systems [9]. It supports simulation of distributed reusable 

objects distributed over multiple, heterogeneous, computing and 

networking elements and applications efficiently, flexibly, and 

robustly. A formal model of DOC systems is specified by Butler 

in [4] where he proposed an abstract mathematical framework for 

specifying a static, structural model of a generic distributed object 

computing environment. DEVS/DOC is a DEVS based realization 

of Butler’s framework. It introduces the capability to specify the 

time-based dynamics of software and hardware components as 

well as the mapping of the former to the latter. DEVS/DOC 

enables modeling of hardware components responsible for 

executing software components. The software and hardware 

models are referred to as the Distributed Cooperative Object 

(DCO) and Loosely Coupled Network (LCN) layers, respectively. 

The framework defines the Object System Mapping (OSM) to 

provide for the mapping of software components to hardware 

components. A set of metrics is defined to extract key parameters 

of interest to enable studies of alternative architectural designs 

given various choices for DCO and LCN layers as well as their 

mappings. This framework takes a simple, yet powerful view by 

providing models to characterize dynamic behavior of a 

distributed object computing environment by representing two 

distinct layers of behavior – one for software objects and another 

for hardware objects (independently of one another) – and allows 

a mapping between them. The framework facilitates modeling 

abstract behavior of the software components independent of the 

computing and networking components. DEVS/DOC supports 

hardware and software component specifications (e.g., processors, 

networking topologies, communication protocols, software 

objects) of a distributed system with varying degrees of resolution 

and complexity in a systematic and scalable manner. It provides a 

characterization for representing dynamic, time-driven behavior 

of software and hardware components. The Discrete Event 

System Specification/Distributed Object Computing 

(DEVS/DOC) methodology and environment was proposed and 

developed to enable and support simulation studies of distributed 

object computing systems, not service-based software systems. 

DOC is based on the “quantum modeling” concept which allows 

higher level model abstractions to be developed without precisely 

modeling fine level of details (e.g., detailed transport protocol 

modeling). The concept is primarily used in software object 

specification by introducing probability of method invocations. 

Software object interact by random selection of method 

executions. Since modeling the aggregate level behavior of the 

system is the primary objective in DOC, quantum modeling 

concept aids in modeling complex object interaction for aggregate 

system behavior. It is important to note that the DCO in 

DEVS/DOC supports basic concurrent execution models (i.e., 

none, method, and object) for the software object. The 

concurrency abstraction used in the software object is based on 

the concept of the concurrency support of the operating systems. 

A set of software objects executing on a mixed collection of OS’s 

with (e.g., UNIX) and without (e.g., DOS) concurrency support 

behave differently. Such models of concurrent execution allow 

the modeler to support such scenarios with different granularity of 

concurrency. However, support for concurrency using 

multithreaded execution is prevalent in recent OS’s and any 

standard OS (e.g., Windows XP/2000, Linux, and UNIX) fully 

supports multithreaded capability. 

3. SOC-DEVS 
Service-Based Software System design approaches largely ignore 

the importance of hardware or otherwise make strong 

simplification about the role of hardware [2, 16, 14]. Since 

Service-Based Software Systems depend on message interchange 

and computation resources, the emphasis on the “software only” 

design approach can leave out a critical part of the system, i.e., 

the underlying hardware. To address the lack of hardware 

representation, the co-design concept used in networked 

embedded systems [15] can be employed for Service-Based 

Software Systems. Service-Based Software Systems executing on 

networked hardware is similar in concept yet at a different level 

of abstraction compared to embedded and networked systems. 

Based on this observation, the emphasis in SOC-DEVS is on the 

introduction of the concept of co-design in Service Based 

Software System design (see Figure 1).  To model and simulate 

the dynamics of service based components executing on 

hardware, we want to consider co-design modeling as activities to 

simultaneously simulate hardware and software layers of a 

Service Based Software System.   

Unlike the term “co-design” used in the embedded systems 

literature where emphasis is, for example, at low-level 

specification of FPGA, the term “networked HW/SW co-design” 

[9] refers to a collection of distributed software components 
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executing on a collection of networked hardware components. 

