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ABSTRACT

In most existing simulators, the outputs of a simulation run
consist either in a simulation report generated at the end of
the run and summarizing the statistics of interest, or in a
(set of) trace file(s) containing raw data samples produced
and saved regularly during the run, for later post-processing.
In this paper, we address issues related to the management
of these data and their on-line processing, such as: (i) the
instrumentation code is mixed in the modeling code; (ii) the
amount of data to be stored may be enormous, and often,
a significant part of these data are useless while their col-
lect may consume a significant amount of the computing
resources; and (iii) it is difficult to have confidence in the
treatment applied to the data and then make comparisons
between studies since each user (model developer) builds its
own ad-hoc instrumentation and data processing. In this
paper, we propose OSIF, a new component-based instru-
mentation framework designed to solve the above mentioned
issues. OSIF is based on several mature software engineer-
ing techniques and frameworks, such as COSMOS, Fractal
and its ADL, and AOP.

Categories and Subject Descriptors

I.6.6 [Simulation And Modeling]: Simulation Output
Analysis; I.6.4 [Simulation And Modeling]: Model Vali-
dation And Analysis; D.2.13 [Software]: Reusable Software

General Terms

Design, Experimentation, Measurement, Verification

Keywords

Instrumentation, Observation, Context management, As-
pect Oriented Programming

1. INTRODUCTION
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The workflow used for studying a system using discrete-
event simulation is often described in the simulation litera-
ture, e.g. in [2, 12]. Despite a few minor differences, every
author seems to agree on the various major steps of this
workflow: define the objective(s) of the study, collect data
about the system to be simulated, build a model of the sys-
tem, implement an executable version of this model, ver-
ify correctness of the implementation, execute test runs to
validate the simulation model, build experiment plans, run
production runs to generate outputs, analyze data outputs,
and finally, produce reports.

In [18], Zeigler et al. further refine the methodology by
introducing the concept of Experimental Frame as follows:
“[An experimental frame] is a specification of the conditions
under which the system is observed or experimented with”.
Hence, their Experimental Frame not only describes the in-
strumentation and output analysis but also drives the simu-
lation. Thanks to this separation between the Experimental
Frame and the system model, it is possible to define many
Experimental Frames for the same system or apply the same
Experimental Frame to many systems. Therefore, we can
have different objectives while modeling the same system, or
have the same objective while modeling different systems.

In [7], Dalle and Mrabet already presented the OSA In-
strumentation Framework (OIF). OSA [6] stands for Open
Simulation Architecture. OIF is inspired from the concepts
of the DEVS Experimental Frame (EF) but it only focuses
on the instrumentation, validation and analysis concerns.
Indeed, in OSA, the instrumentation and scenario concerns
are separated into distinct layers which is not the case in the
DEVS EF. On the contrary, the DEVS EF specifies three
distinct entities (generator, transducer and acceptor), and
therefore establishes a clear separation between three con-
cerns, that are not distinguished in OSA. However, the con-
cept of layers found in OSA is orthogonal to that of entities
(or component, which are also supported by OSA), which
means that OSA could actually implement both separations
—i.e., in OSA, one can easily implement the generator, ac-
ceptor and transducer components in both the scenario and
instrumentation layers.

In this paper we present the Open Simulation Instrumen-
tation Framework (OSIF). OSIF is inspired from the OIF
project but it is not a part of the OSA project. In fact, one of
our motivation is the ability to plug OSIF on any simulator.
We use our experience in building the OSA architecture to
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build a new framework dedicated to the instrumentation of
simulations and to the processing of simulation data, based
on similar concepts: provide an open architecture, with clear
separation of concerns, and in the end, favor reuse of use-
ful components. OIF is a tool for OSA while OSIF aims at
being a generic instrumentation and data processing frame-
work that could be plugged onto any simulation code (in-
cluding OSA) written in a language supporting AOP (Java,
C/C++, Python. . . ). The simulation code does not need to
be available in source form since AOP can also be applied
on compiled code or at runtime.

Indeed, like in OIF, in OSIF we propose to separate the
modeling concern and the instrumentation concern using
AOP (bottom-half of the framework), and to do on-line
statistics computation and to transmit the data across the
network to their storage destination using COSMOS (top-
half of the framework). Moreover, it is possible to save the
simulation data in any format. For example, using the stan-
dard format of the OMNeT++ simulator, we are able to
reuse the Scave tool to post-process simulation data.

In the sequel of the paper, Section 2 presents our moti-
vations to build a generic open instrumentation framework
and how we plan to achieve our goals. Section 3 introduces
the case study used throughout the paper. Then, Section 4
presents the generic instrumentation framework illustrated
through a large-scale simulation case study. Section 5 com-
pares the contribution of this paper to related works. Fi-
nally, Section 6 concludes the paper and draws some per-
spectives.

