
A Simulator for Service-Based Software System Co-design
Mohammed A. Muqsith Hessam S. Sarjoughian

School of Computing, Informatics, and School of Computing, Informatics, and

Decision Systems Engineering Decision Systems Engineering

Arizona State University, Tempe, AZ 85281-8809 Arizona State University, Tempe, AZ 85281-8809

011-281-300-1261 001-480-965-3983

mmuqsith@asu.edu sarjoughian@asu.edu

ABSTRACT

The adoption of the Service Oriented Architecture (SOA) as the

foundation for developing a new generation of software systems

poses important challenges in system design. While simulation

tools serve a principal role in design, there is a growing

recognition that simulation of Service-Based Software Systems

(SBS) requires modeling capabilities beyond those that are

developed for the traditional distributed software systems. In this

paper, a novel simulator is developed based on the SOC-DEVS

co-design approach and realized as an extension to the SOA-

compliant DEVS simulator. The tool supports DEVS simulation

modeling of not only the services consistent with Service-

Oriented Computing (SOC) concepts and principles, but also the

networked hardware components on which services must execute

on. An example model for a voice communication system is

developed to illustrate the kind of hardware and software

components that can be modeled and simulated.

Categories and Subject Descriptors

I.6.2 [Simulation and Modeling]: Application; I.6.3 [Simulation

and Modeling]: Model Development – modeling methodologies;

I.6.5 [Simulation and Modeling]: Simulation Languages; I.6.7

[Simulation and Modeling]: Simulation Support Systems –

environments.

General Terms

Design, Verification.

Keywords

Co-design, DEVS/DOC, DEVS-Suite, Service-Based Software

System (SBS), Service Oriented Architecture (SOA), SOA-DEVS

(SOAD), SW/HW Simulation.

1. INTRODUCTION
Service Oriented Architecture (SOA) [7] is an attractive approach

for developing enterprise scale distributed software systems. It

emphasizes loosely coupled, protocol independent distributed

system development with the “software as service” concept – a

self-contained component provided as a publishable contract for

use by independent subscribers. SOA has evolved to address the

demand to develop & deploy large scale software systems that are

cost effective to reuse, maintain and easily adaptable to

infrastructure change. A key promise of SOA is supporting on-

demand Quality of Service (QoS) for given business logics.

Maintaining QoS, however, is a challenging task as it depends on

the system architecture. Design decisions spanning software,

hardware, and their combination have significant roles in

achieving the desired runtime QoS. To attain a level of tractability

in developing such systems, the use of modeling and simulation

tools can aid in exploring alternative designs,

In the remainder of this section, we will present our motivation

for developing an SOA-compliant simulator which supports co-

design concept. In Section 2, we describe background closely

related to this paper. In Section 3, the basic approach for Service-

Based Software System co-design is described. In Section 4, the

model components for the SOC-DEVS simulator are detailed. In

Section 5, an example model is developed and simulation results

are presented and discussed. In Section 6, we present our

conclusions and future work.

1.1 Motivation
In the design of Service-Based Software Systems (SBS) capable

of satisfying multiple QoS attributes, simulation-based modeling

is desirable as simulation can play a central role in enabling

tradeoff study among time-based QoS attributes. To build

Service-Based Software Systems with capability to support

multiple QoS, simulation can play an important role in system

architectural design verification and validation. The idea is to

develop a model of the system under design using a simulator that

supports SOA concepts and principles. Service models can

capture the fundamental dynamics among SOA components and

the system behavior can be observed under various configurations

and the resultant impact on the QoS. Such a simulator enables

analysis and design capabilities by aiding in design,

implementation and testing of the Service-Based Software

Systems. This is an important tool for architectural design

validations that are impractical to support with actual service

deployment.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

For SOA-compliancy, it is important to capture service

functionality with direct representation of SOA artifacts like the

service publisher, service subscriber, and service broker. In

addition, the relationship among the publisher, subscriber and

broker needs to be accounted in the simulator such that it allows

the application model builders to concentrate on application

specification rather than on the details for SOA compliancy. From

system architecture, design and development perspective, system

specification with separation of hardware and software is

important. Ability to model software and hardware separately and

their combined interaction have important practical use. For

example, the users can select services and list their desired QoS

under the presence of some uncontrollable, but predictable

environmental fluctuations [18]. System resources such as

available memory, CPU speed, network bandwidth etc. are

important environmental factors. Such environmental factor

fluctuations manifests through resource constraints of the

execution environment of services as results of complex

interactions among services. However, to provide the service

level agreement on QoS and support resource management, a

simulator supporting not only software, but also hardware aspect

of the system is needed. Without this capability the system design

is incomplete since resultant QoS of complex software-software

and software-hardware interactions with the resource conflicts

cannot be adequately accounted for. In essence, an appropriate

level of abstraction for models with SOA compliancy along with

a capability to separately model software and hardware with

support for model synthesis is critical for understanding any SBS

design.