Characterization of co-design for Service Based Software System, 

consequently, entails modeling and simulation for high-level 

specification of software and hardware layers as well as separate 

mappings of the former to the latter.  

In the design of SBS, the networked HW/SW co-design concept 

allows the following    

x Specification of SOA compliant service as software 

component and hardware components separately and 

establishing a well defined relation to allow synthesis as 

well as service mapping to hardware.  

x Specification of software–software interaction and 

accounting for the impact of hardware resource (e.g., 

CPU speed and memory size) constraints. 

x Accounts for the impact of multiple software 

component interactions that are connected by a mesh of 

network hardware resources (e.g., network bandwidth, 

router speed, and link capacity). 

 

 

Figure 1: HW/SW co-design of SBS 

The components capture the basic functional and resource 

capabilities of the system. The service performance is related to 

the hardware resources by developing an assignment between 

service and hardware in terms of their interactions and resource 

requirement. A flexible mapping provides assignment that 

specifies which service is assigned for execution in which 

hardware. We define the co-design of networked services 

executing on distributed hardware components as two types. First, 

resource constraints (CPU time and available memory) for 

interaction of services are restricted to a single hardware. Second, 

resource constraints (CPU time, available memory, 

communication bandwidth) for interaction of services are allowed 

for networked hardware components. Both types of interaction are 

modeled in SOC-DEVS. 

4. SOC-DEVS Simulation 
SOC-DEVS simulation is supported by extending the DEVS-

Suite simulator [10, 6], an integrated modeling and simulation 

tool that supports SOA-compliant DEVS based software and 

hardware model development. The simulator, implemented in 

JavaTM, is developed using the MFVC (Model-Façade-View-

Controller) design pattern. DEVS-Suite provides a scalable 

framework for visualization of I/O, model specific parameters, 

and simulation system parameters (i.e. phase, sigma, and state 

events) while providing capability to model software and 

hardware of Service-Based Software Systems. The design of the 

DEVS-Suite simulator (see Figure 2) separates execution control 

from the tightly integrated simulator kernel and view. The 

visualization of models and their animations are supported by 

modules that support user interactions and control of simulation 

execution. The control supports logical and soft real-time 

simulation execution. The simulator includes a tracking 

environment and time view environment. The tracking 

environment provides capability to simplify design of 

experiments for simulation models. Its graphical user interface 

allows a user to select model components to be monitored and 

thus design experiments in terms of components’ inputs/outputs 

and state variables. Simulation model data sets, which include 

states such as Time of Next Event, Time of Last Event, and user 

selected input/output ports, can be dynamically tracked. The user, 

therefore, is able to observe simulation data for any number of 

atomic and coupled models without any code development. 

The TimeView is a module developed for run-time display of data 

sets as two dimensional plots (every plot has a variable y 

representing (input, output, or state) event coordinate and a 

variable x representing time coordinate). Its operation is similar to 

an oscilloscope. For example, number of job output of a CPU can 

be plotted at time instances 0, 1, 2, ..., 100. The discrete time 

increment duration and the units for time and variable to be 

plotted can be set by user plotting time-based simulation data. As 

an example, number of job output of a CPU can be plotted at time 

instances 0, 1, 2, ..., 100. The time increment duration and the 

units for time and variable to be plotted can be set by user. 

4.1 SOC-DEVS COMPONENTS 
The design objective for SOC-DEVS is to apply appropriate 

details required for architectural design verification and 

validation. As a result, detailed design specifics suitable for real 

system implementation is not appropriate rather the components 

need to account for fundamental behavior such that the service 

interaction through the networked hardware is captured. With this 

requirement along with applying the co-design concept, the SOC-

DEVS is designed and developed as two modeling layers which 

consist of a software layer and a hardware layer. The software 

service (swService) in the software layer is modeled to capture 

basic service interaction semantics (e.g., message exchange and 

service invocation). The hardware layer is modeled to represent 

computing node and network system resources (e.g., CPU speed, 

memory capacity, and network bandwidth) important for 

composite service execution. For synthesis (i.e., combined 

software/hardware configuration), a mapping from software layer 

to hardware layer called System Service Mapping (SSM) is 

needed. With the services mapped to hardware components, the 

hardware layer acts as a constraining factor on the software layer 

maximum performance capability under various dynamic 

conditions that may exist during service interaction and system 

resource fluctuations. 