2. MOTIVATIONS AND OBJECTIVES
Law presents in [12] a general workflow to build a valid and

credible simulation study. Figure 1 resumes Law’s workflow,
focusing only on tasks where instrumentation is needed. The
first four tasks of the Law’s workflow lead to a simulation
model. Then, the programmed model is validated: the simu-
lation model is instrumented and validation results are com-
pared with results from the real system. Next, more sim-
ulation experiments are designed, conducted and analyzed
accoording to the simulation objectives. The conclusions
drawn from the simulation results are finally presented in a
document.

In this paper the term simulation model is used to des-
ignate the source code that implements the behavior of the
model of the system under study and the term system model
is used to designate the conceptual model of the system un-
der study. In the following sections we further discuss the
four main reasons that motivate our work: the ability to
separate concerns (sec. 2.1), the ability to apply the same
validation process to real and simulated systems (sec. 2.2),
the ability to easily switch from live to post-mortem analysis
(sec. 2.3) and the need for composition in data processing
(sec. 2.4).

2.1 Separation of Concerns
To design the instrumentation of a simulation model by

following the workflow depicted in Fig. 1, most simulators
offer a simulation API for the declaration of observable data
within the simulation model. These common practices im-
ply that all the possible observations for a given simulation
model need to be decided (and hard coded) at the time the
simulation model is implemented. Hence, simulation model
developers may find it difficult to choose which data need

1- Formulate the Problem

2-  Collect Information/Data

    and Construct an

    Assumptions Document

3- Is the Assumptions 

    Document Valid?

4-  Program the Model

Is the Programmed

Model Valid?

Design,  Conduct,  and

Analy ze  E xperiments

Document and Present

the Simulation Results

No

Yes

Figure 1: Simulation workflow focusing on instru-

mentations tasks.

to be instrumented while experimenters may be reluctant to
run simulations that generate large amount of useless data.
Moreover, if the resulting simulation model does not con-
tain the required instrumentation for an analysis, a software
evolution is necessary to modify the simulation model. This
raises an issue about the credibility of the conclusions drawn
from the comparison of simulation results obtained using dif-
ferent simulation models.

From this perspective, the separation of concerns between
model and instrumentations provides many benefits. For
example, keeping the simulation model clear from any in-
strumentation allows to reuse it in every kind of studies
and makes it more understandable. Moreover, instrument-
ing only the data needed allows to run simulations faster. On
large-scale simulations involving many experts, each expert
could work on his/her part. Indeed, it is important for large-
scale and distributed simulations to allow instrumentation
experts working independently from the simulation model-
ing expert. This leads to remove dependences between tasks
of Box 1 and the other boxes in Figure 1.

We propose to use the Aspect-Oriented Programming
(AOP) paradigm [11] because it allows such a separation of
the modeling and instrumentation concerns, each of which
being weaved on demand, possibly at the last minute, before
an actual simulation run execution is started. Moreover, we
separate the collection of raw instrumentation data (into col-
lectors) from the processing of higher-level instrumentation
results (into processors with generic operators). This second
separation of concerns is one of the key concepts proposed
by the COSMOS framework [5, 16].
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2.2 From Real to Virtual System
Before carrying out a simulation study, it is necessary to

follow a validation process as mentioned in the second box
of Figure 1. The validation process can help validate a sim-
ulation model by comparing simulation results with exper-
iments on a real system. This requires to use firstly the
same inputs and secondly the same statistical analysis on
the outputs. The best approach would be to use the same
processing workflow on both the simulation and real data.
Indeed, a process to validate results that could be applied
both on a real system and on a simulation model gives more
credibility to the simulation model, and allows extrapolating
the findings of a simulation on a real system.

The COSMOS framework has been created to process con-
text information of real systems during their executions. Us-
ing also COSMOS as the data processing framework for sim-
ulation purposes allows using it both when experimenting
the real system and simulating the virtual system.

2.3 From Live to Post-mortem analysis
The third box of Figure 1 is about the design, the run-

ning and the analysis of simulation experiments. Running a
simulation may result in a huge amount of simulation data
and may then consume a lot of disk space. Moreover, gath-
ering data in a distributed simulation is not trivial and may
also consume a lot of network bandwidth. After having run
experiments, when all the simulation data are collected, a
validation phase is necessary before they are analyzed. In-
deed, a simulation run may produce results that could not
be analyzed for instance because the confidence interval is
too large or because the duration of the simulation consid-
ering the simulation time is too narrow. If so, it is necessary
to loop to the third box in order to obtain results that are
analyzable. Afterwards, simulation results are analyzed and
conclusions can be drawn (fourth box of figure 1).