Existing work on Service-Based Software System modeling and

simulation emphasizes on process specification and workflow

aspect of service. Business Process Execution Language (BPEL)

[3], Process Specification and Modeling Language, (PSML-S)

[16] consider process flow to represent service functionality that

treats QoS primarily in terms of the runtime behavior of the

software components, with no (or limited) consideration for

underlying hardware. Select approaches and tools consider

hardware [14, 2, 9, 12, 13]. For example, Bause et al. [2] use

OMNeT++ [12] to simulate detailed network protocols. However,

the service functionality can only be simulated as a process chain

comparable to BPEL with no direct representation of SOA

artifacts. In addition, even though network resources (e.g., CPU

speed, system memory) are accounted [8] for using OMNeT++,

complex service interactions that dynamically impact system

resources and hence the impact on QoS cannot be independently

observed. In [14], service models are developed using SOA

concepts and principles. However, in terms of hardware, a

simplified abstraction of a network router is used and the

limitation of simplified abstractions of hardware is discussed and

the importance of detailed hardware models is outlined. In

OMNeT++ [12], OPNET [13], ns-2 [11] detail network protocol

level simulation is supported. However, the software layer in

these tools do not account for SOA compliancy. It is also

important to note that none of the above tools and their underlying

approaches apply the co-design concept (i.e., systematic sw/hw

separation and synthesis) as part of modeling methodology. In

DEVS/DOC [9], co-design concept is applied in a systematic way

for separately capturing the software-hardware dynamics as well

as their interactions to simulate object-based distributed software

systems. The Distributed Co-operative Object (software) and

Loosely Coupled Network (hardware) modeling layers in

DEVS/DOC are suitable for validation of design architectures for

Distributed Object Computing [4] systems. However, since

DEVS/DOC simulator is intended for distributed objects co-

design [9], its software layer does not account for SOA concepts.

Thus, it lacks support for simulating SBS architectural designs. In

another approach [1], hardware is abstracted as a parameterized

Layered Queuing Network (LQN). However, such approaches

lack the concept of co-design – i.e., the advantages of a

systematic separation and synthesis of HW/SW is missing.

2. BACKGROUND

2.1 Service Oriented Computing
Service Oriented Computing (SOC) is the computing paradigm

based on Service Oriented Architecture (SOA) [7]. It defines a set

of loosely coupled computational components called “services”

that interact to provide functional utilities to interested

subscribers. All the software resources in SOA are termed as

services. Each service is a well defined self contained software

module providing functionality to interested subscribers.

In SOA, services are defined using standard language (e.g.

WSDL), provide publishable interfaces, and interact with each

other (as well as the subscribers) to collectively execute a

common task. In addition, each service is independent of the state

and context of other services – making services stateless.

Furthermore, the interaction and communication is done using

protocol (e.g., TCP/IP) independent message scheme (e.g.,

SOAP). Similar to the producer-consumer scenario, service

executioner and service requester are logically distinguished as –

Publisher & Subscriber, respectively. Publisher is the service

provider whereas Subscriber is the service consumer. The

subscriber discovers available publisher with the help of the third

software entity known as the Service Broker. It contains the

publisher information in its registry which represents the

published service interfaces of the publishers. To initiate a service

invocation, the subscriber initiates a communication with the

broker to search for service availability and if found the service

information is returned so that the subscriber can directly interact

with the publisher(s). In essence, a broker is the fundamental

component in establishing the dynamic interaction/relation

between the publisher and the subscriber and thus helps in

maintaining the loosely-coupled property of SOA.

2.2 Hardware Software Co-design
The concept of HW/SW co-design refers to partitioning a system

under design in terms of hardware and software parts such that

each can be developed separately and thereafter synthesized with

the other. Such efforts are aimed at enabling robust system

designs with emphasis on improving hardware and software

interaction. The advantage of HW/SW co-design is that it allows

system architects and system engineers three degrees of freedom

– i) separate specification of software, ii) separate specification of

hardware, and iii) synthesis of software and hardware. While (i)

and (ii) allow flexibility in independent software and hardware

designs, (iii) provides an important capability to account for

integrated system behavior under various software and hardware

configurations. The HW/SW co-design concept [17] has been

successfully applied in embedded system simulation, design and

development.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

2.3 SOA-DEVS
SOA-compliant DEVS (SOAD) [14] refers to a modeling and

simulation framework targeted for Service-Oriented Computing

(SOC) systems. The elements of the SOC model specifications are

based on the conceptual SOA descriptions that are mapped to

DEVS atomic and coupled models [19]. The resulting SOA-

DEVS services adhere to the combined semantics of DEVS and

SOA principles. In particular, SOA-compliant message

abstractions are designed in accordance to the WSDL and SOAP

specification and exchanged through DEVS ports and couplings.

To simulate SOC-compliant DEVS models, the DEVS-Suite

simulator is extended to specify SOA abstractions [10, 6]. The

simulator supports basic SOA elements including services, service

registry, service discovery, and messages. The SOAD models

communicate with messages that represent service description,

look up, and service messages [14]. Services communicate with

one another via messages that contain service description or other

content consistent with a chosen messaging framework. For

example, a message from the broker to the subscriber is a service

description which contains an abstract definition (an interface for

the operation names and their input and output messages) and a

concrete definition (consisting of the binding to physical transport

protocol, address or endpoint, and service). The fundamental

architecture and high-level design of software-based systems can

be simulated and validated before developing low-level design,

implementation, and testing. It should be noted that a fundamental

difference between DEVS and SOA is the ‘broker’ concept. SOA

is grounded in the separation of publisher and subscriber services

which can send and receive messages. The message-based

interactions between the publisher and subscriber services can

only be established by the broker service. However, while SOAD

approach noted the importance of co-design, it did not support

developing co-design simulation models.

