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ABSTRACT 

Network simulation represents a broadly methodology for 

communication network performance analysis. As a system 

modelling approach, simulation allows to model arbitrary 

scenarios that many times are very difficult to implement in real 

platforms, or when it is intended to evaluate some alternative 

solutions without necessity of implementing all of them.  In this 

paper, we present a modification of the NS-2 code for the 

RTP/RTCP standard protocols by adding the attributes specified 

in RFC 3550 that the native code doesn’t include or doesn’t 

follow strictly. Also, we have extended this code to include a 

multimedia group synchronization approach based on these 

protocols. This approach was already implemented and evaluated 

in a real WAN scenario with satisfactory results, but we needed to 

validate its performance in other more complex heterogeneous 

scenarios using simulation techniques. The simulation results 

have proved this approach as a suitable solution for multimedia 

applications which require group synchronization.  

Categories and Subject Descriptors 

C.2.2. [Computer-Communication Networks]: Network 

Protocols; I.6. [Computing Methodologies]: Simulation and 

Modeling; 

General Terms 

Algorithms, Measurement, Performance, Design, Verification. 

Keywords 

Group Synchronization, Multimedia Systems, RTP/RTCP, 

Simulation, NS-2. 

1. INTRODUCTION 
Network Simulator 2 (NS-2), [1], is an open-source event-driven 

simulation tool, developed at UC Berkeley, that has become one 

of the most widely employed simulator tool for industry, teaching 

and researching as a way of designing, testing and evaluating new 

and existing protocols and technologies. Since its inception, NS-2 

has been under constant improvement and nowadays it supports 

heterogeneous network architectures characterization, such as 

Mobile IP networks, WLAN, ad-hoc networks, grid architectures, 

satellite networks, sensor networks, and many others. 

Additionally, it contains modules for numerous network 

components such as MAC layer protocols, unicast and multicast 

routing algorithms, transport layer protocols (TCP, UDP, SRM, 

RTP, RTCP, …), traffic source behaviour (FTP, Telnet, HTTP, 

CBR, …), queue management mechanisms (Drop Tail, RED, 

WFQ, …), statistics measurements (throughput, delay, jitter, 

queue monitoring, drops at links and queues, …), etc. 

Although this variety, sometimes we need to adapt the existing 

NS-2 modules to our requirements or incorporate new simulation 

modules which are beyond the scope of the built-in NS-2 code. 

The simulator is open source; hence, it allows everyone to make 

changes to the existing code besides to add new protocols and 

functionalities to it.  This makes it very popular among the 

networking community which can easily evaluate the 

functionality of their new proposed and novel designs for network 

research.  

We are interested in the RTP (Real Time Protocol) and RTCP 

(Real Time Control Protocol) implementation in NS-2. These 

protocols are defined in RFC 3550 [2]. Nowadays, more and more 

applications use these protocols for multimedia streaming (video, 

audio, graphics, etc.). While RTP cares about data delivery, 

RTCP deals with the transport and management of feedback 

reports (control messages) from all the participants of an RTP 

session.  

Previously, we developed an algorithm to synchronize a group of 

receivers distributed in an IP network, using these protocols, 

known as “RTP-based Feedback Global Synchronization 

Approach (RFGSA)”, described in [3], and based on Feedback 

Protocol [4] and Feedback Global Protocol [5]. The approach 

was implemented, by modifying existing open source RTP-based 

tools, such as vic (for video stream) and rat (for audio stream), 

and tested, both objectively and subjectively, using LAN and 

WAN environments. The satisfactory results validated this 

proposal as a suitable solution for multimedia applications which 

require group synchronization. Now, we are interested in 

validating its performance in other more complex heterogeneous 

scenarios using NS-2 simulator. 

When we started to work with NS-2, we discovered that the native 

implementation of RTP and RTCP protocols in NS-2 is quite 

generic. Many attributes specified in RFC 3550 are not included 
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or don’t meet the RFC requirements (specially the sizes of the 

variables representing the packet header fields).  

For the above reasons, in this work, we decided to develop a new 

module for NS-2 providing a more complete RTP and RTCP 

implementation (following strictly the RFC specification), and to 

include an optional functionality with our group synchronization 

approach, taking advantage of the ability to extend and create new 

RTCP messages.  

In this work, we use the multimedia synchronization concept to 

refer to the process of integration at the presentation instant (or 

playout point) of different types of media streams. There are three 

well-known kinds of multimedia synchronization: Intra-Stream 

Synchronization, Inter-Stream Synchronization and Group or 

Inter-Destination Synchronization. Figure 1 shows an example of 

all of them, in which we can see a group of distributed receivers 

over an IP network, playing video, data and audio streams. First, 

we can see that they begin the playout of the different streams at 

the same time (we call it Initial Playout Instant) and, at any 

moment, the three receivers are playing the same Media Data 

Units (MDU) of each stream (Group or Inter-Destination 

Synchronization). In addition, we can observe how the temporal 

relationships between the different streams are maintained at any 

time, as a sign of inter-stream synchronization (e.g. lip 

synchronization). Moreover, we can notice the proper and 

continuous playout of each media stream (intra-stream 

synchronization). 

