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ABSTRACT 
Many limitations (e.g. complexity, cost, scalability and capability) 
make the analytical methods and physical testbeds improper to 
evaluate the performances of wireless sensor networks (WSNs). 
Simulations can provide a good approximation at lower cost and 
in less time. Hence, a number of simulation tools for WSN have 
been developed in the past few years. However, different tools 
may emphasize on different features. For example, besides the 
general network simulators, some SystemC-based simulators have 
been developed recently in order to realize the hardware/software 
(HW/SW) co-design of the node at the system-level that also takes 
into account its network performances. So it is necessary to study 
the existing WSN simulators and to distinguish their different 
features. In this paper, we propose a taxonomy that categorizes the 
existing simulation tools into four classes according to their 
modeling methodologies and their target applications. In order to 
prove that the proposed taxonomy is reasonable and 
comprehensive, we use it to make a survey of the existing 
simulation tools. This study is intended to be broad enough to 
cover all the important existing simulation tools. The goal of this 
paper is to analyze the WSN simulation tools and help the WSN 
designers find an appropriate simulator. 

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development – 
Modeling Methodologies 

General Terms 
Performance, Design, Experimentation 

Keywords 
Taxonomy, Wireless Sensor Networks, Simulation, Modeling 

1. INTRODUCTION 
Wireless sensor networks (WSNs) are normally ad-hoc networks 
composed of resource-constrained sensor nodes that can 
cooperatively monitor physical or environmental conditions, such 
as temperature, sound and acceleration. WSNs have been 

employed in a wide range of application domains, such as health-
related deployments, environment monitoring, industry and 
military applications [4]. Three techniques have been used to 
evaluate the performances of WSN systems: analytical methods 
[26], physical testbeds [15] and simulation. However, many 
constraints imposed on sensor networks, such as limited 
resources, decentralized collaboration and fault tolerance, 
necessitate the use of complex algorithms that usually make 
analytical methods be impossible [3]. Additionally, although 
using the physical testbeds is direct, such studies also suffer some 
significant limitations, such as cost and scalability. It is costly and 
troublesome to establish a testbed for a network with thousands of 
nodes. And some tests may last too long to be repeated many 
times. Moreover, the testbed is limited by the experiment 
environment, and sometimes it is incapable of presenting a diverse 
set of operational scenarios. However, simulation can overcome 
these limitations mentioned above, and provide a good 
approximation at lower cost and in less time. It also generally 
provides an easy-to-use debugging environment and graphic user 
interfaces. So, simulation has become a common way to evaluate 
performances of WSN systems. 

Lots of simulators for WSNs have been developed in the past few 
years. But different simulators may be designed to accomplish 
different target applications. For example, some are intended to 
simulate the performance of communication protocols and some 
may be designed to emulate the execution of the binary code. So it 
is important to find out their similarities and differences. Based on 
an elaborate study of WSN simulations and the existing 
simulation tools, we proposed a classification scheme that 
categorizes the existing simulation tools into four classes. 
According to the taxonomy, a comprehensive study of the existing 
simulation tools for WSN is made.  

The rest of the paper is organized as follows. In the next section, 
we study the requirements of the simulation for WSN. They are 
used as metrics to evaluate the existing simulation tools. Section 3 
presents a typical model of WSN system. Based on the analysis of 
the former two sections, a taxonomy is proposed in Section 4. The 
existing simulation tools are classified by using this taxonomy and 
an elaborate analysis of them is made in section 5. Section 6 
concludes this paper. 

2. Requirements of WSN Simulation 
WSN is a unique network in the following aspects: restricted 
resources (memory, power, and processing ability), big quantity 
of nodes, decentralized collaboration, multitasking, heterogeneity 
and so on. These features make the development of the simulation 
tools for WSN more challenging. By taking into account of the 
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special characteristics of WSN and the requirements of different 
WSN design fields (e.g. communication protocol design, 
application design and node system design), we summarized the 
following six key requirements that are important to a WSN 
simulation framework: 

1. Fidelity: The main purpose of the simulation is to model the 
real-world system faithfully and predict the system’s 
behavior. For WSN, it requires accurate models of the radio 
channels, physical environment and node system. Inaccurate 
simulation may lead to erroneous conclusions. For example, 
an ideal battery model usually treats the battery as a 
reservoir of energy from which the energy consumption can 
be subtracted. However, this is not accurate as a real battery 
that shows non-linear discharge behavior and recovery 
effects. It is proved that the accuracy of battery models can 
affect the route fluctuations and routing overheads [38]. 

