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ABSTRACT

Modeling and simulation in design processes is traditionally
used during the analysis of the future system. However,
simulation-based design allows the use of modeling and sim-
ulation throughout the synthesis phase which offers greater
flexibility to quickly compare alternative designs. In case
of container terminals, these alternatives are based on dif-
ferent aspects such as layouts, terminal operating systems,
and equipments. Container terminals are characterized by
a large number of entity types with multiple instances, in-
teracting in various non-trivial ways. A component-based
approach makes the construction of a suitable model easier:
the designer can focus on the relevant constructs instead
of lower level details. However, much effort is needed to
achieve compatibility and modularity between the compo-
nents. DEVS provides the higher level constructs to concep-
tualize a complex system independently from the underlying
implementation. We present a DEVS component library for
container terminal design wherein much attention has been
put into the conceptual distinction between control and me-
chanics. This results in a library that can actively support
the design process of containers terminals.

Categories and Subject Descriptors
1.6 [Simulation and Modeling]: Model Development

General Terms
Algorithms, Management, Design
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1. INTRODUCTION

1.1 Simulation-based design and container ter-
minals

The traditional role of simulation in a design study is in
the analysis of the designed system. In case of simulations
of container terminal, the scope of the model is to do per-
formance analysis (mostly expressed in terms of twenty-foot
equivalents per year, TEUs/year). However, in simulation-
based design, simulations are used throughout the whole
design process: this allows for immediate response to de-
sign decisions well before the classical analysis phase in the
design study.

Different studies have been conducted in various fields
where a simulation-based design approach has been used
to design a complex system. Diaz-Calderon et al. [1] in-
troduced a design environment wherein this is made possi-
ble in the domain of mechatronic systems. To achieve this,
they introduced a reconfigurable and port-based modeling
paradigm which allows defining a system with models that
vary from abstract to concrete, to allow iterative refinement
during the design process. Their port-based paradigm al-
lows component-based modeling by connecting the different
components through ports. The inner workings of the com-
ponents are handled by differential equations, focusing on
continuous systems. Medeiros et al. [6] discuss their Quest-
implementation to support simulation-based design for a
shipyard manufacturing process. In this research, a mod-
ular approach is used for which each module is constructed
per simulation model.

In container terminal simulation, modeling and simulation
has primarily been used for the analysis phase in the design
process. Extensive literature surveys [2, 10, 11, 12] sug-
gest a lack of simulation-based design approaches towards
the design of container terminals. The design of container
terminals could however benefit from such an approach to
quicken design processes. Container terminals are charac-
terized by a large number of entity types with multiple in-
stances, interacting in various non-trivial ways. As with
the similar studies on simulation-based design in other do-
mains, a component-based approach makes the construction
of a suitable model easier: the designer can focus on the rel-
evant constructs instead of lower level details. A suitable
framework is however needed to define the components and
the interactions between the components.

In Hu et al. [3], the authors discuss how DEVS [14] can be
used for component-based modeling and simulation. This is



achieved through implementing variable structure in DEVS
for which components as well as couplings can be added and
removed. Three reasons are given for using variable struc-
ture in DEVS: (1) to model systems that exhibit structure
and behavior changes, (2) to design and analyze a system
under development, and (3) to be able to load only a sub-
set of the system’s component when simulating very large
models. DEVS, which is suitable for component-based mod-
eling, provides a sound formal framework that can be used
for simulation-based design if the flexibility provided by vari-
able structure, is present. Hu et al. [4] also demonstrate
how variable structure in DEVS can be used in a simulation-
based design approach for real-time systems. In the analysis
made by Shephard et al. [9], who discuss the technologies
needed to support the application of simulation-based de-
sign in the CAD/CAE community, a similar approach is
discussed.

1.2 Towards the component library

In this paper, we present a component library for simulation-

based design of container terminals. Based on variable struc-
ture in DEVS, the components are able to dynamically add
and remove new components where needed. Moreover, an
increase in flexibility is achieved by exploiting abstraction as
found in object oriented design. This allows a decoupling of
simulation model from operating logic. Separation of con-
cerns plays a role in this choice as our goal is to decouple a
generic component library from an instantiation of the com-
ponent library (i.e. having a component library that can
be deployed to design various container terminals with each
their own specific operating logic).