In order to avoid memory, disk, and bandwidth consump-
tion issues, and in order to ease and then optimize the val-
idation and analysis processes, we propose to execute these
three steps (data gathering, validation of simulation results,
and analysis) together during the simulation run (called live
analysis). Therefore, data gathering may not need to store
data on disks but send them instead directly to the vali-
dation and analysis processors. The validation process dy-
namically controls the analysis process in order to produce
results easily understandable. As a consequence, the data
flow can be optimized. Moreover, it is easier to replay a
study that integrates its data processing. Indeed, since sta-
tistical analysis are done in live during the simulation run,
no third-party tool is required. Nevertheless, it is some-
times necessary to preserve raw data (e.g. for debugging
purposes). Thus, logging capabilities for post analysis is
also a requirement.

COSMOS provides the developer with pre-defined generic
operators such as averagers or additioners. Each operator is
included into a unit of control called a processor or a node.
A node can be finely tuned to be active or passive, block-
ing or not in observation or in notification, etc. Therefore,
COSMOS allows us to easily build a live analysis on in-
strumented data while optimizing data flow. Moreover, we
will show in the next sections how we can easily complement
chains of processors that optimize data flows for live analysis
with chains of nodes that log raw data for post analysis.

2.4 Data Processing Composition
Another interesting feature is the possibility to write sim-

ple instrumentation and data processing (validation of sim-
ulation results and analysis) and combine them into more
complex ones. Benefits are valuable since writing many sim-
ple instrumentation and data processing is easier than writ-
ing a complex one. Considering reuse, it is more likely to
reuse several times simple and generic data processing rather
than reusing a complex dedicated one. Another case of reuse
is the design of a new data processing from an already ex-
isting one from a catalogue. Reusing and composing data
processing is also an asset when comparing studies sharing
the same data processing. In that case, it is easier to com-
pare and trust the results because validation of simulation
results and results analysis are the same among studies. Of
course, since instrumentation makes the bridge between sim-
ulation model and data processing, instrumentation reuse is
possible as long as the code onto which instrumentation is
applied is similar with the one for which the instrumenta-
tion was initially designed for. On the other hand, the data
processing is independent and can be reused regardless the
language and the simulation model. Thus, at worst it will
be necessary to create/adapt the instrumentation code, but
we can always reuse the data processing.

3. CASE STUDY
As a proof of concept, we have decided to use OSIF to

instrument and to process data on a complex simulation.
We choose the simulation of a peer-to-peer system1 because
it shows the limits of simple instrumentation frameworks.

The goal of the simulation case study is to simulate
a safe backup storage system on a peer-to-peer network.
The model involves N peers and one super-peer connected
through a network. The super-peer has a global vision of the
system like in the Edonkey2000 protocol. Each peer could
establish communication with any other peers (N ∗ (N − 1)
links). The scenario involves users. Each user is connected
to one peer and can push data into the P2P storage sys-
tem. Data are split into blocks of the same size, each block
is fragmented into s fragments. From these s fragments, r

redundancy fragments are computed. The (s+ r) fragments
of the data block are distributed on different peers. Any
combination of s fragments allows to rebuild the raw data.
Therefore, the system tolerates r failures. Peers are free to
leave the system at any time. Peers who disappear are con-
sidered dead and reappear empty after a certain period. In
that case, a reconstruction mechanism of lost fragments is
introduced to ensure data durability.

From this model, several instrumentations can be con-
ducted. For instance, to validate results of the simulation
model, we want to check that the peer’s lifetime corresponds
to the values that have been specified, to check that the num-
ber of fragments corresponds to the number of blocks into
the system multiplied by (s + r), or to check that the re-
constructions only processes critical blocks. When the sim-
ulation model is validated, many studies can be conducted,
for instance for analyzing the incidence of peers’ lifetime, re-
dundancy level, topology of the network of peers, or blocks’
allocation on peers.

For the sake of simplicity, we will focus only on the in-
strumentation of the peers’ lifetime that illustrates issues

1http://www-sop.inria.fr/mascotte/Contrats/spreads
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about separation of concerns, optimization of instrumented
data flow, and design of complex data processing by com-
position. To prototype our solution, we have used the OSA
simulator.

4. OPEN SIMULATION INSTRUMENTA-

TION FRAMEWORK
In this section, we present the Open Simulation Instru-

mentation Framework (OSIF). We begin with a short intro-
duction to the principles of the COSMOS framework. Then,
we explain how to handle issues presented in Section 2 with
OSIF.