2.4 DEVS/DOC
DEVS/DOC is a simulator for Distributed Object Computing

(DOC) systems [9]. It supports simulation of distributed reusable

objects distributed over multiple, heterogeneous, computing and

networking elements and applications efficiently, flexibly, and

robustly. A formal model of DOC systems is specified by Butler

in [4] where he proposed an abstract mathematical framework for

specifying a static, structural model of a generic distributed object

computing environment. DEVS/DOC is a DEVS based realization

of Butler’s framework. It introduces the capability to specify the

time-based dynamics of software and hardware components as

well as the mapping of the former to the latter. DEVS/DOC

enables modeling of hardware components responsible for

executing software components. The software and hardware

models are referred to as the Distributed Cooperative Object

(DCO) and Loosely Coupled Network (LCN) layers, respectively.

The framework defines the Object System Mapping (OSM) to

provide for the mapping of software components to hardware

components. A set of metrics is defined to extract key parameters

of interest to enable studies of alternative architectural designs

given various choices for DCO and LCN layers as well as their

mappings. This framework takes a simple, yet powerful view by

providing models to characterize dynamic behavior of a

distributed object computing environment by representing two

distinct layers of behavior – one for software objects and another

for hardware objects (independently of one another) – and allows

a mapping between them. The framework facilitates modeling

abstract behavior of the software components independent of the

computing and networking components. DEVS/DOC supports

hardware and software component specifications (e.g., processors,

networking topologies, communication protocols, software

objects) of a distributed system with varying degrees of resolution

and complexity in a systematic and scalable manner. It provides a

characterization for representing dynamic, time-driven behavior

of software and hardware components. The Discrete Event

System Specification/Distributed Object Computing

(DEVS/DOC) methodology and environment was proposed and

developed to enable and support simulation studies of distributed

object computing systems, not service-based software systems.

DOC is based on the “quantum modeling” concept which allows

higher level model abstractions to be developed without precisely

modeling fine level of details (e.g., detailed transport protocol

modeling). The concept is primarily used in software object

specification by introducing probability of method invocations.

Software object interact by random selection of method

executions. Since modeling the aggregate level behavior of the

system is the primary objective in DOC, quantum modeling

concept aids in modeling complex object interaction for aggregate

system behavior. It is important to note that the DCO in

DEVS/DOC supports basic concurrent execution models (i.e.,

none, method, and object) for the software object. The

concurrency abstraction used in the software object is based on

the concept of the concurrency support of the operating systems.

A set of software objects executing on a mixed collection of OS’s

with (e.g., UNIX) and without (e.g., DOS) concurrency support

behave differently. Such models of concurrent execution allow

the modeler to support such scenarios with different granularity of

concurrency. However, support for concurrency using

multithreaded execution is prevalent in recent OS’s and any

standard OS (e.g., Windows XP/2000, Linux, and UNIX) fully

supports multithreaded capability.

3. SOC-DEVS
Service-Based Software System design approaches largely ignore

the importance of hardware or otherwise make strong

simplification about the role of hardware [2, 16, 14]. Since

Service-Based Software Systems depend on message interchange

and computation resources, the emphasis on the “software only”

design approach can leave out a critical part of the system, i.e.,

the underlying hardware. To address the lack of hardware

representation, the co-design concept used in networked

embedded systems [15] can be employed for Service-Based

Software Systems. Service-Based Software Systems executing on

networked hardware is similar in concept yet at a different level

of abstraction compared to embedded and networked systems.

Based on this observation, the emphasis in SOC-DEVS is on the

introduction of the concept of co-design in Service Based

Software System design (see Figure 1). To model and simulate

the dynamics of service based components executing on

hardware, we want to consider co-design modeling as activities to

simultaneously simulate hardware and software layers of a

Service Based Software System.

Unlike the term “co-design” used in the embedded systems

literature where emphasis is, for example, at low-level

specification of FPGA, the term “networked HW/SW co-design”

[9] refers to a collection of distributed software components

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

executing on a collection of networked hardware components.

Characterization of co-design for Service Based Software System,

consequently, entails modeling and simulation for high-level

specification of software and hardware layers as well as separate

mappings of the former to the latter.

In the design of SBS, the networked HW/SW co-design concept

allows the following

x Specification of SOA compliant service as software

component and hardware components separately and

establishing a well defined relation to allow synthesis as

well as service mapping to hardware.

x Specification of software–software interaction and

accounting for the impact of hardware resource (e.g.,

CPU speed and memory size) constraints.

x Accounts for the impact of multiple software

component interactions that are connected by a mesh of

network hardware resources (e.g., network bandwidth,

router speed, and link capacity).

Figure 1: HW/SW co-design of SBS

The components capture the basic functional and resource

capabilities of the system. The service performance is related to

the hardware resources by developing an assignment between

service and hardware in terms of their interactions and resource

requirement. A flexible mapping provides assignment that

specifies which service is assigned for execution in which

hardware. We define the co-design of networked services

executing on distributed hardware components as two types. First,

resource constraints (CPU time and available memory) for

interaction of services are restricted to a single hardware. Second,

resource constraints (CPU time, available memory,

communication bandwidth) for interaction of services are allowed

for networked hardware components. Both types of interaction are

modeled in SOC-DEVS.