 

Figure 2: SOC-DEVS simulation environment 
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4.1.1 Software Layer 
The software layer is specified based on the SOA-compliant 

DEVS. It consists of an abstraction for services that provide the 

basis for modeling composite service interactions. The software 

layer is extended to support such interactions with a hardware 

layer in the purview. Based on an extended concept for the basic 

service model in SOAD, the fundamental software building 

blocks of SOA (i.e., Broker, Publisher and Subscriber) are 

accounted for in the software layer. 

4.1.1.1 Software Service 
The basic abstraction is the “software service” which accounts for 

the common service properties. In designing the software service, 

a service in its basic form is considered as an entity with message 

based I/O such that a service can provide some functionality and 

support interaction by receiving and sending messages. Any 

functionality in the software service requires “operation” to be 

executed and the software service maintains a list of operations it 

can provide. A message exchange interaction is defined as 

communication between software services. Considering one of the 

services, it decodes an incoming message and returns an 

associated message after the execution of the associated 

operation. 

The co-design approach requires the SW/HW interaction to be 

explicitly specified. Hence, in addition to supporting basic service 

behavior, the software service needs to account for the 

dependency on hardware. The software service captures the 

service execution under CPU and memory constraints, so each 

operation is parameterized with a CPU load and a memory load 

that determines the resource requirement on the hardware layer. 

The CPU load is the required CPU cycles (e.g., 1200 cycles) to 

complete the operation and the memory load is the amount of 

memory (e.g., 2 MByte) consumed while the operation is being 

executed. An invocation of an operation sends a job 

parameterized with the CPU and the memory load to the hardware 

layer. The software service creates a service context whenever an 

operation is requested and maintains a list of active service 

contexts currently has jobs in execution in the hardware. Any job 

initiated from a software service is associated with a service 

context which maintains the state of the operation and the 

message that requested the operation. The use of service context 

allows concurrent multi-threaded execution of simultaneous 

requests. Once an operation is completed a message can be sent 

and the associated service context is removed. The software 

service can support multiple operations and the operation is 

specified in the incoming message.   

The software service is specified as a DEVS atomic model 

swService. It maintains an outgoing message queue and an 

outgoing job queue. When a swService receives a message, it 

decodes it to find the operation that is requested and sends a job 

associated with the operation to the hardware layer. Once the job 

completes executing, the job is returned to the swService so that 

the service context associated with the job can continue with the 

execution. Since multiple swServices can be associated with the 

same port, the swService receiving the completed job checks 

whether the job originated from itself. If so, the swService checks 

the service context associated with the job, creates a message and 

sends it to hardware layer. 

4.1.1.2 Broker, Publisher, and Subscriber 
The swService provides a generic skeletal support to build the 

fundamental SOA building blocks. The specifications for the 

generic Broker, Publisher and Subscriber are defined by 

extending the swService in the context of the message interaction 

each model supports and the resultant message exchanges (see 

Figure 3). In SOA, the message interactions among Broker, 

Publisher and Subscriber define the dynamics of the system. For 

example, a broker’s response to a service look up request message 

from a subscriber is to perform a lookup operation on the service 

repository and return the relevant information to the subscriber. 

Similarly a publisher’s response to the subscriber’s service 

request message is to perform the service using the operation 

associated with service endpoint. Based on the SOA principles, 

the subscriber’s interaction with publisher needs to be preceded 

by the subscriber to broker interaction. This way the SOA-

compliant service interaction of SOAD is ensured in SOC-DEVS 

by capturing the message interactions. A message contains the 

node address and port value (e.g., (“swService1”, 6880)) to 

exactly define the source and destination of the message. The 

service invocation is a message exchange between a publisher and 

a subscriber. The service invocation message invokes a service 

endpoint in the publisher and the associated operation(s) may be 

executed multiple times based on requested duration and return 

messages may be sent for each operation execution.  