The paper is structured based on the design process that
we went through to develop the component library. Different
phases have been identified in this process: conceptualiza-
tion, implementation in DEVS, implementation in Java, and
finally a reference implementation to construct an instantia-
tion. We will conclude the paper with conclusions and future
work.

2. DEVS AND DSOL ES-DEVS

DEVSJ14] is a modeling and simulation formalism for the
discrete-event specification of systems. It allows for rigor-
ous formal representation of complex dynamical systems and
provides the operational semantics to simulate them. Its
system theoretical roots endow it with sound constructs for
behavior specification. The formalism allows for composi-
tion of network models from basic atomic components. The
atomic DEVS formalism consists of sets (input values, out-
put values, and states), and mappings on the latter sets
(internal transition, external transition, output, and time
advance) allowing complete and unambiguous specification
of systems according to the discrete event abstraction. The
coupled formalism consists of input, output, components,
and coupling relation sets. Modularity is guaranteed by
only allowing message based communication between com-
ponents through input and output ports. The property of
closure under coupling makes it possible to view network
models and atomic models as equivalent, hence providing
an elegant way of specifying hierarchical systems.

DSOL ES-DEVS'[8] implements the parallel DEVS for-
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Figure 1: The high level processes taking place at a
container terminal as schematized by Vis [12]

malism on top of the Distributed Simulation Object Library
(DSOL) [5]. Special attention has been put on strictly fol-
lowing the formalism and respecting the separation of con-
cerns between models and simulators. The DSOL ES-DEVS
simulation protocol is based on the event-scheduling world-
view wherein executions of the internal transition function
are scheduled according to the specified time advance func-
tion and unscheduled at the reception of external events.
Within DSOL, this DEVS implementation benefits from the
numerous services provided by an open, service oriented and
web enabled open source modeling and simulation library.

For a more intuitive understanding of the models dis-
cussed in the remainder of this paper, a graphical notation of
DEVS models is adopted. Figure 5 and 7 show the graphical
depiction of coupled and atomic DEVS models respectively.
A coupled model is represented as a named box with in-
coming and outgoing arrows representing inputs and output
ports. The included components are represented as black-
boxes within the coupled model and lines between the ports
represent the coupling relations. An atomic model is repre-
sented as a white-box containing a digraph, with input and
output ports drawn as incoming and outgoing arrows. Nodes
of the digraph represent phases with lifetime written inside.
Passive phases (i.e. phases with infinite lifetime) are drawn
with a continuous line and active phases (with a finite life-
time) are drawn with a dashed line. The edges of the digraph
represent transitions between phases. An internal transition
is represented as a dashed line with the associated output
value. An external transition between two phases is denoted
by a continuous line, with the associated input event.

3. TERMINAL CONCEPTUAL DESIGN

Container terminals are physical facilities composed of
mainly material handling equipment needed to tranship con-
tainers to and from ships, barges, trains and trucks. To
identify the various types of equipment, the analysis of the
different processes present at a typical container terminal,
can help. Vis et al. [12] schematized the different processes
in Figure 1. Quay cranes are responsible of loading and
unloading containers to and from the vessels. Between the
quay cranes and the stacks, dedicated vehicles are active to
get the containers from the lanes near the quay cranes to the
stacks. These vehicles can be either manned or unmanned,
depending on the mode of operation. In the stacks, cranes,
such as rail mounted gantry cranes, stack the containers in
the stacking areas. At the land-side of the stacking area,
dedicated vehicles are again responsible to bring the con-
tainers from the stacks to the rails, barges or trucks.

The scope of this research is restricted to automated con-
tainer terminals: a selection of the large variety of mate-



rial handling equipment can therefore be made. This selec-
tion assumes container terminals wherein quay cranes are
active at the sea side, automated guided vehicles take care
of the transporation between sea side and stacks, and be-
tween stacks and land side, and finally rail mounted gantry
cranes handle the containers in the stacks. In automated
container terminals, the terminal operating system (TOS)
controls the equipment and is therefore a crucial part for
the performance of the terminal.