4. SOC-DEVS Simulation
SOC-DEVS simulation is supported by extending the DEVS-

Suite simulator [10, 6], an integrated modeling and simulation

tool that supports SOA-compliant DEVS based software and

hardware model development. The simulator, implemented in

JavaTM, is developed using the MFVC (Model-Façade-View-

Controller) design pattern. DEVS-Suite provides a scalable

framework for visualization of I/O, model specific parameters,

and simulation system parameters (i.e. phase, sigma, and state

events) while providing capability to model software and

hardware of Service-Based Software Systems. The design of the

DEVS-Suite simulator (see Figure 2) separates execution control

from the tightly integrated simulator kernel and view. The

visualization of models and their animations are supported by

modules that support user interactions and control of simulation

execution. The control supports logical and soft real-time

simulation execution. The simulator includes a tracking

environment and time view environment. The tracking

environment provides capability to simplify design of

experiments for simulation models. Its graphical user interface

allows a user to select model components to be monitored and

thus design experiments in terms of components’ inputs/outputs

and state variables. Simulation model data sets, which include

states such as Time of Next Event, Time of Last Event, and user

selected input/output ports, can be dynamically tracked. The user,

therefore, is able to observe simulation data for any number of

atomic and coupled models without any code development.

The TimeView is a module developed for run-time display of data

sets as two dimensional plots (every plot has a variable y

representing (input, output, or state) event coordinate and a

variable x representing time coordinate). Its operation is similar to

an oscilloscope. For example, number of job output of a CPU can

be plotted at time instances 0, 1, 2, ..., 100. The discrete time

increment duration and the units for time and variable to be

plotted can be set by user plotting time-based simulation data. As

an example, number of job output of a CPU can be plotted at time

instances 0, 1, 2, ..., 100. The time increment duration and the

units for time and variable to be plotted can be set by user.

4.1 SOC-DEVS COMPONENTS
The design objective for SOC-DEVS is to apply appropriate

details required for architectural design verification and

validation. As a result, detailed design specifics suitable for real

system implementation is not appropriate rather the components

need to account for fundamental behavior such that the service

interaction through the networked hardware is captured. With this

requirement along with applying the co-design concept, the SOC-

DEVS is designed and developed as two modeling layers which

consist of a software layer and a hardware layer. The software

service (swService) in the software layer is modeled to capture

basic service interaction semantics (e.g., message exchange and

service invocation). The hardware layer is modeled to represent

computing node and network system resources (e.g., CPU speed,

memory capacity, and network bandwidth) important for

composite service execution. For synthesis (i.e., combined

software/hardware configuration), a mapping from software layer

to hardware layer called System Service Mapping (SSM) is

needed. With the services mapped to hardware components, the

hardware layer acts as a constraining factor on the software layer

maximum performance capability under various dynamic

conditions that may exist during service interaction and system

resource fluctuations.

Figure 2: SOC-DEVS simulation environment

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

4.1.1 Software Layer
The software layer is specified based on the SOA-compliant

DEVS. It consists of an abstraction for services that provide the

basis for modeling composite service interactions. The software

layer is extended to support such interactions with a hardware

layer in the purview. Based on an extended concept for the basic

service model in SOAD, the fundamental software building

blocks of SOA (i.e., Broker, Publisher and Subscriber) are

accounted for in the software layer.

4.1.1.1 Software Service
The basic abstraction is the “software service” which accounts for

the common service properties. In designing the software service,

a service in its basic form is considered as an entity with message

based I/O such that a service can provide some functionality and

support interaction by receiving and sending messages. Any

functionality in the software service requires “operation” to be

executed and the software service maintains a list of operations it

can provide. A message exchange interaction is defined as

communication between software services. Considering one of the

services, it decodes an incoming message and returns an

associated message after the execution of the associated

operation.

The co-design approach requires the SW/HW interaction to be

explicitly specified. Hence, in addition to supporting basic service

behavior, the software service needs to account for the

dependency on hardware. The software service captures the

service execution under CPU and memory constraints, so each

operation is parameterized with a CPU load and a memory load

that determines the resource requirement on the hardware layer.

The CPU load is the required CPU cycles (e.g., 1200 cycles) to

complete the operation and the memory load is the amount of

memory (e.g., 2 MByte) consumed while the operation is being

executed. An invocation of an operation sends a job

parameterized with the CPU and the memory load to the hardware

layer. The software service creates a service context whenever an

operation is requested and maintains a list of active service

contexts currently has jobs in execution in the hardware. Any job

initiated from a software service is associated with a service

context which maintains the state of the operation and the

message that requested the operation. The use of service context

allows concurrent multi-threaded execution of simultaneous

requests. Once an operation is completed a message can be sent

and the associated service context is removed. The software

service can support multiple operations and the operation is

specified in the incoming message.

The software service is specified as a DEVS atomic model

swService. It maintains an outgoing message queue and an

outgoing job queue. When a swService receives a message, it

decodes it to find the operation that is requested and sends a job

associated with the operation to the hardware layer. Once the job

completes executing, the job is returned to the swService so that

the service context associated with the job can continue with the

execution. Since multiple swServices can be associated with the

same port, the swService receiving the completed job checks

whether the job originated from itself. If so, the swService checks

the service context associated with the job, creates a message and

sends it to hardware layer.

4.1.1.2 Broker, Publisher, and Subscriber
The swService provides a generic skeletal support to build the

fundamental SOA building blocks. The specifications for the

generic Broker, Publisher and Subscriber are defined by

extending the swService in the context of the message interaction

each model supports and the resultant message exchanges (see

Figure 3). In SOA, the message interactions among Broker,

Publisher and Subscriber define the dynamics of the system. For

example, a broker’s response to a service look up request message

from a subscriber is to perform a lookup operation on the service

repository and return the relevant information to the subscriber.