4.1 COSMOS
COSMOS (COntext entitieS coMpositiOn and Sharing)

[5, 16, 15] is a LGPL component-based framework for man-
aging context data in ubiquitous applications; it is based on
the Fractal component model [3, 4]. Context management
is (i) user and application centered to provide information
that can be easily processed, (ii) built from composed in-
stead of programmed entities, and (iii) efficient by minimiz-
ing the execution overhead. The originality of COSMOS is
to use a component-based approach for encapsulating fine-
grain context data, and to use an architecture description
language (ADL) for composing these context data compo-
nents. By this way, we foster the design, the composition,
the adaptation and the reuse of context management poli-
cies. In the context of OSIF, context data components be-
come instrumentation data components.

The COSMOS framework is architectured around the fol-
lowing three principles that are brought into play in OSIF:
the separation of data gathering from data processing, the
systematic use of software components, and the use of soft-
ware patterns for composing these components. The first
principle supports the clean separation between data gath-
ering that may depend upon the simulation framework
and data processing that is simulation framework agnos-
tic. The second principle, software components, fosters
reuse everywhere. Finally, the third principle promotes the
architecture-based approach “composing rather than pro-
gramming”. The COSMOS framework is implemented on
top of the Fractal component ecosystem with the message
oriented middleware (MOM) DREAM [14].

4.2 Separation of Concerns
In OSIF, the separation between simulation and instru-

mentation concerns is performed using the Aspect-Oriented
Programming (AOP) paradigm and the COSMOS’ concept
of the “collector”.

Aspect-Oriented Programming.
AOP [11] is a software engineering technique for modu-

larizing applications bringing many concerns into play. The
general idea is that, whatever the domain, large applica-
tions have to address different concerns such as data man-
agement, security, GUI, data integrity. Using only proce-
dural or object orientations, these different concerns cannot
always be cleanly separated from each other and, when ap-
plications evolve and become more complex, concerns end
up being intertwined, called the “spaghetti” code problem.
AOP promotes three principles. Firstly, functional or extra-
functional aspects of an application should be designed in-

dependently from an application core and so the application
design is easier to understand. Secondly, it is not easy to
modularize common-interest concerns used by several mod-
ules, like logging service. Those cross-cutting concerns can
be described using AOP cross-cutting expressions that en-
capsulate each concern in one place. Thirdly, AOP favors
inversion of control principle. Inversion of Control (IoC)
is a design pattern attempting to remove all dependencies
from the business code by putting them in a special place
where the goal is only to manage dependencies. Considering
a simple example of a lamp controlled by a switch, in ba-
sic object-oriented programming, the control of the lamp is
placed in the code of the switch. Using the inversion of con-
trol principle with AOP the control of the lamp is no longer
in the code of the switch but in a dedicated aspect that will
make the connection between the switch and lamp. This
results in a better separation of concerns and reusability.

Instrumentation  X

Instrumentation  X

Instrumentation  Y

Model source Model source

Instrumentation  X

Instrumentation  Y

OOP + AOPOOP
Aspect source

Aspect source

AOP 

W E AV ER

Figure 2: Separation of concerns using AOP.

Instrumentation is a cross-cutting concern because many
parts of the simulation model need to be introspected and
complemented with instrumentation concern. The left part
of Figure 2 illustrates how the instrumentation concern
pollutes the modeling code when using traditional Object-
Oriented Programming (OOP). The code is hard to read
and it is hard to figure out where the code of the model
is. The right part of Figure 2 illustrates how to avoid this
drawback by reorganizing the instrumentation concern into
separate source code files (aspects). The arrow represents
the action of the AOP weaver which is a tool that is re-
sponsible for binding the aspects with the modeling code on
demand (and possibly dynamically). This keeps the code
of the model concise and stripped from the instrumentation
code.

As an example, Listing 1 illustrates a Java class Peer
with two methods: boot() and halt(). Each method has
some modeling code and call the instrumentation framework
(crosscuting concern). The instrumentation code pollutes
the modeling code as illustrated on the left part of Figure 2.
Indeed, Java class Peer invoke method write(message) which
is part of the instrumentation framework represented here
by the Sampler object. Sampler is connected to the simula-
tor engine and writes on disk the simulation time and the
message.
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Listing 1: Peer Java class without separation of con-

cerns.
public class Peer{

Sampler sampler ;
String peername ;

public void boot ( )
{

[ . . . ] //modeling code snipped
sampler . write ( peername+” boot ”) ;

}

public void halt ( )
{

[ . . . ] //modeling code snipped
sampler . write ( peername+” ha l t ”) ;

}
}

Thanks to AOP, it is possible to separate modeling con-
cern from instrumentation concern. The aspect of Listing 2
written in AspectJ shows how to isolate the instrumentation
concern in a separate module as illustrated on the right part
of Figure 2. The aspect peer instrumentation calls the instru-
mentation framework right after the execution of methods
boot() and halt().