2. Scalability: Because the nodes are often deployed in large 
quantities in many WSN applications, the simulator shall 
well support the scalability. The simulation time and 
memory usage shall not augment too much as the number of 
nodes increases. 

3. Energy aware: Power consumption is especially critical for 
sensor networks operating on limited power supply, such as 
batteries or solar cells. Sensor network designers need to 
obtain accurate power consumption and timing figures to 
tune their applications before the deployment in real 
environments [33]. Therefore, the simulator shall be able to 
accurately capture the energy consumption and timing 
information of the embedded software and radio 
communication at the network level. 

4. Extensibility: It shall be easy to modify the existing modules 
or integrate some new ones. A careful structure with clean 
interfaces and high modularity allows the users to easily add 
or change functionality. 

5. Heterogeneity Support: Many recently deployed WSN 
systems are heterogeneous systems, incorporating a mixture 
of elements with widely varying capabilities [14]. So, 
modeling different kinds of nodes and managing the 
interconnections among them are necessary in WSN 
simulations.  

6. Graphical user interface (GUI): A good GUI can facilitate 
and speed the establishment of the network topology and the 
composition of basic modules. It can also allow the quick 
visualization of the simulation results. In addition, it 
supports to trace and debug the simulation at real time. Non-
specialist users can get an easier control of the simulation by 
using GUI. 

There is always a tradeoff between fidelity and scalability [8]. 
Better fidelity involves more complex and detailed modeling. 
However, the simulators need more time to deal with the additive 
detail. The simulation time may become intolerable if the number 
of nodes is very large in some WSN applications. So, the high 
level abstraction is sometimes more suitable for implementing the 
simulation with proper complexity and little running time, and 
their results are detailed enough to answer the design questions at 
the early stages of the design flow. For example, at the beginning 
of a system design, the need to quickly explore a variety of 
alternatives is more important than a detailed result for a specific 
scenario. The challenge is to identify which level of detail does 
not affect answers to the design questions at hand. In [38] [16], 

the authors have explored this question. Many cases have been 
studied.  

In addition, many methods have been used to deal with the 
scalability problem, e.g. component-based design and parallel 
simulation. In a parallel simulator, the simulated components are 
dispatched over several CPUs, where the sub-programs are 
concurrently executed, and the simulation algorithm is responsible 
for the synchronization. 

3. A Typical Model of WSN System  
WSN mainly involves three parts: node system, network and 
physical environment. A typical model of WSN system is 
presented in Figure 1. In this model, the node system is composed 
by two parts: hardware and software. The hardware platform 
consists of processing unit, radiofrequency transceiver, sensor and 
battery. The software model includes operating system, 
middleware, protocol stack, application software implementation 
and so on. Nodes are connected with each other by the wireless 
network model that holds the network topology and transfers 
packets among nodes. It also implements many radiofrequency 
channel models. The environment model specifies how the 
physical parameters in the environment vary both in spatial and 
temporal sense. Environment modeling of WSNs is still at the 
beginning of development. A more detailed description of 
environment modeling can be found in [23]. 

 

Figure 1. A Typical Model of WSN System 

Since only few simulators have addressed environment modeling 
well, our taxonomy will not treat it as a determinant. We mainly 
focus on the node system and network modeling. Simulation has 
been used in both node system and protocol designs to help the 
designer easily evaluate their new designs. At the beginning, these 
two aspects are addressed by different people with different 
knowledge and tools. In the context of node system design, the 
aim is to design the nodes’ hardware, to implement the software 
running on the hardware and to co-simulate the hardware and 
software (HW/SW) [13] [34]. In the context of protocol design, 
the tools model the protocols, manage the concurrency among 
different nodes, and simulate the throughput of the network. The 
protocol designers often make simple assumptions to the behavior 
of hardware and software, but this may be not detailed enough for 
some applications. For example, timing information in instruction 
granularity shall be considered to the fast routing lookups [6]. In 
addition, it is better to compress the data by processing them in 
local CPU rather than transmitting the raw data to the destination 
node in some applications, since wireless communication is a 
major energy consumer during the system operation [32]. 
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Simulations shall be able to help the designer find a balance 
between the wireless communication and the local processing. 
Therefore, WSN simulations require designers to integrate the 
node system and the network simulation together.  