Similarly a publisher’s response to the subscriber’s service

request message is to perform the service using the operation

associated with service endpoint. Based on the SOA principles,

the subscriber’s interaction with publisher needs to be preceded

by the subscriber to broker interaction. This way the SOA-

compliant service interaction of SOAD is ensured in SOC-DEVS

by capturing the message interactions. A message contains the

node address and port value (e.g., (“swService1”, 6880)) to

exactly define the source and destination of the message. The

service invocation is a message exchange between a publisher and

a subscriber. The service invocation message invokes a service

endpoint in the publisher and the associated operation(s) may be

executed multiple times based on requested duration and return

messages may be sent for each operation execution.

Similar to DOC, the quantum concept can be used in SOC to

model aggregate level system behavior. For example, if a

subscriber requests a large number of service request to publishers

for multiple endpoints, a probability can be assigned to the

endpoints and a random endpoint can be executed without exactly

specifying in the service invocation message. However, current

implementation does not support such capability.

4.1.2 Hardware Layer
The hardware layer consists of abstraction of single hardware as

well as networked hardware. The processor represents single

hardware on which software services can be executed. The other

abstraction is the multiple processors connected via network

switches and links. The interconnected processors with the

network switches and links allow the modeler to account for

network configuration and topology typical in a Service-Based

Software System.

ViewableAtomic

Publisher

EndPoints : ArrayList<Pair>

IHardwareLayer

sendJobToCPU(aJob : Job) : void

receiveJobFromCPU(aJob : Job) : void

sendMsgToTransportUnit(Msg : Message) : void

receiveMsgFromTransportUnit(Msg : Message) : void

IPublisher

publishService(wsdl : ServiceInfoMessage) : Boolean

performService(serviceID : Integer) : Boolean

Subscriber

Duration : Double

ISubscriber

lookupService() : void

requestService() : void

consumeService(soap : ServiceCallMessage) : void

Broker

UDDI : ArrayList <EndPoint>

IBroker

registerService(wsdl : ServiceInfoMessage) : void

registryLookUp(soap : ServiceLookupMessage) : void

Operation

cpuLoad : Double

memLoad : Double

setCpuLoad(cpuLoad : Double) : void

setMemLoad(memLoad : Double) : void

getMemLoad() : Double

getCpuLoad() : Double

ServiceContext

contextID : Long

status : String

operationID : Integer

iMessage : Message

getContextID() : Integer

getStatus() : String

getMessage() : Message

swService

status : String

ServiceName : String

ServiceDescription : String

OperationLIst : ArrayList <Operation>

serviceContext : ArrayList<ServiceContext>

sendJobQueue : Queue

sendMsgQueue : Queue

doOperation(scIndex : Integer) : Boolean

decodeMsg(Msg : Message) : Boolean

1..* 11..* 1

0..*

1

0..*

1

Figure 3: swService, broker, publisher, and subscriber

simulation model components

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

4.1.2.1 Processor
The processor model is capable of performing computational

work for software services and it enables these software services

to interact via messages through the hardware layer. The

processor is developed as a DEVS coupled model consisting of

central processing unit (CPU), transport unit and network card

[9]. Each of the models is developed as DEVS atomic model.

The CPU is specified as a DEVS atomic model with one input

port, one output port, and two parameters (i.e., CPU speed, and

memory size). The “processor.inJobs” input port accepts requests

from software service to execute jobs. The competed jobs are

emitted via the “processor.outJobs”. The CPU speed parameter

determines how quickly data processing operations are executed

and the memory size determines the number of jobs that can be

loaded without using swap memory. The CPU speed and memory

size constraints software services in their competition for CPU

time and memory resources as well as the rate at which jobs from

software services are processed. If the available memory is

insufficient for an incoming job, the job is put into a waiting

queue. Once memory becomes available, the job is put into the

active queue with a swap time penalty. The model of CPU is

different from DEVS/DOC where software layer decides when to

swap in/out and instructs the CPU to load into disk and load into

memory. Our approach allows software layer to be more

concerned with service level behavior. Behavior appropriate for

OS (e.g., FIFO scheduling algorithm) is included in the CPU. The

CPU can also be specified to support other kinds of scheduling

algorithms without any change to the software service.

The transport unit provides message I/O including message

segmentation into packets and reassembly of message from

packets. A message contains data abstractions for the software

layer and packets are data abstractions for the network layer.

Messages are transported to the software layer or fragmented into

packets to the network card based on the message to software

layer mapping. Outgoing messages for the network card are

fragmented before sending and incoming packets from the

network card are queued for reassembly and then send to the

software layer. The transport unit at a destination node receives

and collects packets. When all packets for a message are received,

the destination transport unit delivers the message to the

destination software service. It must be noted that the transport

unit does not account for complex transmission control rather it

provides basic transport capability like packetization (i.e., data

size) overhead, and end-to-end communication with message to

software layer mapping. In contrast to DEVS/DOC, the transport

layer is extended to support node address and logical port

embedded in messages so that source and destination can be

exactly identified. The network card provides network I/O for

incoming and outgoing packets. The network I/O is also buffered

(i.e., fragments are queued) to prevent packet loss during packet

transmission.

4.1.2.2 Link
Link is the abstraction for physical medium used to interconnect

networks. Use of link is only suitable when the modeler is

interested in detail link layer behavior (e.g., propagation delay,

frame collisions). For SOC-DEVS, we model link with an input

and output queue that can transmit packet fragments to/from

network card (also network switch) at a specified speed (e.g., 100

Mbps). Unlike DEVS/DOC, the link model does not have an error

coefficient to emulate physical level noise.