In Figure 2, a conceptual model of an automated container
terminal has been schematized in a System Entity Structure
(SES) [13]. An SES is a specification of structural and spe-
cialization relations for a model family. The diagram shows
the decomposition of an automated container terminal into
different types of equipment and a TOS at different abstrac-
tion levels. Further, the TOS is functionally decomposed
to control each type of equipment. Finally, each type of
equipment is decomposed both on a physical as on a func-
tional level of each type of equipment. The function of each
component will be discussed in greater detail in section 4.

4. DEVS SPECIFICATION OF THE TERMI-
NAL

4.1 The container terminal coupled model

There is a direct mapping of the entities identified in
the SES on the model components expressed in the DEVS
formalism, these are modeled as either atomic or coupled
DEVS-models. We chose to implement the lowest abstrac-
tion level by pruning the tree to keep the high definition
entities. We will first start by presenting the overall model
and continue by discussing the detailed models. The overall
structure of the model is presented in Figure 3: this figure
shows the coupled models. The overarching coupled model
contains the model for the actual container terminal and
the experimental frame. The model of the container termi-
nal holds the model of the TOS which sends orders to the
models of the different equipments.

Both TOS and the equipment models are coupled mod-
els. Although this diagram shows only a subset of possi-
ble equipment, other model for equipments can be added as
well. This can for instance be done for barge cranes, termi-
nal trucks, etc. We will later on see how the TOS takes care
of handling new equipment and how the operating logic is
abstracted out of the model itself.

Similar to Saanen’s approach [7], the individual compo-
nents can be grouped into managerial, controlling and phys-
ical models. The managerial models are part of the TOS
and manage the orders. The controllers receive the orders
and translate these orders into specific movement commands
that are sent to the physical equipment, that actually per-
form the commands. As the models pertaining to each group
share the same behavior, we will present each group with the
models that manage, control and represent the quay cranes.

4.2 The TOS coupled model

The TOS contains a general order manager and equipment-
specific order managers, as shown in Figure 4. The order
manager receives generic orders (“take the container from
place X and put in on place Y”), which we call complex or-
ders, and sending it through to the assigned equipment to
perform the specific order, which we call simple orders. The
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Figure 4: The model of the terminal operating sys-
tem with a general order manager that sends order
to the equipment-specific order managers.

order manager of specific equipment is modeled as a DEVS
atomic model that has two phases: an idle and a process-
ing phase. When the model is in phase idle and receives
an event, it makes a transition to phase processing, sends
a flag out to the relevant port, and makes an internal tran-
sition back to phase idle. Flags are received through the
input ports connected to the controlled equipment. The or-
der manager of the quay crane is schematized in Figure 5.

4.3 The equipment coupled models

The order goes from the TOS to an equipment. A type
of equipment is decomposed into controlling and mechan-
ical models. The behavioral models are called controllers,
whereas the physical models depend on the different phys-
ical parts of the equipment. The controllers of equipment
receive the order and decompose this to control the different
physical models. This happens according to different move-
ments that the equipment has to do in order to fulfill the
order. To model this, the choice has been made to decom-
pose the controller into subcontrollers that are responsible
for the different movements. For a quay crane, this can
be a preparing movement (“put the crane into a predefined
position which makes it able to freely move”), positioning
movement (“put the crane to the exact place where the con-
tainer has to be picked up”), and finally the transporting
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Figure 5: The model of the order manager of the
quay crane.

movement (“pick the container and transport it to the final
destination”). As shown in Figure 6 (the transporting con-
troller has been taken as an example) , the controllers are
fairly simple, having the sole responsibility of sending com-
mands to the physical models, which happens in the output
function. It has to be noted that the decomposition of the
main controller serves as a reference model, but does not im-
ply a restriction for future uses. The controllers can easily
be changed by other controllers with different behavior.
The physical models are in charge of performing the phys-
ical activities, which is mostly changing positions. In case
of a quay crane, the physical models are a moving frame, a
spreader and a trolley. As an example, the moving frame
is schematized in Figure 7. It is interesting to note how
this model differs from a more traditional way of model-
ing moving equipment, which mainly happens in discrete
time fashion. In this model, a continuous movement is
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Figure 6: The model of a transporting controller
is shown here as a reference implementation to all
equipment controllers.