4. Taxonomy 
A common way to evaluate the WSN system is to add node 
models to the network simulators (e.g. NS-2 [22] and OMNeT++ 
[39]). There are two kinds of node model: node models 
implemented by the network simulators and node emulators. Node 
emulators refer to the instruction level simulators of the nodes’ 
microcontrollers with extensions of sensors, transceivers and other 
peripherals models.  

Besides adding node models to the network simulators, we can 
also model the network in the node system design tools (e.g. 
SCNSL [11]) or in the node emulator (e.g. Avrora [35]). 
Therefore, the existing efforts in WSN evaluation can be divided 
into four categories: network simulators with node models 
(NSNM), network simulators with node emulators (NSNE), node 
system simulator with network models (NSSNM) and node 
emulators with network models (NENM).  

NSNM emphasizes more on discrete event scheduling, the radio 
medium, network modeling and perhaps the sleep duty cycles of 
the sensor node. Network modeling is the predominate object. 
Many node models implemented by NSNM are simple power and 
estimated timing profiles.  

NSNE integrates the advantages of both the network simulators 
and node emulators. The network simulator provides the detailed 
network model. The node emulator gives accurate timing 
information of the software execution because they simulate the 
system performance with instruction cycle granularity. But the 
interconnection between the network simulator and node emulator 
may takes much time.  

In NSSNM, the node system is often modeled by the hardware 
description languages at system level, such as SystemC [19]. 
NSSNM has a simulation kernel which supports modeling the 
concurrency and synchronization among different hardware 
components. The system level description language can also 
model the software, which allows the HW/SW co-design and co-
simulation. It models the node hardware in different abstraction 
level with different degrees of detail (e.g. system level, transaction 
level and register transfer level). The level at which the simulation 
is performed affects the level at which the software development 
can occur and the execution efficiency of the simulator. A 
simulator that simulates a particular sensor node platform at the 
very low level enables the development of low level software such 
as device drivers but at the price of longer simulation time.  

The node emulators of NENM can be divided into two different 
sets: instruction set simulators (ISS) for special microcontrollers 
and emulators designed to emulate the execution of the 
application code of an operating system (e.g. TinyOS [17], SOS 
[18] and Contiki [5]). They can execute the application code 
directly (or with minor modifications). Generally, the network 
models in NSSNM or NENM provide less detail than the network 
simulator, since the latter always includes lots of protocol 
implementations and channel models.  

Our taxonomy can be used by WSN designers to find a proper 
simulation tool. To do that, first, WSN designers must decide 

whether they emphasize particularly on communication protocol 
design or node system design. The main features of these two 
different designs have been presented in Section 3. Then, the 
application or communication protocol must be carefully analyzed 
to limit the level of detail in an appropriate rank. It is a 
challenging work especially when entering a relatively unexplored 
area. The results of existing simulation validations can help the 
users to build an understanding of what details are important, such 
as the case studies in [38] [16].  Based on the level of detail, the 
developers must decide whether they need a system-level 
simulator or an instruction-level emulator of nodes. Generally, 
node simulators are always at the high level of abstraction with 
limited accuracy and less simulation time. Emulators can emulate 
the execution of the application software, which provides more 
accurate timing information. Until now, the category of the 
simulator has been chosen. The simulators within the same 
category shall be evaluated according the requirements of WSN 
simulation listed in section 2. They are compared in the aspect of 
scalability, heterogeneity support, extensibility, radio propagation 
models, power models, easy to use and others.  

5. Survey 
In this section, we will analyze the existing simulation tools 
according to the taxonomy. The existing simulation tools are 
divided to 4 classes. In each category, many simulators will be 
studied to demonstrate their common features and differences.  

5.1 NSNM 
Lots of simulators have been designed in this category. We 
mainly study some typical ones to illustrate the main 
characteristics of this kind of simulators  