4.1.2.3 Network Switch
Network switch is developed as DEVS atomic model. It is used to

route packets among more processors. The network switch queues

incoming packets and puts them in the outgoing queue after

processing. The bandwidth of the outgoing links and the queue

length are two important parameters that can be used to configure

various packet loss scenarios. The packet processing is done after

an address lookup (i.e., input link to output link mapping) in the

routing table. Packet address information is used to make

switching decisions to send a packet to a specific output link as

necessary. Unlike in real network switch where the address

mapping is done using routing algorithm that automatically

updates routing table [20], the modeler needs to specify and

initialize static address lookup tables in network switches to

represent a network topology under consideration.

4.1.3 Service System Mapping
The Service System Mapping (SSM) provides the assignment of

software services to processors. The flexible mapping in SSM

allows a modeler to assign a software service to processor with

different configurations. From implementation perspective, it

couples the “swService.outMsg” port of each software service

component to the “processor.inMsg” port of the processor.

Similar couplings are made for “swService.outJob” to

“processor.inJobs”. It also couples the “processor.outMsgs” port

of the processor to the “swService.inMsg” port for each software

service component. Similar couplings are made, as well, for

“processor.outJobs” to “swService.inJob” (see Figure 4). Jobs

from the service are sent to processor and the completed jobs are

returned. The messages are sent to the transport unit and

disseminated to the destination processor. Also incoming

messages are delivered to the software services. As a result, the

couplings facilitate the interactions during simulation. The

mapping from software to hardware layer is applicable for atomic

services and as well as composite services as the interface design

is applicable for a generic swService interaction (see the

IHardware Layer component in Figure 3).

Figure 4: System Service Mapping

The behavior and performance of a SBS is dependent on both the

software service and the hardware layer. Dynamic behavior is

specified in the software service by computational load and

service interactions. By mapping the software services onto

processors, the dynamics of the software service are constrained

by the capabilities and topology of the hardware layer. As the

software services compete for processor resources in terms of

memory to load and CPU cycles to execute, their dynamics drive

the performance of the processor which in turn also determines

inJob

outJob

outMsg

 swService1

 swService3 Processor

inJobs

outJobs

outMsgs

inMsg

inMsgs

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

the performance of the software service to software service

interaction which in turn also drive the dynamics of the network

performance and hence the QoS of the SBS. In single hardware

configuration (see Figure 5a), services get mapped to a single

processor. In networked hardware configuration (see Figure 5b),

services get mapped to multiple processors interconnected by

network switches or links.

Figure 5a: Single Hardware

Figure 5b: Networked Hardware

5. Simulation Example

5.1 Voice Communication System
Proliferation of VoIP and digital music makes audio data

transmission a major contributor to internet traffic. Based on end

user preference and policies of service publishers, real time audio

traffic may require minimum QoS to be maintained under various

network traffic scenarios. For the case study, we consider an end-

to-end Voice Communication System (VCS) capable of streaming

audio data to the subscribers. The VCS publishes various quality

audio data specified by sampling rates (e.g., ranging from 44.1 to

220.5 KHz) and the interested subscribers can subscribe to the

channels with certain QoS constraints on the data quality [18].

The higher sampling rates produce higher quality audio data as it

encodes more audio information per second. For example,

sampling rate of 220.5 KHz will produce superior quality audio

data w.r.t. 44.1 KHz sampling rate. The VCS under consideration

supports a 2-channel (i.e., stereo) audio data that can be sampled

at any of the following rates – 44.1, 88.2, 136.4, 176.4, 220.5

KHz. The subscribers request audio data stream for a specified

amount of time over the network and expect the VCS to ensure

QoS. The subscriber requests are processed by the VCS and it

streams audio data for the specified duration. The VCS can

support multiple subscribers simultaneously such that each

subscriber may request different quality audio data. The

throughput provides a measure of the VCS performance. In

general (i.e., under normal operating conditions), the VCS

throughput is proportional to the number of audio streams being

delivered. The VCS also supports secured voice communication

by encrypting sampled voice data. If the subscriber requests

encrypted data, the VCS encrypt sampled data with 256 key DES

[20] algorithm prior to sending to the subscriber.

5.2 VCS Simulation using SOC-DEVS
To exemplify the SOC-DEVS approach, the above Voice

Communication System (VCS) is modeled. The real VCS is

implemented in C# .NET. The VCS represents a number of

subscribers subscribing to a voice publisher. A model of this

system is simulated. The resultant throughput behavior is

compared to similar scenario (i.e. testbed setup with same

configuration) in the real VCS. The effect of resource fluctuation

on the QoS is also observed.

To illustrate the core capabilities of the SOC-DEVS approach, we

consider the scenario with a single VCS, a broker and five

subscribers in a networked hardware system consisting of two

processors connected via a network switch. The VCS publisher

and the broker are mapped on a single processor and the five

subscribers are assigned to the other processor. Each subscriber

requests DES encrypted voice data at 220.5 KHz sampling rate

for 2 channel stereo data encoded in 16 bits. A multiple subscriber

scenario is used with 1-5 subscribers active at a time in each

scenario. The dynamics of the system is captured by the average

voice publisher throughput over 60 simulated logical seconds. To

observe system behavior under heavy network load condition, a

background traffic generator is used at the network switch at 75

Mbps rate. For a comparative view, we also run the same

scenario in the real VCS system (see Table1) and collected the

voice throughput data, CPU utilization at the processor assigned

to the publisher. The results are discussed in Section 5.4.