being discretized into just five distinct phases instead of
a large amount of time-segments. Figure 8 helps clarify-
ing the advantages of such an approach: in discrete time,
we have to calculate the new position and speed at every
single time step whereas in discrete event, the calculations
can be performed three times: one time at the beginning
of every phase relevant to the state. The calculations of
the acceleration, cruise and deceleration times (which are
presented in Figure 7 as function f) are calculated as fol-
lows:

Require: CurrentSpeed, Rate, Distance
QuadraticSolution < T >
+ SolveQuadraticEquation(Rate x T? — InitialSpeed *
T + Distance)
MovementTime < Max(QuadraticSolution < T >)
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Figure 8: The difference between time based and
event based modeling: the model of a moving vehicle
can be done in fewer calculations.

return MovementTime

These types of calculations are made for each moving equip-
ment and for each subpart of an equipment (for instance a
trolley that goes for- and backwards). This spares a large
number of discrete time calculations, which in large num-
bers can be computationally expensive, that can result in a
quicker execution of the model without loss in precision.

S. MODEL BUILDING PROCESS

A dynamic build-up mechanism of the container terminal
model is able to add and remove equipment from the model
and construct and remove the couplings between the TOS
and the equipment. The container terminal model does this
by receiving events that define the addition and removal of
equipment. This results in the creation and destruction of
the model instance of the equipment and in the creation and
destruction of the coupling from this new model instance to
the rest of the container terminal model. This mechanism
corresponds to variable structure as described by Hu et al.
[4].
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Figure 9: The model of a quay crane contains a con-
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We can use the running example of quay cranes to explain
this mechanism. The container terminal receives an event
to create a new quay crane. The creation of the quay crane
model is performed based on the received parameters. This
model is directly connected to the TOS which on its turn
will secure the connection with the right order manager. In
a similar way, the removal of the quay crane takes place,
by having an event to remove a certain quay crane which is
present in the container terminal.

Although this mechanism will mostly be used in the ini-
tial creation of a container terminal, thus sending events at
simulation time 0, other possible scenarios can be thought
of. During a long term simulation of a container terminal, a
decision could be made to add a number of equipments af-
ter a couple of (simulated) years. With a static model, this
would be a difficult task. However, with the mechanism pre-
sented here, an event can be sent for the creation for which
the container terminal will just continue to work with the
extra equipment.

6. JAVA IMPLEMENTATION

6.1 Object-oriented abstraction

The DEVS model presented here, has been implemented
in DSOL-DEVS. Although a one-to-one mapping of the DEV'S
conceptual model in a class model would have been a pos-
sibility, careful consideration is put into exploiting the ob-
ject oriented environment provided by Java. Abstraction, as
found in object oriented programming, is a powerful mecha-
nism that can be exploited in the implementation of DEVS
models without conflicting with the formalism. As many
atomic models can have some communinalities (for instance
a common external transition function), reimplementing the
same function multiple times, would become cumbersome
and error-prone.

Throughout the discussion of the DEVS model, there was
a clear grouping of similar models: managers, controllers
and physical equipment all share some similitarities. These
groupings can give use the possibilities to abstract different
functions on the managers, controllers and physical mod-
els. In the class diagram presented in Figure 10 these ab-
stractions are presented through the inheritance relation-
ship. Each ordermanager inherits the deltaExternal method



(External transition function) and the timeAdvance func-
tion from the abstract class FquipmentOrderManager. This
is due to the basic behavior that has been presented in Fig-
ure 5. In a similar way, the controllers (e.g. RailMount-
edGantryControllingPreparing and AutomatedGuided Vehicle-
Controller) inherit their behavior from abstract controllers

CraneControllingPreparing and VehicleController respectively.