Therefore, Listing 3 illustrates the same modeling code
stripped from instrumentation concern.

Listing 2: AspectJ aspect to observe Peer class.
public aspect peer_instrumentation {

Sampler Peer . sampler ;

after ( Peer peer ) : execution (void Peer . boot ( ) )
&& this ( peer )

{
sampler . write ( peername+” boot ”) ;

}

after ( Peer peer ) : execution (void Peer . halt ( ) )
&& this ( peer )

{
sampler . write ( peername+” ha l t ”) ;

}
}

Since only the required instrumentation aspect is weaved
to the simulation model, the execution of the simulation
runs faster. Moreover, software evolutions of the simulation
model and the instrumentation are facilitated. Finally, data
processing can be developed independently by instrumenta-
tion experts and reused more easily.

Listing 3: Java class with separation of concerns.
public class Peer{

String name ;

public void boot ( )
{

[ . . . ] //modeling code snipped
}

public void halt ( )
{

[ . . . ] //modeling code snipped
}

}

COSMOS Collector.
The lower layer of the COSMOS framework defines the

notion of a data collector. In the context of ubiquitous ap-
plications, data collectors are software entities that provide

raw data from the environment. In M&S, the environment is
the simulated model under study. A data collector retrieves
instrumented data from a simulation and provides them to
the data processors. COSMOS collectors are generic and
the data structure to be pushed by the advice code of the
instrumentation aspect is an array of Object. Therefore,
COSMOS collectors and AOP instrumentation advices per-
form the junction between the simulation framework and
instrumented data processors of OSIF.

4.3 From Live to Post Analysis
We propose to reuse some concepts of COSMOS such as

the data processor and the data policy to analyze simulation
data in live but also to log the raw simulation data while
preserving optimization on data flow.

COSMOS processor.
We have seen that the lower layer of the COSMOS frame-

work defines the notion of data collector. The middle layer of
the COSMOS framework defines the notion of a data proces-
sor, named context processor in COSMOS. Data processors
filter and aggregate raw data coming from data collectors.
The role of a data processor is to compute some high-level
numerical or discrete data from raw numerical data out-
putted either by data collectors or other data processors.
Therefore, data processors are organized into hierarchies
with the possibility of sharing. A data processor or node
of this graph can be parameterized to be passive or active,
blocking or not in observation or in notification.

• Passive Vs. active. A passive node obtains sim-
ulation data upon demand; a passive node must be
invoked explicitly by another node. An active node
is associated to a thread and initiate the gathering
and/or the treatment of simulation data. The thread
may be dedicated to the node or be retrieved from a
pool. A typical example of an active node is the cen-
tralization of several types of simulation data, the pe-
riodic computation of a higher-level simulation data,
and the provision of the latter information to upper
nodes, then isolating a part of a hierarchy from too
frequent and numerous calls.

• Observation Vs. notification. The simulation re-
ports containing simulation data are encapsulated into
messages that circulate from the leave nodes to the
root nodes of the hierarchies. When the circulation is
initiated at the request of parent nodes or client appli-
cations, it is an observation. In the other case, this is
a notification.

• Blocking or not. During an observation or a notifi-
cation, a node that treats the request can be blocking
or not. During an observation, a non-blocking node
begins by requesting a new observation report from
each of its child nodes, and then updates its simula-
tion data before replying to the request of the parent
node or the client application. During a notification,
a non-blocking node computes a new observation re-
port with the new simulation data just being notified,
and then notifies the parent node or the client applica-
tion. In the case of a blocking node, an observed node
provides the most up-to-date simulation data that it
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possesses without requesting child nodes, and a noti-
fied node updates its state without notifying parent
nodes.

Figure 3 illustrates how to use COSMOS data processors
to collect and compute outputs in a distributed simulation.
A distributed simulation involving three peers is executed on
two computers. This processing produces as output the min,
max, and average lifetime of peers. Each peer is connected
to a data collector. Data collectors receive simulation data
every time the state of the attached peer changes. Then,
collectors push the simulation data to the data processors
in which they are enclosed. Data processors O3, O5, and
O6 compute the lifetime of peers, that is the difference be-
tween the starting up and the shutting down, and send these
simulation data to processors O2 and O4. Those processors
gather these simulation data from all the peers of the same
host and compute the min, max, sum of the lifetimes of peers
and the total number of times lifetime has been calculated.
Since the latter processors are blocking in notification, the
flow of data is stopped. In conclusion, data processors O2 or
O4 are updated every time a peer lifetime is computed and
gather simulation data collected on every peer executing in
a host.