The rest of the paper is organized as follows. In the next section 

we discuss the basics of RTP and RTCP standard protocols, its 

native implementation in NS-2 and related works. In Section 3, 

our new NS-2 module for RTP and RTCP protocols including our 

group synchronization approach is presented. Next, Section 5 

presents the evaluation of this approach, implemented in a typical 

scenario. Finally, we present our conclusions, summarize our 

contributions and suggest some ideas for future work in Section 6. 

2. NATIVE IMPLEMENTATION OF 

RTP/RTCP IN NS-2 AND RELATED WORK 

2.1 Overview of RTP and RTCP  
RTP provides end-to-end delivery services for data with real-time 

or near real-time characteristics, such as audio and video data. 

RTP itself does not provide any mechanism to ensure timely 

delivery or provide other quality-of-service guarantees, but relies 

on lower-layer services to do it. Sequence numbers are included 

in RTP packets’ headers to allow the receiver to reconstruct the 

sender's packet sequence. Moreover, sequence numbers might 

also be used to determine loses and proper locations of packets, 

for example in video decoding, without necessarily decoding 

packets in sequence.  

RTCP is the companion control protocol for RTP. Media senders 

(sources) and receivers (sinks) periodically send RTCP feedback 

reports that are important for monitoring and maintaining of the 

quality of RTP packets delivery. Each compound RTCP packet 

([2]) may contain various sub-packets, usually a Sender Report 

(SR) or Receiver Report (RR) followed by a Source Description 

(SDES). If a user leaves an RTP session, a BYE RTCP message is 

sent. Finally, Application messages (APP) can be used to add 

application-specific information to RTCP packets. 

. . . . . . 
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Figure 1. Multimedia Synchronization Types 

Both, RTP and RTCP typically run over User Datagram Protocol 

(UDP) and make use of its multiplexing and checksum services. 

In this way, the conventional approach for media streaming is to 

use RTP/UDP for media data and RTCP/UDP for control data. 

However, they can use any other suitable underlying protocol or 

packet oriented transport protocol. 

An RTP Session is defined as an association among a set of 

participants communicating with RTP. A participant may be 

involved in multiple RTP sessions at the same time. In a 

multimedia session, unless the encoding itself multiplexes 

multiple media into a single data stream, each medium (audio, 

video, etc.) is typically carried in a separate RTP session with its 

own RTCP packets. All participants in an RTP session may share 

a common destination transport address pair. 

2.2 RTP/RTCP implementation in NS-2 
As mentioned above, the implementation of RTP and RTCP 

protocols in NS-2 is too generic for us. It does not define many of 

the attributes specified in RFC 3550 or they are not defined 

correctly. Moreover, it only provides common transport protocol 

functions running on top of UDP. 

Generally, specific protocols are implemented in NS-2 as Agents. 

These agents represent endpoints where network-layer packets are 

constructed or consumed, and can be used for the implementation 

of protocols at various layers. In this case, RTP and RTCP 

protocols are implemented using the RTPAgent class and the 

RTCPAgent class, respectively. Both classes derive from the 

Agent class and are implemented in the file rtp.cc (located in ~ns/ 

common directory) and file rtcp.cc (located in ~ns/apps 

directory). The Agent superclass is implemented in both 

hierarchies (compiled and interpreted). Its C++ implementation is 

contained in ~ns/agent.cc and ~ns/agent.h files, and the OTcl 

support is in ~ns/tcl/lib/ns-agent.tcl file. The RTPAgent has the 

functionality for sending and receiving RTP packets, whereas the 

RTCPAgent is responsible for transmission and reception of the 

RTCP packets. 

RTPSession class (defined in ~ns/common/session-rtp.cc file) 

principally deals with feedback report building and participant’s 

information tables maintaining through the received control 

packets passed from its agents. This class is called by its binding 

OTcl class Session/RTP (defined in ~ns/tcl/rtp/session-rtp.tcl 
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directory). It mainly defines the procedures for the session 

initialization, report interval calculation (and its initial value), 

RTP transmission rate and packet size setting, flow identifier 

assigning, associating new RTP sessions with nodes, managing 

join and leave processes to multicast groups, stopping RTP flow 

transmissions, liberating the session resources, etc. 

All the C++ files we have cited use rtp.h as header file, which is 

located in ~ns/apps directory. They appear in dark boxes in 

Figure 2. 

If a node in the simulated network has to become a participant of 

a multicast RTP session, a new instance of  the Session/RTP class 

has to be declared using the [new Session/RTP] command. 