Table 1: System configuration

Category Real System Simulation System

Processor (CPU,

Memory, Network

Card)

2.2 GHz,

 1024 MB,

100 Mbps

2.2 GHz,

1024MB,

100Mbps

Network Link

Bandwidth
100 Mbps 100Mbps

Subscriber Number 1-5 1-5, 10, 20

Data Collection

Duration

60 sec (wall

clock)
60 sec (logical clock)

5.3 Simulation Parameter Estimation
The real system uses DES [5] encryption algorithm. However, the

simulated VCS model does not implement the logic for DES

rather accounts for the effect on encryption on the CPU load as a

function of sampling rate. As a result, the simulation setup needs

CPU load factor approximation to account for the encryption

operation in the CPU. If data encryption is disabled, the CPU load

is negligible. Now, the real VCS samples voice data at

44.1í220.5KHz rate and generated data is encrypted by DES

algorithm. Then data generation rate, G = S*B*C bits/sec where,

S denotes the Sampling rate (KHz), C is the Channel number

(mono or stereo), B denotes bits per sample. Under nominal load

condition in the real system, the CPU utilization is primarily due

to the encryption load. Hence, if the encryption rate is E then

E=G. Now, CPU load factor, LF = (V*U)/E; where V= CPU

speed (MHz), U = CPU utilization (%). Replacing E=G we get the

final equation, LF = (V*U)/G. Also for a time duration T, the

average CPU load for encryption operation, L = LF*S*T. For

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

example, S=44.1 KHz, C=2, B=16 bits/sample, V=2200MHz,

U=5.7%, we get, LF =704 cycles/byte. Also the average load on

the CPU is, L = 125.334 Mcyles.

The processor parameters in the simulation are assigned based on

real system’s CPU configuration. The CPU speed for the

processor is set at 2.2 GHz and 1024MB of memory. For

processor configuration test, the CPU speed of 3.2 GHz and 1024

Mbyte of memory is used. The swap penalty is set for 0.1 logical

second. The network parameter is 100 Mbps which is the

bandwidth of I/O link at the network switches and network cards.

5.4 Discussion
In demonstrating the capability to capture dynamic characteristics

of Service-Based Software Systems in SOC-DEVS, we traced the

average throughput and CPU utilization of the real and simulated

VCS under similar scenarios. The objective is to observe the VCS

behavior and its QoS under varying load conditions by varying

the number of simultaneously active subscribers.

In Figure 6a, the simulated vs. real throughput of the VCS is

shown. In this scenario the data encryption is disabled. A linear

increase in VCS throughput with increasing number of

subscribers is observed. This is comparable to the real system,

where each active subscriber increases the streaming data

throughput under normal operating conditions. Approximately,

VCS Throughput (@220.5KHz)

0

10

20

30

40

1 2 3 4 5

Number of Subscribers

M
b

p
s Simulation

Real

Figure 6a: Average VCS throughput for Sampling rate

=220.5KHz and no background traffic

VCS Throughput (@220.5KHz, BGD Traffic=75Mbps)

0

5

10

15

20

25

30

1 2 3 4 5

Number of Subscribers

M
b

p
s Simulation

Real

Figure 6b: Average VCS throughput for Sampling

rate=220.5KHz and background traffic=75Mbps

35% of 100Mbs bandwidth is used by the active 5 subscribers. In

Figure 6b, the real vs. simulation throughput of the VCS is shown.

In this scenario, the network has background traffic to compete

with VCS traffic. A linear increase in VCS throughput with

increasing number of subscribers is observed up to 25Mbps for 4

subscribers. This is comparable to the real system, where each

active subscriber increases the streaming data throughput under

normal operating conditions (up to 25% of 100Mbs bandwidth is

used by the active 4 subscribers). Throughput is clamped at 25

Mbps (appx.) for 5 subscriber scenario due the background traffic

consuming 75% bandwidth at the network switch.

In the Figures 7a and 7b, the CPU utilization with the number of

active subscribers along with CPU saturation effect on the VCS

throughput is plotted. In this scenario, data encryption is enabled

and the CPU load reflects the data encryption load. With

increased CPU load and increasing subscribers, the software layer

reaches a saturation point such that the effective throughput is not

sufficient to use the available network bandwidth (note: no

background traffic is used to load the network switch). It is

evident that the CPU utilization increases with increasing client

number and the CPU becomes saturated which effects the VCS

throughput. Though the saturation differs with respect to the real

system where various background threads interact in a complex

manner, the trend line similarity verifies the effect of the system

dynamics clearly as required of SOC-DEVS as an early

architectural verification and validation tool for SBS.

CPU Utilization vs Subscriber Number

0

20

40

60

80

100

120

1 3 5 10 20

Number of Subscribers

P
e
rc

e
n

ta
g

e
 (

%
)

Simulated

Real

Figure 7a: CPU utilization and subscriber number

CPU Saturation Effect on Throughput

0

5

10

15

20

25

30

1 3 5 10 20

Number of Subscribers

M
b

p
s Simulated

Real

Figure 7b: CPU saturation effect on VCS throughput

In the Figure 8a, the processor configuration is modified by

changing the CPU speed [from (2.2 GHz, 1024 MB) to (3.2 GHz,

1024 MB)] to demonstrate how processor configuration can

improve the throughput behavior. For the same load scenario as in

Figure 7a the increase in CPU speed improves the software layer

execution speed with reduced CPU saturation and the effective

cap on the VCS throughput is increased. The improvement reason

is evident from Figure 8b, as the reduction in average CPU queue

length denotes improved execution rate and hence increased VCS

throughput.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

CPU Utilization vs Subscriber Number

0

20

40

60

80

100

120

1 3 5 10 20

Number of Subscribers

P
e
rc

e
n
ta

g
e
 (
%

)