Similar to DOC, the quantum concept can be used in SOC to 

model aggregate level system behavior. For example, if a 

subscriber requests a large number of service request to publishers 

for multiple endpoints, a probability can be assigned to the 

endpoints and a random endpoint can be executed without exactly 

specifying in the service invocation message. However, current 

implementation does not support such capability.  

4.1.2 Hardware Layer  
The hardware layer consists of abstraction of single hardware as 

well as networked hardware. The processor represents single 

hardware on which software services can be executed. The other 

abstraction is the multiple processors connected via network 

switches and links. The interconnected processors with the 

network switches and links allow the modeler to account for 

network configuration and topology typical in a Service-Based 

Software System. 

ViewableAtomic
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Figure 3: swService, broker, publisher, and subscriber 

simulation model components 
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4.1.2.1 Processor  
The processor model is capable of performing computational 

work for software services and it enables these software services 

to interact via messages through the hardware layer. The 

processor is developed as a DEVS coupled model consisting of 

central processing unit (CPU), transport unit and network card 

[9]. Each of the models is developed as DEVS atomic model.  

The CPU is specified as a DEVS atomic model with one input 

port, one output port, and two parameters (i.e., CPU speed, and 

memory size). The “processor.inJobs” input port accepts requests 

from software service to execute jobs. The competed jobs are 

emitted via the “processor.outJobs”. The CPU speed parameter 

determines how quickly data processing operations are executed 

and the memory size determines the number of jobs that can be 

loaded without using swap memory. The CPU speed and memory 

size constraints software services in their competition for CPU 

time and memory resources as well as the rate at which jobs from 

software services are processed. If the available memory is 

insufficient for an incoming job, the job is put into a waiting 

queue. Once memory becomes available, the job is put into the 

active queue with a swap time penalty. The model of CPU is 

different from DEVS/DOC where software layer decides when to 

swap in/out and instructs the CPU to load into disk and load into 

memory. Our approach allows software layer to be more 

concerned with service level behavior. Behavior appropriate for 

OS (e.g., FIFO scheduling algorithm) is included in the CPU. The 

CPU can also be specified to support other kinds of scheduling 

algorithms without any change to the software service. 

The transport unit provides message I/O including message 

segmentation into packets and reassembly of message from 

packets. A message contains data abstractions for the software 

layer and packets are data abstractions for the network layer. 

Messages are transported to the software layer or fragmented into 

packets to the network card based on the message to software 

layer mapping. Outgoing messages for the network card are 

fragmented before sending and incoming packets from the 

network card are queued for reassembly and then send to the 

software layer. The transport unit at a destination node receives 

and collects packets. When all packets for a message are received, 

the destination transport unit delivers the message to the 

destination software service. It must be noted that the transport 

unit does not account for complex transmission control rather it 

provides basic transport capability like packetization (i.e., data 

size) overhead, and end-to-end communication with message to 

software layer mapping. In contrast to DEVS/DOC, the transport 

layer is extended to support node address and logical port 

embedded in messages so that source and destination can be 

exactly identified. The network card provides network I/O for 

incoming and outgoing packets. The network I/O is also buffered 

(i.e., fragments are queued) to prevent packet loss during packet 

transmission.  

4.1.2.2 Link  
Link is the abstraction for physical medium used to interconnect 

networks. Use of link is only suitable when the modeler is 

interested in detail link layer behavior (e.g., propagation delay, 

frame collisions). For SOC-DEVS, we model link with an input 

and output queue that can transmit packet fragments to/from 

network card (also network switch) at a specified speed (e.g., 100 

Mbps). Unlike DEVS/DOC, the link model does not have an error 

coefficient to emulate physical level noise. 