Then, it has to be attached to each node invocating the       

attach-node method. With the new session, four objects are 

created: an RTP Agent (Agent/RTP), an RTCP Agent 

(Agent/RTCP), a Timer for the interval report calculation 

(RTCPTimer) and a source Agent (RTPSource). In fact, when 

Session/RTP is declared for a node, what is really attached to the 

node is the RTP and RTCP Agents created for that session. After 

that, this session has to be joined to a previous defined multicast 

group, by using the join-group method. In this process, RTP and 

RTCP agents are joined to the multicast group (same IP address) 

but with different port addresses (usually, consecutive numbers). 

The start procedure initializes the RTCP Agent whilst the 

transmit procedure launches the RTP agent. When a transmit 

procedure is called, a new Timer (RTPTimer) is created, which 

will deal with sending RTP packets with a specific rate. For each 

timer timeout an RTP packet will be sent and the timer will be re-

scheduled with the same period (if we are simulating CBR – 

Constant Bit Rate – traffic). This timeout period (in seconds) is 

calculated as the relation between the RTP packet size (in bits) 

and the binary rate (in bits/second) specified as an input 

parameter in the transmit procedure.  

During the streaming session, when an RTPSession receives data 

from a new RTP source, it includes this source in its senders 

information table by means of new RTPSource object, in order to 

register the sender reports statistics. In the same way, when an 

RTPSession receives control traffic (receiver reports) from new 

participants, it includes the receiver in its receivers information 

table by means of new RTPReceiver object, in order to hold the 

fields that are used by the receiving Agents for QoS 

measurements. The steps for new RTP Session initialization are 

illustrated in Figure 3. In this Figure we can also observe the 

appropriated syntax for the OTcl methods invocation and the 

associated events that are generated. 
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Figure 2. NS-2 directory structure. 

 

Figure 3. Basic OTcl commands for RTP/RTCP 
 

For a better understanding of these processes, and as an example, 

a simple OTcl script code is presented below, in which RTP 

sessions are defined (lines initiated with ‘#’ are author 

comments):  

# First, a new simulation object is defined (instance of class Simulator) 
set ns [new Simulator] 
# The scenario will be multicast  
$ns multicast 
… 
# We configure the multicast protocol (mproto)  
# There are distinct alternatives:  CtrMcast, DM, ST, BST 
set mproto DM  
… 
# Multicast agents are added to all the nodes 
set mrthandle [$ns mrtproto $mproto {}] 
… 
# We define a new multicast group  
set group [Node allocaddr] 
… 
# Network topology with a sender and two receiver nodes  
set sender_node [$ns node] 
set receiver_node_1 [$ns node] 
set receiver_node_2[$ns node] 
… 
# RTP session are defined for the source and receivers 
set sender_session [new Session/RTP] 
set receiver_session_1 [new Session/RTP] 
set receiver_session_2 [new Session/RTP] 
… 
# We attach the sessions to the nodes (agents are attached to the 
nodes) 
$sender_session attach-node $sender_node 
$receiver_session_1 attach-node $receiver_node_1 
$receiver_session_2 attach-node $receiver_node_2 
… 
# Session bandwidth which will be used for the RTCP interval 
calculation 
$sender_session session_bw 400kb/s 
… 
# Participants join to the multicast group 
# RTCP Agents are initialized ('start’ procedure invocation) 
$ns at 0.1 "$sender_session join-group $group" 
$ns at 0.1 "$sender_session start" 
… 
$ns at 0.1 "$receiver_session_1 join-group $group" 
$ns at 0.1 "$receiver_session_1 start" 
… 
$ns at 0.1 "$receiver_session_2 join-group $group" 
$ns at 0.1 "$receiver_session_2 start" 
… 
# RTP source initiates RTP packets transmission at 400 kbps rate 
$ns at 0.5 "$sender_session transmit 400kb/s” 
… 
# The receivers leaveS the multicast group at 29 seconds 
$ns at 29.0 "$receiver_session_1 leave-group" 
… 
# The source stops the RTP packets transmission 
$ns at 30.0 "$ sender_session stop" 
… 
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2.3 Related Works 
Apart from the native implementation of RTP in NS-2, we have 

found two additional implementations of RTP/RTCP protocols in 

NS-2 including improvements to that native code and new 

modules for specific purposes ([6] and [7]).  

On the one hand, in [6], new RTP and RTCP Agents are defined 

with further functionalities in order to provide loss and jitter 

control in MPEG-2 traces streaming over wireless environments 

with QoS (802.11e). In addition, new data structures are defined 

to generate the RTP and RTCP packets. These data structures 

contain more differentiated fields that the native code for 

RTP/RTCP but their size is not correct and some fields of these 

fields are not specified in [2]. The source code, MPEG-2 binary 

traces and the installation guide are accessible in the following 

URL: http://gridnet.upc.es/~vcarrascal/ns2/.  