Finally, equipments sharing same controllers and physical
models, can be abstracted by using the abstract classes of
the containing models.

6.2 The Terminal Operating System

In an automated container terminal, the TOS runs the
main algorithms to control the equipment. In the model
presented here, the TOS contains an order manager and
the various equipment-specific order managers. The order
manager keeps a list of orders and always picks the order
first in the list. This list is ordered according to an instance
specific algorithm which allows the user of the component
library to implement a specific order allocation algorithm by
re-implementing the ordering method. The same approach
was chosen for the equipment allocation, by keeping a list
of equipment which will be ordered according to a specific
algorithm.

The task of the order manager is to take complex orders
and transform them into multiple simple orders that can be
sent to the equipment managers that will handle the orders.
To make the transformation from complex order to simple
order possibile, the order manager has access to a class that
implements the T'OSLogic interface. This makes it possi-
ble to assess different types of algorithms (e.g. scheduling
of equipment, stacking of containers, etc) without changing
anything of the container terminal model.

The TOSLogic interface contains an enumerator of order
types, a function to create simple orders, one to create order
stacks and finally two functions to check whether an order
is compatible with a selected instance of equipment. The
most important function is the one responsible of creating
a simple order. To achieve this, the implementation of the
interface can access the list of available (and unavailable)
equipment, and all current orders. The interface supposes
also an implementation of a datastructure reflecting the lay-
out of the container terminal. In the reference implementa-
tion, a graph has been used where each node restricts access
to certain type of equipment so that the paths of equipment
can be deduced.

7. EXPLANATORY DESIGN PROCESS

To use the components library for a specific container ter-
minal, an instantiation for that terminal has to be made. To
do so, two main components need to be adapted: the TOS
and the experimental frame.

As discussed earlier, the order manager in the TOS uses
implementations of the Java-interface T'OSLogic to imple-
ment the operating logic of the container terminal. Although
reference implementations can offer a choice between prede-
fined components, custom-made implementations are often
required. Implementing the operating logic consists of pro-
viding order and equipment priority and of providing al-
gorithms for the decomposition of complex orders to sim-
ple orders. The latter is especially important to implement
specific AGV scheduling and routing algorithms. The cur-
rent reference implementation decomposes complex orders
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to simple orders as follows:

for ComplexOrder co: ListOfComplexOrders do
mp <— GetBestPossible M apZone(co)
eq < GetBestAvailable Equipment(co, mp)
s0 < ConstructSimpleOrder(so, co, mp, eq)
SendOrder(so)

end for

A description of an instance of a container terminal together
with experimental frame can be stored in an external XML-
file. Once the XML is present, all equipment can be added
to the model through the dynamic coupling mechanism of
the build-up process. Experimenting with different designs
throughout a design process therefore means writing several
XML-files with different number and types of equipment,
that can be loaded into the model. Herewith, comparison
and analysis of the results of the different models pertaining
to the different XML-files can be performed.

8. CONCLUSIONS AND FUTURE WORK

We have presented a component library for simulation
based design of automated container terminals. We chose
to use the DEVS-formalism to achieve an elegant, formal
and clear model. The SES and strongly typed couplings
assured that only compatible models can be coupled, thus
constraining the relations between components.

On an implementation level, DEVS provided a clear sep-
aration between model and simulator. Further, the abstrac-
tion in Java provided a less error prone implementation and
a smaller code-base for the model. Finally, by excluding the
TOS operational logic from the TOS model, a clear sepa-
ration of concerns has been achieved which makes us able
to connect different implementations of a TOS logic to our
model. With the resulting implementation, various designs
can be assessed. These designs can differ in number and
specification of the equipments, the algorithms used in the
TOS and the overall layout of the terminal. Further, phased
design of container terminals can be assessed more easily by
exploiting the dynamic structure model construction pro-
cess.

Future work consists of using the model in a full fledged
design environment. Visualization plays an important role:
to separate it, and other sorts of output, from the model,
the publish-subscribe mechanism will be used.
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Figure 10: The UML class diagram of the DEVS model. Every class is either an atomic model or a coupled
model. The latter can be recognized by the absence of methods.
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