Data processor O1 is responsible for gathering simulation
data at the global level, that is for all the peers of all the
hosts. This node is active in observation but blocking, thus
meaning that it periodically requests simulation data from
data processors 02 and 04.

C2 C3C1

P1

O3 O5 O6

O2 O4

O1

b lo ck  noti f i cation

b lo ck  o bser vat ion

a cti ve  noti f ier

a c t i v e  o bser ver

Computer  1 Computer  2

D i s t r i b u ted  S imulat ion

O u t p u t

Peer1 Peer2 Peer3

Figure 3: Graphical representations of data process-

ing in a distributed simulation.

Therefore, considering this live analysis, the disk overhead
to store simulation data can be minimum if we store only
the final result provided by node O1. Concerning the band-
width overhead, it depends upon the number of requests
performed by node O1 and upon the amount of simulation

data transferred from node O4 to O1. Considering the pre-
vious simulation involving N peers (N ′ is the number of
peers on Computer2), each peer being started up and shut
down T times during the simulation. A basic instrumen-
tation would have written N ∗ T times the peer name, the
action (boot or halt) and the simulation time on disk. The
same instrumentation would have transferred N

′
∗ T times

the peer name, the action (boot or halt) and the simula-
tion time through the network. For large-scale simulations,
the amounts of data will be huge. Using OSIF, we can eas-
ily build a live analysis instrumentation that directly writes
only the min, max, and average lifetimes of peers on disk,
and transfers the min, max, and sum of these lifetimes and
the total number samples used for the computation through
the network. Moreover, live analysis has its own separate
thread, running asynchronously, which proficiently benefits
from the parallel computing capabilities of modern multicore
architectures. For example, running a local simulation in-
volving 1000 peers during 5 years takes 23 seconds to instan-
tiate and 70 seconds to execute with live analysis of peers
lifetime. With basic logging of the raw simulation data the
same simulation takes 14 seconds to instantiate and 70 sec-
onds to execute. The difference represents the overload due
to the instantiation of COSMOS nodes and collectors.

COSMOS instrumentation policy.
The upper layer of the COSMOS framework defines the

notion of a context policy that translated into the concept of
instrumentation policy in OSIF. COSMOS instrumentation
policy abstracts simulation data provided to the user/appli-
cation, that is instrumentation policies are the“entry points”
to the graph of processing nodes. We use instrumentation
policies to translate instrumentation data provided by COS-
MOS processors into an understandable format: textual,
graphical, or third-party tools compliant.

Let’s take the example of Figure 3. The goal now is to log
simulation data in order to have the complete peers’ connec-
tion and disconnection history. The node O1 aggregates and
merges simulation data from nodes O2 and O4 and pushes
them to the instrumentation policy P1. The instrumentation
policy may then decide the output format, for instance for
being able to process them using OMNeT++ analysis tool
Scave [17]. Scave helps the user to process and visualize
simulation results saved into vector and scalar files. So, the
instrumentation policy P1 translates simulation data out-
putted by node O1 into vector or scalar files understandable
by Scave. Thus, we can later post-analyze our data using
Scave.

We have seen how using COSMOS data processors and
policies can help in designing a live analysis or a logging
system. Logging raw data is necessary in certain cases such
as debugging but live analysis allows for disk usage and net-
work bandwidth usage optimizations. The CPU overhead
may be significant on large instrumentations with lots of
computations: in the worst case, it will be the same as the
computation needed by a post analyze. Thus, OSIF allows
designing instrumentations taking into account the topology
of the simulation and optimizing the data flow, but it can
also produce results consistent with existing tools in order
to compare simulation studies’ results.

4.4 Composition of instrumentations
In this section, we show how to use the architecture de-
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scription language of Fractal (Fractal ADL) for shar-
ing, reusing and mixing COSMOS-based instrumentation
processing: collectors, data processors, and instrumentation
policies.

Component-based Architecture.
Being based on COSMOS, OSIF benefits from the three

principles of separation of concerns, isolation and compos-
ability of the component-based software engineering ap-
proach: in COSMOS, every data collector and every data
processor is a software component. By connecting these
components, we define assemblies that gather all the in-
formation needed to implement a specific instrumentation
policy. COSMOS is implemented with the Fractal com-
ponent model and instrumentation policies are specified us-
ing Fractal ADL. Designers of intrumentation policies are
able to describe complex hierarchies of data processors by
taking advantage of the two main characteristics of Frac-

tal: hierarchical component model with sharing.

membrane

sub−component

content

binding

external

interface component
shared

Figure 4: Graphical notations of the Fractal compo-

nent model.