Simulated(2.2GHz)

Simulated(3.2GHz)

Figure 8a: Average VCS throughput on different CPU speeds

CPU Queue Length vs Subscriber Number

0

5

10

15

20

1 3 5 10 20

Number of Subscribers

C
P
U

 Q
u
e
u
e
 L

e
n
g
th

Simulated(2.2GHz)

Simulated(3.2GHz)

Figure 8b: Average CPU queue length on different CPU speeds

6. Conclusion & Future Work
In this research, an extension to the DEVS-Suite simulator

supporting co-design concept is presented. It aids developing

simulation-based SBS architectural design and verification. The

SOC-DEVS simulation capability provides a systematic way of

designing Service-Based Software Systems by simulating the

synthesized software and hardware components where improved

observation capability is supported due to explicit software and

hardware interactions. The simulator is suitable for supporting a

generalized integrated design process as in [15] which is similar

to well established co-design based approaches (particularly in

embedded systems). However a co-design process for SBS design

and development is a new dimension yet to be explored. As part

of future research, we intend to further investigate the co-design

approach as a standard in SBS design and development process.

7. ACKNOWLEDGMENTS
This research is supported by NSF Grant #CCF-0725340. The real

Voice Communication System and the DES service are developed

by our collaborators Ho An, Dazhi Huang, and Dr. Stephen Yau.

8. REFERENCES
[1] Ambrogio, A. D', P. Bocciarelli, 2007, “A Model-Driven

Approach to Describe and Predict the Performance of

Composite Services”, Proceedings of the 6th International

Workshop on Software and Performance, 78-89, Buenos

Aires, Argentina.

[2] Bause, F., P. Buchholz, J. Kriege, S. Vastag, 2008, “A

Framework for Simulation Models of Service-Oriented

Architectures”, Lecture Notes in Computer Science:

Performance Evaluation: Metrics, Models and Benchmarks,

Vol. 5119, 208-227.

[3] Business Process Execution Language for WebServices

(BPEL), Version 1.1, http://www.ibm.com/developerworks/

library/specification/ws-bpel/, 2009.

[4] Butler, J.M., 1995, “Quantum Modeling of Distributed

Object Computing,” Simulation Digest, Vol. 24, No. 2, 20–

39.

[5] DES, Data Encryption Standard, http://www.itl.nist.gov/

fipspubs/fip46-2.htm, 2010.

[6] DEVS-Suite, http://devs-suitesim.sourceforge.net/, 2009.

[7] Erl, T., 2006, Service-Oriented Architecture Concepts,

Technology and Design, Prentice Hall.

[8] Gibbs, J.D., H.S. Sarjoughian, 2009, “Assessing the Impact

of a Modeling Tool and its Support for Verification and

Validation”, International Symposium on Performance

Evaluation of Computer and Telecommunication Systems,

73-80, Istanbul, Turkey.

[9] Hild, D.R., H.S. Sarjoughian, B.P. Zeigler, 2001, “DEVS-

DOC: A Modeling and Simulation Environment Enabling

Distributed Codesign”, IEEE SMC Transactions-Part A, Vol.

32, No. 1, 78-92.

[10] Kim, S., H.S. Sarjoughian, V. Elamvazhuthi, 2009, “DEVS-

Suite: A Simulator for Visual Experimentation and Behavior

Monitoring”, High Performance Computing & Simulation

Symposium, Proceedings of the Spring Simulation

Conference, San Diego, CA, ACM Press.

[11] ns-2, network simulator, http://www.isi.edu/nsnam/ns/, 2009.

[12] OMNeT++, http://www.omnetpp.org/, 2009.

[13] OPNET, http://www.opnet.com/, 2009.

[14] Sarjoughian, H.S., S. Kim, M. Ramaswamy, S.S. Yau, 2008,

“A Simulation Framework for Service-Oriented Computing

Systems”, Winter Simulation Conference., 845-853, Miami,

FL, USA.

[15] Schulz, S., J.W. Rozenblit, M. Mrva, K. Buchenrieder, 1998,

“Model-Based Codesign”, IEEE Computer, Vol. 32, No 8,

60-68.

[16] Tsai, W.T., Z. Cao, X. Wei, R. Paul, Q. Huang and X. Sun,

2007, “Modeling and Simulation in Service-Oriented

Software Development”, Simulation Transactions, Vol. 83,

No 1, 7-32.

[17] Wolf, Wayne H., 1994, “Hardware Software Co-design of

Embedded Systems”, Proceedings of the IEEE, Vol. 82, No.

7, 969-989.

[18] Yau, S.S., N. Ye, H.S. Sarjoughian, D. Huang, A. Roontiva,

M. Baydogan, and M.A. Muqsith, 2009, “A Performance-

Model-Oriented Approach to Developing, Adaptive Service-

based Software Systems”, IEEE Transactions on Service

Computing, In Press.

[19] Zeigler, B.P., H. Praehofer and T.G. Kim, 2000, Theory of

Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems, Second Edition,

Academic Press.

[20] Zengin, A., H.S. Sarjoughian, H. Ekiz, 2008, “Study of

Biologically-Inspired Network Systems: Mapping Colonies

to Large-scale Networks”, 20th European Simulation

Conference, 537-545, Amantea, Italy.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8735
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8735