4.1.2.3 Network Switch 
Network switch is developed as DEVS atomic model. It is used to 

route packets among more processors. The network switch queues 

incoming packets and puts them in the outgoing queue after 

processing. The bandwidth of the outgoing links and the queue 

length are two important parameters that can be used to configure 

various packet loss scenarios. The packet processing is done after 

an address lookup (i.e., input link to output link mapping) in the 

routing table. Packet address information is used to make 

switching decisions to send a packet to a specific output link as 

necessary. Unlike in real network switch where the address 

mapping is done using routing algorithm that automatically 

updates routing table [20], the modeler needs to specify and 

initialize static address lookup tables in network switches to 

represent a network topology under consideration. 

4.1.3 Service System Mapping 
The Service System Mapping (SSM) provides the assignment of 

software services to processors. The flexible mapping in SSM 

allows a modeler to assign a software service to processor with 

different configurations. From implementation perspective, it 

couples the “swService.outMsg” port of each software service 

component to the “processor.inMsg” port of the processor. 

Similar couplings are made for “swService.outJob” to 

“processor.inJobs”. It also couples the “processor.outMsgs” port 

of the processor to the “swService.inMsg” port for each software 

service component. Similar couplings are made, as well, for 

“processor.outJobs” to “swService.inJob” (see Figure 4). Jobs 

from the service are sent to processor and the completed jobs are 

returned. The messages are sent to the transport unit and 

disseminated to the destination processor. Also incoming 

messages are delivered to the software services. As a result, the 

couplings facilitate the interactions during simulation. The 

mapping from software to hardware layer is applicable for atomic 

services and as well as composite services as the interface design 

is applicable for a generic swService interaction (see the 

IHardware Layer component in Figure 3). 

 

Figure 4: System Service Mapping 

The behavior and performance of a SBS is dependent on both the 

software service and the hardware layer. Dynamic behavior is 

specified in the software service by computational load and 

service interactions. By mapping the software services onto 

processors, the dynamics of the software service are constrained 

by the capabilities and topology of the hardware layer. As the 

software services compete for processor resources in terms of 

memory to load and CPU cycles to execute, their dynamics drive 

the performance of the processor which in turn also determines  
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the performance of the software service to software service 

interaction which in turn also drive the dynamics of the network 

performance and hence the QoS of the SBS. In single hardware 

configuration (see Figure 5a), services get mapped to a single 

processor. In networked hardware configuration (see Figure 5b), 

services get mapped to multiple processors interconnected by 

network switches or links. 

 

Figure 5a: Single Hardware 

 

 

Figure 5b: Networked Hardware 

5. Simulation Example  

5.1 Voice Communication System  
Proliferation of VoIP and digital music makes audio data 

transmission a major contributor to internet traffic. Based on end 

user preference and policies of service publishers, real time audio 

traffic may require minimum QoS to be maintained under various 

network traffic scenarios.  For the case study, we consider an end-

to-end Voice Communication System (VCS) capable of streaming 

audio data to the subscribers. The VCS publishes various quality 

audio data specified by sampling rates (e.g., ranging from 44.1 to 

220.5 KHz) and the interested subscribers can subscribe to the 

channels with certain QoS constraints on the data quality [18]. 

The higher sampling rates produce higher quality audio data as it 

encodes more audio information per second. For example, 

sampling rate of 220.5 KHz will produce superior quality audio 

data w.r.t. 44.1 KHz sampling rate. The VCS under consideration 

supports a 2-channel (i.e., stereo) audio data that can be sampled 

at any of the following rates – 44.1, 88.2, 136.4, 176.4, 220.5 

KHz. The subscribers request audio data stream for a specified 

amount of time over the network and expect the VCS to ensure 

QoS. The subscriber requests are processed by the VCS and it 

streams audio data for the specified duration. The VCS can 

support multiple subscribers simultaneously such that each 

subscriber may request different quality audio data. The 

throughput provides a measure of the VCS performance. In 

general (i.e., under normal operating conditions), the VCS 

throughput is proportional to the number of audio streams being 

delivered. The VCS also supports secured voice communication 

by encrypting sampled voice data. If the subscriber requests 

encrypted data, the VCS encrypt sampled data with 256 key DES 

[20] algorithm prior to sending to the subscriber. 