On the other hand, the Research Academic Computer Technology 

Institute and the University of Patras made new extensions to the 

legacy RTP/RTCP code in   NS-2, [7], in order to, on one hand, 

provide this code additional features defined in RFC 3550 and 

related to QoS metrics (loss and jitter control) and, on the other 

hand, employ TCP Friendly bandwidth share behaviour of 

multimedia data transmission from a server to a number of 

receivers, through multicasting. Simulations examples, the source 

code and its documentation are available in the following URL: 

http://ru6.cti.gr/ru6/ns_rtp_extensions.php. 

Both implementations have served us to comprehend better the 

performance of these protocols in NS-2. Nevertheless, to include 

our synchronization approach we need to develop a new module 

with complementary functionalities, extending and adding new 

RTCP packets, implementing new timers, receiver buffers, 

algorithms and methods. 

3. NS-2 RTP/RTCP MODULE WITH OUR 

GROUP SYNCHRONIZATION APPROACH 
In this section, we present the new NS-2 module based on the 

RTP/RTCP protocols, including our group synchronization 

approach, [3]. During this module implementation we pursued 

two main goals. On the one hand, we wanted to extend the RTP 

code by providing the additional attributes specified in RFC 3550 

and related to QoS metrics, as in [7]. So, we modified the existing 

RTP and RTCP packets to adapt them to the specified format in 

[2], and added new RTCP messages that were not included in the 

above mentioned implementations, such as RTCP SDES, RTCP 

BYE and RTCP APP packets. On the other hand, we included in 

the module an optional mechanism to acquire group 

synchronization between receivers (group synchronization) by 

defining new timers, new receiver buffers, extending the existing 

RTCP RR packets and programming new algorithms for 

synchronization purposes.  

3.1 RTP/RTCP files location and content 
Our new module can be included together with the other built-in 

NS-2 modules without needing to replace the RTP legacy code. 

As we can see in Figure 4, the C++ code is located in ~ns/rtp_gs 

directory (“gs” stands for group synchronization) and the OTcl 

code is located in ~ns/tcl/rtp_gs directory.  We defined a new 

header file for each C++ file in contrast to the two other found 

implementations mentioned in Section 2. 
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Figure 4. NS-2 directory structure after RTP/RTCP Group 

Synchronization modules installation. 
 

In the rtp_gs files, we modified the native packet header from 

“hdr_rtp” to “hdr_rtp_gs”, including all the fields specified in 

RFC 3550 (and with the correct sizes). We redefined the RTP 

Agent, which holds all the functionality of sending and receiving 

RTP data units, and called it RTP_gs_Agent. We have also 

redefined the timer responsible for RTP packets sending, and 

called it “RTP_gs_Timer”. 

In rtcp_gs files, we redefined the RTCP Agent responsible for 

RTCP packets transmission and reception, calling it 

“RTCP_gs_Agent”. We also created a new common header for all 

the RTCP packets with the same format specified in RFC 3550, 

calling it “hdr_rtcp_gs”, and defined new data structures for each 

RTCP packet.  

As specified in [2], we defined a numeric constant for each RTCP 

packet to include it in the Payload Type field of the RTCP header: 

typedef enum { 
RTCP_SR    = 200, 
RTCP_RR    = 201, 
RTCP_SDES =  202, 
RTCP_BYE =   203, 
RTCP_APP = 204 

} rtcp_type_t; 

SR packets (which are defined in the “sender_report” data 

structure) are generated by active participants who are sending 

media units (RTP sources). They describe the amount of data sent 

so far, as well as correlating the RTP sampling timestamp and 

absolute time (provided by NTP or GPS) to allow synchronization 

between session participants. In our simulated case, we take 

advantage of the existence of a global virtual time provided by the 

simulator scheduler clock to use it as absolute time.  

RR packets (which are defined in the “receiver_report” data 

structure) are sent by participants who stand as receivers in the 

session. Each such report contains one block for each RTP source 

in the group. Each block describes the instantaneous and 

cumulative loss rate and jitter from that source. The block also 

indicates the last timestamp and the delay since receiving a sender 

report, allowing sources to estimate the Round Trip Time (RTT) 

to RTP sinks. We also defined an extended RR RTCP packet, 

named EXT RR RTCP packet, to include useful information for 

our synchronization approach, [3], which will be explained in the 

next sub-section. 

SDES packets (which are defined in the “source_description” 

data structure) are used for session control. They contain the 

Canonical Name (CNAME), a participant’s globally unique 
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identifier (similar in format to an email address), which can be 

used for resolving conflicts in the SSRC value and to associate 

different media streams generated by the same user. SDES 

packets also can identify the participant through their name, 

email, and phone number. This message also must be included in 

each compound RTCP packet because new receivers need to 

know the CNAME for a source as soon as possible to identify it 

and to begin to associate different media for different purposes, 

such as for lip synchronization (lip-sync). 