As depicted in Figure 4, a component is a software entity
that provides and requires services. The contracts of these
services are specified by interfaces. Fractal distinguishes
server interfaces that provide services and client interfaces
that specify the required services. A component encapsu-
lates a content. It is then possible to define hierarchies
of components offering views at different levels of granu-
larity. Hierarchies are not solely trees since sub-components
are shared by several composites. The notion of sharing of
components naturally expresses the sharing of system re-
sources (memory, threads, etc.). Components are assem-
bled with bindings, which represent a communication path
from a client interface to a (conformant) server interface.
Moreover, compositions of components are described with
an Architecture Description Language (ADL). Without lack
of generality, in the sequel, we use the graphical notations of
the Fractal component model, as illustrated in Figure 4,
and the language Fractal ADL [13] that is based on XML.

Architecture Description Language.
Fractal ADL is a XML language to describe the archi-

tecture of a Fractal application: components’ topology (or
hierarchy), relationship between client interfaces and server
interfaces, name and initial value of components’ attributes.
A Fractal ADL definition can be divided into several sub-
definitions placed into several files. Thus, Fractal ADL

allows the separation of concerns because application defi-
nition can be split into multiple files. Moreover, Fractal

ADL supports a mechanism to ease the extension and re-
definition through inheritance. Extension and redefinition
allow the reuse (of a part or the whole) of existing instru-
mentation policies written using Fractal ADL. When a

definition B extends a definition A, B possesses all the ele-
ments defined in definition A, like an internal copying mech-
anism. Moreover, if definition B defines an element that
has the same name in definition A, B’s definition overrides
A’s one. The extension mechanism enables us to create a
new definition by composition of existing definitions. To
manage Fractal components at a conceptual level, it is pos-
sible to use a graphical user interface integrated in Eclipse.
Listing 4 illustrates a Fractal ADL definition of the live
analysis of a peer. This definition takes one argument and
is composed of four Fractal components: a collector and
a data processor parameterized with the name of the peer
used in argument and allowing to compute the lifetime of a
peer, a data processor computing the average lifetime, and
an instrumentation policy presenting the result.

Listing 4: Fractal ADL definition of a live analysis

of a peer lifetime.
<def in it ion name=”PeerL i f e t ime ” arguments=”

peername ”>
<component name=”OutputPol icy ”

[ . . . ] <!−− ADL code snipped −−>

<component name=”AverageLi fet ime ”
[ . . . ] <!−− ADL code snipped −−>

<component name=”Li fe t imeOf$ {peername} ”
[ . . . ] <!−− ADL code snipped −−>

<component name=”Co l l e c t orO f$ {peername} ”
[ . . . ] <!−− ADL code snipped −−>

</component>

</component>

</component>

</component>

</definition>

Figure 5 illustrates the multiple extension capability of
Fractal ADL. At the top, we have a Fractal ADL def-
inition extending the Fractal ADL definition of Listing 4
with two different parameters. At the bottom, we have the
resulting instrumentation policy. We can see that the data
processors LifetimeOfPeer1 and LifetimeOfPeer2 are both en-
capsulating the data processor AverageLifetime. This can
be done thanks to the inheritance mechanism of Fractal

ADL. From this example, it’s easy to imagine and design
more complex compositions such as composition of several
live analysis (lifetime, bandwidth. . . ) and logging for later
post-analysis of the simulation data.

The extension capabilities of Fractal ADL allow, as il-
lustrated in the example defined in figure 5, to merge com-
ponents. The merging process allows to update and extend
already defined component. Therefore, it is possible to reuse
and extend existing data processing and configure it. This
can range from a simple update of parameters until the re-
placement or addition of management contexts.

There are several benefits to using the extension and the
redefinition mechanisms of Fractal ADL. Firstly, writing
many simple instrumentations and data processings is easier
for maintenance than writing a complex one from scratch.
Secondly, there is more chance to reuse generic simple in-
strumentations and data processings rather than a complex
dedicated one. Thirdly, it is easier to compare and have con-
fidence in results when instrumentation and data processing
are the same among studies. In order to do this, since a
simulation model is the composition of existing models and
new models, the corresponding instrumentation may also be
the composition of existing instrumentations with existing
data processors and new data processors. Therefore, each
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<def in it ion name=”Composition ”
extends=PeerLifetime ( peer1 ) ,

PeerLifetime ( peer2 )>
</definition>

CollectorOfpeer1 CollectorOfpeer 2

Li fet imeOfpeer1 Lifet imeOfpeer 2

Avera geLifetime

OutputPolicy

Figure 5: Fractal ADL composition mechanism and

the resulting COSMOS design.

simulation model should be accompanied by one or more
instrumentations and data processors that could be reused
—i.e., at least the instrumentation and the data processors
used to validate the simulation model.