5.2 VCS Simulation using SOC-DEVS 
To exemplify the SOC-DEVS approach, the above Voice 

Communication System (VCS) is modeled. The real VCS is 

implemented in C# .NET. The VCS represents a number of 

subscribers subscribing to a voice publisher. A model of this 

system is simulated. The resultant throughput behavior is 

compared to similar scenario (i.e. testbed setup with same 

configuration) in the real VCS. The effect of resource fluctuation 

on the QoS is also observed.    

To illustrate the core capabilities of the SOC-DEVS approach, we 

consider the scenario with a single VCS, a broker and five 

subscribers in a networked hardware system consisting of two 

processors connected via a network switch.  The VCS publisher 

and the broker are mapped on a single processor and the five 

subscribers are assigned to the other processor. Each subscriber 

requests DES encrypted voice data at 220.5 KHz sampling rate 

for 2 channel stereo data encoded in 16 bits. A multiple subscriber 

scenario is used with 1-5 subscribers active at a time in each 

scenario. The dynamics of the system is captured by the average 

voice publisher throughput over 60 simulated logical seconds. To 

observe system behavior under heavy network load condition, a 

background traffic generator is used at the network switch at 75 

Mbps rate.  For a comparative view, we also run the same 

scenario in the real VCS system (see Table1) and collected the 

voice throughput data, CPU utilization at the processor assigned 

to the publisher. The results are discussed in Section 5.4. 

Table 1: System configuration 

Category Real System Simulation System 

Processor (CPU, 

Memory, Network 

Card) 

2.2 GHz, 

 1024 MB,  

100 Mbps 

2.2 GHz, 

1024MB, 

100Mbps 

Network Link 

Bandwidth  
100 Mbps 100Mbps 

Subscriber Number 1-5 1-5, 10, 20 

Data Collection 

Duration 

60 sec (wall 

clock) 
60 sec (logical clock) 

 
 

5.3 Simulation Parameter Estimation  
The real system uses DES [5] encryption algorithm. However, the 

simulated VCS model does not implement the logic for DES 

rather accounts for the effect on encryption on the CPU load as a 

function of sampling rate. As a result, the simulation setup needs 

CPU load factor approximation to account for the encryption 

operation in the CPU. If data encryption is disabled, the CPU load 

is negligible. Now, the real VCS samples voice data at 

44.1í220.5KHz rate and generated data is encrypted by DES 

algorithm. Then data generation rate, G = S*B*C bits/sec where, 

S denotes the Sampling rate (KHz), C is the Channel number 

(mono or stereo), B denotes bits per sample. Under nominal load 

condition in the real system, the CPU utilization is primarily due 

to the encryption load. Hence, if the encryption rate is E then 

E=G. Now, CPU load factor, LF = (V*U)/E; where V= CPU 

speed (MHz), U = CPU utilization (%). Replacing E=G we get the 

final equation, LF = (V*U)/G. Also for a time duration T, the 

average CPU load for encryption operation, L = LF*S*T. For 
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example, S=44.1 KHz, C=2, B=16 bits/sample, V=2200MHz, 

U=5.7%, we get, LF =704 cycles/byte. Also the average load on 

the CPU is, L = 125.334 Mcyles.  

The processor parameters in the simulation are assigned based on 

real system’s CPU configuration. The CPU speed for the 

processor is set at 2.2 GHz and 1024MB of memory. For 

processor configuration test, the CPU speed of 3.2 GHz and 1024 

Mbyte of memory is used. The swap penalty is set for 0.1 logical 

second. The network parameter is 100 Mbps which is the 

bandwidth of I/O link at the network switches and network cards.  