When users leave an RTP session, they send BYE RTCP 

messages (which are defined in the “bye” data structure). If a 

participant receives an RTCP BYE packet, the SSRC associated 

in this packet is removed from its participants’ table (senders or 

receivers), and the value for the session members is updated. 

Finally, new APP (Application-Defined) RTCP packets are 

defined to send useful information to the receivers for the 

synchronization approach. These packets will be explained in the 

next sub-section. 

In session-rtp_gs files, we re-implemented the “RTPSession” 

class, calling it “RTP_gs_Session”. When a new RTP session is 

instantiated in our simulation environment by means of the [new 

Session/RTP_gs] OTcl method invocation, a new C++ 

RTP_gs_Session class is returned and, in turn, two new agents are 

declared (RTP_gs_Agent and RTCP_gs_Agent). In addition, the 

RTP_gs_Session constructor initializes the localsrc_ and allsrcs_ 

instances of the RTP_gs_Source class and also the receiver_ 

instance of the RTP_gs_Receiver class. The localsrc_ stands for 

the originator of RTP and RTCP packets. It is possible that the 

localsrc_ generates only RTCP packets if it is only a receiving 

source in the newly created session. In these C++ files, we 

implemented our group synchronization approach which is 

detailed in the next sub-section. 

We provide to the NS-2 users the possibility, from their OTcl 

script, to enable or not our group synchronization approach in 

each receiver they define, by means of the enable-gs method 

invocation, defined in the OTcl Session/RTP_gs class. Therefore, 

the group synchronization will be enabled if the following OTcl 

command is executed:  

#0 To disable; 1 to enable Group Synchronization mechanism 
$session_name  enable-gs 1 

The default value is zero, which means that the group 

synchronization algorithm is disabled by default. In this way, the 

receivers will send conventional RR RTCP packets (not extended) 

and will not send the new APP RTCP packets mentioned above. 

Different receivers could coexist in the same OTcl script using or 

not the group synchronization approach. 

3.2 Designing and implementing our group 

synchronization algorithm 
Our group synchronization algorithm makes use of a 

Synchronization Maestro Scheme (SMS, [9]), based on the 

existence of a synchronization maestro (in our case the RTP 

source) which gathers the information of the playout processes of 

all the receivers and correct their playout timing by distributing 

RTCP control messages. 

We tackle our synchronization problem by dividing it in two main 

phases: first phase, to get all the receivers starting the playout 

process at the same time (Initial Playout Instant); and second 

phase, to maintain the media stream playout process in a 

synchronized way between all the active receivers. 

3.2.1 Initial Playout Instant 
In the initial phase, if we suppose identical playout rates of the 

receivers and deterministic network delay between the source and 

all the receivers, we can guarantee media synchronization if the 

source initially indicates to all the receivers the exact instant to 

begin the playout of the RTP stream, referred as Initial Playout 

Instant (illustrated in Figure 1). For Initial Playout Instant 

calculation, we force the receivers to send several control 

messages, which we called RTCP APP RET packets, with global 

time information, allowing the source to estimate the network 

delay.  The main fields of this packet are defined in the 

APP_TIN_RET data structure shown below and the complet  

format of the packet is illustrated in Figure 5. 

struct APP_TIN_RET { 
/*source this RTCP packet refers to*/

 u_int32_t  sender_srcid_;  
/* name this RTCP packet refers to */ 

  char  name[4];   
  double ntp_time_; 

}; 

In the OTcl script configuration, the interval for sending the 

RTCP APP RET messages can be adjusted in each receiver by 

means of the APPRET-Interval OTcl method invocation, 

indicating this period as an input parameter. The default value for 

this interval was established to 100 ms, but this value will be 

dynamically adjusted according to the network load as specified 

in [2]. A new timer will take care of these packets transmission, 

including the global timestamp information of the time when the 

packet is sent. The source will receive these messages and register 

the network delay for each incoming message (difference between 

source’s global time and the one stamped in the received 

message) to estimate the maximum, minimum and mean (using a 

temporal window) network delay value for each receiver. 

void RTP_gs_Session::recv_ctrl(Packet* p) 
{                    

…           
/* we get the report header */                
hdr_rtp* rh = hdr_rtp::access(p);                        
…                                                       
/* if the received control packet is an APP RET 
packet*/               
if(rh->app_t_r_!=0)&&(rh->app_t_r_->name[0]=='R'))   
{             
…          
/* this function registers the delay for each 
incoming RET message and uses it to estimate the 
maximum, minimum and mean delay */ 

delay_estimation(rh->srcid(),rh->app_t_r_->ntp_time_);            
…              

} 

Once the source has estimated the maximum and minimum delay, 

it uses these values to calculate the Initial Playout Instant, as 

explained in [3]. Then, the source sends to the receivers another 

RTCP APP packet, we called APP TIN packet, to indicate the 

global clock time when the receivers’ playout process must start. 