4.5 From Real to Virtual System
In OSIF, we use COSMOS to process simulation data. As

mentioned in Section 2, it would be appropriate to compare
simulation results with the results of an experiment. COS-
MOS has originally been developed to manage context data
in ubiquitous applications [3, 4, 15]2. So, OSIF can naturally
be used for instrumenting and processing output for both
real applications and simulations of real applications. As
a consequence, the validation of simulation models is much
more effective and less buggy, and the level of confidence in
the validation process increases.

5. RELATED WORKS
Although some authors carefully describe the implemen-

tation details of a simulator and classical discrete-event sim-
ulation algorithms (e.g. Banks et al. in [2, 1], or Fujimoto
in [8]), none do actually describe and discuss the issues re-
lated to the management of the data produced during a sim-
ulation run: most of them simply assume that statistics are
computed during the simulation and either saved on-the-fly
for later processing, or directly used to produce a final ex-
ecution report at the end of each run. Some authors, like
Andradóttir [1], propose techniques to reduce the computa-
tional complexity of this dynamic observation and on-line
statistics computation.

Others, like Himmelspach et al. [10], while still mainly
focusing on experiment planning issues, acknowledge that
handling the huge amount of data produced by a simula-
tion, especially in a distributed environment, is a complex
task. For this purpose, they propose a simple architecture

2See also the following projects: Cappucino on mobile com-
merce (http://www.cappucino.fr/), and Totem on perva-
sive gaming.

in which intrumenters instantiate observers, that, in turn,
may use mediators to handle the transmission during the
simulation of the data across the network, to their storage
destination. In JamesII, the model must notify observers
that variables have changed. This prevents reuse without
source modification of model that was not originally made
for JamesII.

In [9], Gulyas and Kozsik address the issue of separation of
concerns in simulation using AOP. But their application iof
the AOP paradigm is limited to the gathering of simulation
data. They do not consider using AOP for instrumentation
and analysis.

In [17], Varga and Hornig address the issue of results’
analysis. They propose Scave, a tool to post-analyze simu-
lation data. Scave can apply a batch of analysis to several
simulation data files. This favors the comparison between
similar studies by using the same analysis process on several
simulation outputs but does not raise questions about data
gathering.

6. CONCLUSIONS AND PERSPECTIVES
OSIF is a base for creating, analysing and validating in-

strumentations. OSIF is based on several mature software
engineering techniques and frameworks, such as COSMOS,
Fractal and its ADL, and AOP. Benefits of OSIF are mul-
tiple: (i) OSIF allows a complete separation of concerns
between modeling, instrumentation and data processing;
(ii) OSIF favors validation results by allowing the sharing
of analysis between the real system and the simulated sys-
tem; (iii) OSIF allows to manage and optimize the flow of
simulation data whether we want to live analyze or post an-
alyze simulation data; and (iv) OSIF allows to design and
compose complex instrumentations and data processings in
a simple way. OSIF has been successfully tested on the
OSA simulator through the large-scale simulation presented
in Section 3. OSIF has been designed so that there are no
connection between the simulator and instrumentation and
data processing. Thus, OSIF can be used and reused on any
simulator. Since AOP is available for most programming
languages, OSIF could be used regardless the simulator and
the language used. COSMOS collectors are written in Java,
but there are already several ways to integrate non-Java lan-
guages, for example, using JNI. The next step to the success
is to unite a community around OSIF to build and share
COSMOS components in order to enrich the experience of
the end-users.

To enrich the OSIF experience, we are planning future
works. The first one is derived from the fact that extension
and redefinition mechanisms of Fractal ADL can lead to
unintended results because of side effects being difficult to
predict. A tool for describing, analyzing and verifying data
processing as one currently developed by COSMOS (COS-
MOS DSL) will retain the advantages while avoiding disad-
vantages. Then, a medium term project is to build on top of
the COSMOS instrumentation policy a tool to drive simula-
tion experiments. We plan to bring into play the principles
that Himmelspach explained in [10]. Indeed, COSMOS of-
fers all we need to drive simulation such as controlling the
number of runs necessary to obtain the expected confidence
intervals or automatically cut the beginning of a simulation
or refining inputs to obtain the best inputs combination for
a study.
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