5.4 Discussion 
In demonstrating the capability to capture dynamic characteristics 

of Service-Based Software Systems in SOC-DEVS, we traced the 

average throughput and CPU utilization of the real and simulated 

VCS under similar scenarios. The objective is to observe the VCS 

behavior and its QoS under varying load conditions by varying 

the number of simultaneously active subscribers.  

In Figure 6a, the simulated vs. real throughput of the VCS is 

shown. In this scenario the data encryption is disabled. A linear 

increase in VCS throughput with increasing number of 

subscribers is observed. This is comparable to the real system, 

where each active subscriber increases the streaming data 

throughput under normal operating conditions. Approximately, 
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Figure 6a: Average VCS throughput for Sampling rate 

=220.5KHz and no background traffic 
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Figure 6b: Average VCS throughput for Sampling 

rate=220.5KHz and background traffic=75Mbps 

35% of 100Mbs bandwidth is used by the active 5 subscribers. In 

Figure 6b, the real vs. simulation throughput of the VCS is shown. 

In this scenario, the network has background traffic to compete 

with VCS traffic. A linear increase in VCS throughput with 

increasing number of subscribers is observed up to 25Mbps for 4 

subscribers. This is comparable to the real system, where each 

active subscriber increases the streaming data throughput under 

normal operating conditions (up to 25% of 100Mbs bandwidth is 

used by the active 4 subscribers). Throughput is clamped at 25 

Mbps (appx.) for 5 subscriber scenario due the background traffic 

consuming 75% bandwidth at the network switch.  

In the Figures 7a and 7b, the CPU utilization with the number of 

active subscribers along with CPU saturation effect on the VCS 

throughput is plotted. In this scenario, data encryption is enabled 

and the CPU load reflects the data encryption load. With 

increased CPU load and increasing subscribers, the software layer 

reaches a saturation point such that the effective throughput is not 

sufficient to use the available network bandwidth (note: no 

background traffic is used to load the network switch). It is 

evident that the CPU utilization increases with increasing client 

number and the CPU becomes saturated which effects the VCS 

throughput. Though the saturation differs with respect to the real 

system where various background threads interact in a complex 

manner, the trend line similarity verifies the effect   of the system 

dynamics clearly as required of SOC-DEVS as an early 

architectural verification and validation tool for SBS. 
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Figure 7a: CPU utilization and subscriber number 

CPU Saturation Effect on Throughput
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Figure 7b: CPU saturation effect on VCS throughput 

In the Figure 8a, the processor configuration is modified by 

changing the CPU speed [from (2.2 GHz, 1024 MB) to (3.2 GHz, 

1024 MB)] to demonstrate how processor configuration can 

improve the throughput behavior. For the same load scenario as in 

Figure 7a the increase in CPU speed improves the software layer 

execution speed with reduced CPU saturation and the effective 

cap on the VCS throughput is increased. The improvement reason 

is evident from Figure 8b, as the reduction in average CPU queue 

length denotes improved execution rate and hence increased VCS 

throughput. 
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CPU Utilization vs Subscriber Number
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Figure 8a: Average VCS throughput on different CPU speeds 

 

CPU Queue Length vs Subscriber Number

0

5

10

15

20

1 3 5 10 20

Number of Subscribers

C
P
U

 Q
u
e
u
e
 L

e
n
g
th

Simulated(2.2GHz)

Simulated(3.2GHz)

 

Figure 8b: Average CPU queue length on different CPU speeds 

6. Conclusion & Future Work 
In this research, an extension to the DEVS-Suite simulator 

supporting co-design concept is presented. It aids developing 

simulation-based SBS architectural design and verification. The 

SOC-DEVS simulation capability provides a systematic way of 

designing Service-Based Software Systems by simulating the 

synthesized software and hardware components where improved 

observation capability is supported due to explicit software and 

hardware interactions. The simulator is suitable for supporting a 

generalized integrated design process as in [15] which is similar 

to well established co-design based approaches (particularly in 

embedded systems). However a co-design process for SBS design 

and development is a new dimension yet to be explored. As part 

of future research, we intend to further investigate the co-design 

approach as a standard in SBS design and development process. 
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