The format for both packets is identical but they have different 

ASCII name (“RET” and “TIN”). In the NTP timestamp field of 

TIN messages the source indicates the global time when the 

receivers’ playout process must start. 
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Figure 5. RTCP APP RET/TIN packet format. 
 

After the RTCP APP TIN packet transmission, the source will 

start sending RTP data units, which will be buffered by the 

receivers until their local clock reach the Initial Playout Instant. In 

the receiver, 5 values are stored for each incoming RTP packet: 

its sequence number, its timestamp, the buffer input instant, the 

jitter value and the playout delay for that data unit. The C++ 

buffer_iterator_ variable will be used to place the incoming 

packets in each receiver buffer and to manage its occupancy.  

In this way, our group synchronization approach initial phase 

guarantees that all the receivers initiate the playout at the same 

time, as shown in Figure 1. 

3.2.2 Fine synchronization between receivers 
In the second phase of our approach, when the source starts 

sending RTP data units, the receivers will use extended Receiver 

Report RTCP packets (EXT RR packets) as feedback messages, 

with new extensions, including the sequence number of the 

current data unit the receiver is playing and the global time (NTP) 

timestamp of the instant in which the receiver started the playout 

of that data unit. The main fields of these packets are defined in 

the receiver_report data structure shown below and the 

complet format is illustrated in Figure 5. 

/** rtcp_gs receiver reports */ 
struct receiver_report { 
 /* data source being reported */ 

u_int32 srcid_;              
/* fraction lost since last SR/RR */ 
unsigned int fraction_lost_:8;   
/* total number of RTP packets lost since 
the beginning of the session (signed!) */ 
int cum_pkts_lost_:24;               

 /* last SR time from this source */ 
        double lsr_;   
 /* delay since last sender report */ 
        double dlsr_; 
 float jitter_; /* interarrival jitter */ 

/* last sequence number data unit     
played from all the sources  */ 
u_int16_t seq_LDU_RR;                       

 ... 

} 

The receivers will send these packets at the interval specified in 

[2]. The RTCP_gs_Agent calls the build report function 

(build_report()), located in session-rtp_gs.cc file, as a 

result of the RTCP_gs_Timer timeout event.  

void RTCPAgent::timeout(int)       
{             
 …                               
if(running_)                                  
{             
size_ = session_->build_report();   
sendpkt();                                  
…           
}           
} 
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Figure 6. RTCP RR EXT packet format. 

On one hand, the RTP sender generates new SR if it has sent RTP 

data units since the previous sent SR. On the other hand, each 

receiver constructs new EXT RR packets, in the same build report 

function, if it has received new RTP data units from a source. Its 

fields are completed as specified in the Appendix A.8 in [2].  

/* add receiver report */ 
receiver_report* rr; 
rr = new receiver_report; 
/* fill the report */ 
rr->receiver_srcid()=localsrc_->srcid(); 
rr->cum_pkts_lost() = sp->cum_pkts_lost(); 
… 
rr->jitter()= sp->jitter(); 
rr->LSR() = sp->LSR(); 
rr->DLSR()= NOW - sp->SRT(); 
… 
rr->ntp_time_ = ntp_playing();              
rr->seq_LDU_RR_=seq_playing                 
/* add the RR EXT to the RTCP packet*/       
rh_->rr_ = rr; 

During the session, the source receives these RR EXT packets 

from the receivers and stores the information required by our 

approach in a memory table (specifically, receiver identifier 

(SSRC), the last data unit played by this receiver and the global 

time timestamp in which the data unit was played). Due to this, 

we previously included those required fields in the 

RTP_gs_Receiver class. 

void RTP_gs_Session::recv_ctrl(Packet* p) 
{ 
… 
/* if is the source */ 
if(localsrc_->is_sender()) 
{ 

/* get the Receiver report */                
if(rh->rr_!= 0) 
{  
…  
/* for each receiver (s), the source store 
these values */ 
s->seq_LDU_RR_=rh->rr_->seq_LDU_RR_; 
s->ntp_time_=rh->rr_->ntp_time_;  
ckeck_ACT_sending()        
…          
}      

} 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686 



This memory table must be updated with the most recent control 

messages received by each receiver. For each incoming RTCP RR 

EXT message, the source checks if it has received the reports 

from all the active participants and, if it is true, the source 

activates a sending_ACT_message boolean flag. In relation to this, 

we defined a new RTCP_APP_Timer which is continuously 

supervising this flag and, in case it is active, it calls a build 

function for new APP control packets 

(build_APP_pkt(type)). 

void RTCP_gs_Agent::timeoutAPP(int) 
{   
 if(sending_APP_message)  
 {      
 size_=session_->build_APP_pkt(type); 
 …     
 sendpkt();    
 /* the flag is deactivated */ 
 sending_APP_message= false;  
 …     
 } 

} 

Here, when the source has obtained the playout information of all 

the active receivers, it can estimate the state of the receivers’ 

playout process.  

int RTPSession::build_APP_pkt(int type) 
{        

 /* 1=ACT, 2=RET, 3=TIN*/            
if (type == 1)    
 {     
 …  
 master_recv_select(master_alg_,async_);
 ACT_parameters_calculation();         
 …     
 }     
 …      

} 

In this function, the source selects a receiver as the master 

receiver, according to a master selection algorithm variable (e.g. 

the faster or the slower one), which we called master_alg_ and 

must be specified in the following OTcl invocation: 

#01= To the mean, 10= To the slower, 11= To the faster 
$session_name  master-algorithm 11 

The master receiver playout point will be taken as the reference to 

determine the playout point state (advanced or delayed from that 

one) in the other receivers (slave receivers). If the source detects 

an asynchrony (deviation) between the receivers’ playout 

processes exceeding an async_ threshold (configurable value in 

the OTcl script), it will multicast action messages to make the 

receivers correct their playout timing. As a result, late slave 

receivers will accelerate their playout timing and fast slave 

receivers will restrain their playout timing. 

These action messages are new control APP RTCP packets, called 

APP ACT packets, with an extension including a data unit 

sequence number and the global time in which this data unit 

should be played by all the receivers. The main fields of the 

packet are defined in the APP_ACT data structure shown below 

and the format is illustrated in Figure 5. 

struct APP_ACT { 
u_int32_t sender_srcid_;  

 char name[4];    
 double ntp_time_; 
 u_int16_t seqno_;  
 … 
}; 
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Figure 6. RTCP RR EXT packet format. 
 

The APP ACT RTCP parameters are calculated in the 

ACT_parameters_calculation() function according to 

our previous work in [3]. 

4. EVALUATION  
We have proved our approach in several network topologies by 

means of running multiple simulations with similar satisfactory 

results. With these simulations we pursued two objectives: first, 

verify the proper functioning of this code, and second, test our 

group synchronization performance.  

Consequently, in this section we show only a typical wired 

scenario and the results of a single run, with the purpose of 

showing clearly the good performance of the implementation of 

our group synchronization approach. The chosen simple 

simulation scenario is illustrated in the Figure 7. It consists of one 

RTP Source (simulating a multimedia server) and three RTP 

Receivers distributed over the network topology (with different 

end-to-end delays between the source and receivers and different 

network load between them). All the links have a capacity of 1.5 

Mbps and the delay between the network components is detailed 

in the same Figure.  

In this simulation the RTP Source transmitted RTP packets with a 

specific rate of 400 kb/s. The RTP packets size was set to 1000 

bytes. The RTCP transmission interval was initially set to 0.3 

seconds to all the participants, but this value was dynamically 

adjusted according to the network load. In addition, we 

intentionally configured background CBR/UDP traffic between 

the CBR Source and the RTP Receiver 3 in order to create a 

bottleneck in this link, affecting the delay and jitter estimations 

for that receiver.  

For the multicast transmission we configured the PIM-DM 

(Protocol Independent Multicast – Dense Mode) protocol.  
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Figure 7. Simulated network topology. 
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In our simulation case, we forced a random deviation or drift in 

the receivers playout rate limited by rU. In this way, if the 

receivers have a nominal playout rate of T  data units per second 

(equal to the source transmission rate), in the worst case, one 

receiver would be able to playout the stream with the maximum 

rate of T*(1+U), whereas another receiver would be able to 

playout the RTP stream with the minimum rate of T *(1-U). This 

playout drift can be configured by means of the assign-drift OTcl 

method invocation. In this single simulation, we assigned a 

random deviation limited by r10% to all the receivers. By default 

the receivers’ playout process drift is zero (i.e. the RTP packets 

are played at the same rate that they were generated by the 

source). Concretely, during the simulation, whose results are 

shown in next figures, Receiver 1 played the RTP data units with 

a nominal rate of T1=48.78 data units per second, i.e., each data 

unit was played during 20.5 ms; Receiver 2 played the RTP data 

units with a nominal rate of T2=50.2 data units per second, i.e., 

each data unit was played during 19.9 ms; and Receiver 3 played 

the RTP data units with a nominal rate of T3 = 45.45 data units per 

second, i.e., each data unit was played during 22 ms. 

4.1 Without the Group synchronization 

approach  
Figure 8 shows the consumption process of the RTP data units in 

all the receivers throughout the session, with the group 

synchronization mechanism disabled. In it, we can observe how 

the asynchrony between the receivers is continuously increasing 

due to the forced deviations in their playout rates. 

In Figure 9, a zoom view of the left bottom corner of the previous 

graphic is presented. We can notice how the playout processes of 

the receivers were not synchronized at the Initial Playout Instant 

without enabling our group synchronization approach. 

Furthermore, we can appreciate in this graphic how faster receiver 

(Receiver 2) advances in their RTP data units consumption 

process to slower receivers (Receivers 1 and 3), despite the fact 

that the playout processes of both slower receivers start before. It 

was produced due to the random playout rate deviations (T2>T1> 

T3) chosen for this simulation. 

4.2 With the Group synchronization 

approach 
In this case, we enabled our group synchronization mechanism to 

all the receivers by means of the enable-gs OTcl method 

invocation. We also indicated to the RTP source the master 

receiver selection algorithm to use. This was done by means of 

the master-algorithm OTcl method invocation. In this command, 

we set the master_alg_ variable value to 11, so slower (slave) 

receivers (Receiver 1 and Receiver 3) took the playout point of 

the faster (master) receiver (Receiver 2) as a the reference for 

synchronization, because its playout rate was higher than the ones 

of the slave receivers (T2>T1> T3). 

In Figure 10, we can observe how slave receivers playout 

processes were adjusted, at several points, to the master receiver 

playout process as a reactive response to the action messages 

(RTCP APP ACT packets) reception from the RTP source. In this 

case, as a result of the ACT messages, slower receivers 

accelerated their playout processes to synchronize to the playout 

process of the fastest one (in continuous red line). 
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Figure 8. Receivers’ playout process without group 

synchronization. 
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Figure 9. Initial Playout Instant without group 

synchronization. 
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Figure 10. Receivers’ playout process with group 

synchronization. 
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In Figure 11, which is a zoom view of the the previous graphic, 

we appreciate that all the receivers began their RTP data units 

playout processes at the same time (Initial Playout Instant), as a 

result of the initial phase of the group synchronization approach. 

During the first minute of the simulation, 2869 RTP data units 

were sent by the RTP source. Additionally, the source sent a 

number of APP ACT messages that supposed around 2 % 

regarding the total number of RTP data units it sent, including the 

only one RTCP APP TIN message to communicate the Initial 

Playout Instant. In our previous work [3], the number of RTCP 

APP ACT packets only supposed 1,1 % regarding the total 

number of RTP packets sent. The reason was because in the 

present work, a RTCP APP ACT is sent when the source receives 

the RTCP RR EXT packets from all the receivers, since the 

async_ threshold value was set to 0 ms. In the real case, the RTCP 

APP ACT were sent only if the source detected an asynchrony 

exceeding a threshold value of 120 ms [3]. Additionally, during 

the simulated session, each receiver sent around 190 RTCP RR 

EXT control messages. It supposed around 6 % regarding the total 

number of RTP data units sent by the source. The overload 

generated by the synchronization approach consists of 192 bits of 

each ACT packets and the 80 bits extension of each EXT RR 

packets. Notice that the common part of RR packets is also sent 

when the approach is not enabled. So, the overload introduced by 

our approach is very low. Moreover, in this simulation, it is very 

small compared to the 1000 Bytes of each RTP data unit sent by 

the source.   

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a new module for NS-2 based on 

RTP and RTCP standard protocols. On the one hand, we have 

improved the native code in NS-2 for these protocols by including 

all the functionalities specified in [2]. On the other hand, we have 

included an optional functionality to this module in order to 

achieve group synchronization between the RTP receivers 

distributed in the simulated network. This group synchronization 

approach was developed and tested in real WAN scenarios in a 

previous work, [3].  

One of the most important characteristics of our approach is that 

the overload generated is very low because we do not define a 

new protocol for synchronization purpose. Instead, we use     

well-known protocols as RTP/RTCP and we take advantage of 

their extension capabilities. We extended two types of RTCP 

packets with useful information for synchronization purposes: 

RTCP RR EXT and RTCP APP packets. 

The proposed group synchronization solution has obtained 

satisfactory results in our evaluation, which validates it as a 

possible solution for multimedia applications which require group 

synchronization. 

For future work, we plan to adapt this code to make it valid for 

Cluster-to-Cluster applications, in which one or more sources, 

located in a sender cluster, transmit (point-to-multipoint or  

multipoint-to-multipoint), in one-way, independent but 

semantically related data streams to end systems distributed in 

one or several receiver clusters. In this context, when there is 

more than one receiver cluster, the source should know which 

receivers belong to each receiver cluster and should perform the 

synchronization calculations separately for each cluster, only 

taking into account the feedback reports received from the  
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Figure 11. Initial Playout Instant without group 

synchronization. 

 

receivers of each cluster. Then APP ACT packets would be sent 

only affecting each cluster separately. 

We also have to improve this code to support multiple RTP 

streams in the same node and to provide inter-stream 

synchronization between them. In addition, we want to extend this 

code to allow that a node can be a receiver and, at the same time, 

an active sender to use it in bidirectional communications and to 

be able to synchronize interactive services, such as network 

games or collaborative work applications, etc. 

Finally, the source code, its installation guides and simulation 

examples will soon be available in the following URL:  

http://personales.gan.upv.es/~fboronat/MultimediaGSynch.html 
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