NS-2 [22] is a discrete event, object-oriented, general purpose 
network simulator. Simulations are written by C++ and OTcl 
(Object-oriented Tcl) languages. In general, C++ is used for 
implementing protocols and extending the NS-2 library. OTcl is 
used to create and control the simulation environment. Its 
extensibility has been a major contributor to its success, with 
protocol implementations being widely produced and developed 
by the research community. According to [20], it is the most used 
simulator in Mobile Ad hoc NETwork (MANET) research. 
Regarding WSN, it includes many ad-hoc and WSN specific 
protocols [8]. An IEEE 802.15.4 model is developed in [45]. 
However, NS-2 does not scale well in terms of memory usage and 
simulation time [24]. It also lacks detailed support to measure the 
energy utilization of different hardware, software, and firmware 
components of a WSN node [43]. SensorSim [27] is built on top 
of an NS-2 802.11 network model. It models the sensor node in 
two parts: software model (Function Model) and hardware model. 
The power models of different hardware components have been 
implemented. The state of the hardware model is changed based 
on the function that is carried out by the software model. So, the 
power consumption of the whole network can be simulated. In 
addition, SensorSim can be interacted with real nodes. The use of 
real sensor nodes can provide accurate and valid inputs to the 
simulation instead of modeling the sensor channel that is not yet 
well defined and understood. SensorSim also provide the 
underlying network on which we can develop, test and evaluate 
the SensorWare [1]. SensorWare is a middleware that allows easy, 
efficient dynamic programmability for sensor network. The 
execution environment in a sensor node is closely modeled in 
SensorSim so that the SensorWare scripts can run on both the real 
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nodes as well as the simulated nodes. However, the CPU and 
sensor device models have not been implemented and the 
simulator is no longer in active development. Furthermore, IEEE 
802.11 is designed for high speed connectivity and not optimized 
for WSN.  

OMNeT++ [39] is a component-based network simulator, with an 
Eclipse-based IDE and a graphical runtime environment. The IDE 
supports all stages of a simulation project: developing, building, 
configuring, running simulation models and analysing results. 
OMNeT++ consists of modules that communicate with message 
passing. Simple modules implement the atomic behavior of a 
model, e.g. a particular protocol. Multiple simple modules can be 
linked together and form a compound module. OMNeT++ 
provides the infrastructure to assemble simulations from these 
modules and configure them (NED language). OMNeT++ can be 
extended easily by interfaces for real-time simulation, emulation, 
parallel distributed simulation, SystemC integration and so on. As 
OMNeT++ is becoming more popular, many contributions have 
been added to it. The Mobility Framework (MF) [7] supports 
simulations of wireless and mobile networks within 
OMNeT++. MF includes an 802.11 model. It can be seen as the 
first start point of the WSN modeling by OMNeT++. An IEEE 
802.15.4 implementation by OMNeT++ can be found in [2]. 
PAWiS [43] is an OMNeT++ based WSN simulator. Its 
architecture is similar to SensorSim. It can evaluate the power 
consumption of WSN systems with many levels of accuracy 
which can still be balanced with complexity. The model 
programmer has to insert special framework requests to the CPU 
module to simulate the execution time and power consumption. 
These requests include the estimated execution time of the 
firmware code on the CPU.  

SENSE [3] is another component-based simulator developed by 
C++. It models various network devices as a collection of static 
components. Connections between each component are in the 
format of in and out ports. Dynamic packets are created, 
transmitted and received by components through the ports. 
Through its component-based model, SENSE can be extended 
easily. A new component can replace an old one if they have 
compatible interfaces; inheritance is not required. SENSE also 
supports the parallel simulation, which is provided as an option to 
the users.  

GloMoSim [44] is a parallel simulator for WSNs. GloMoSim 
allows the users to select sequential or one of the 3 available 
parallel synchronization algorithms (null message protocol, 
conditional event protocol and accelerated null message protocol). 
Once a parallel algorithm is selected, the analyst can additionally 
indicate the mapping strategy and number of processors. Taking 
advantage of parallel simulation, GloMoSim has been shown to 
scale to 10 000 nodes [36]. QualNet [31] is a commercial 
derivative of GloMoSim.  It has extended GloMoSim to other 
networks, such as satellite, cellular and sensor networks. ZigBee 
protocol model is provided too.  

Prowler [28] is an event-driven network simulator running in 
Matlab environment. Benefits gained from Matlab environment 
are easy prototyping of applications and GUI interface. Prowler is 
capable of simulating the radio transmission, propagation and the 
MAC-layer operation in ad hoc networks. The radio models are 
based on specific signal strength calculations combined with 
random errors. Prowler is well suited for protocol and algorithm 

development. However, it does not have sensor node energy 
modeling.   

The main advantages of these simulators are that they usually 
have a rich library of the radio modules and protocol 
implementations. Many contributions to these tools are carried out 
ceaselessly. For example, NS-2 is currently undergoing a major 
redesign [42]. The performances in the aspects of scalability and 
extensibility will be improved by its successor, NS-3. However, 
the network simulator is dedicated to model the network. It may 
be not the best way to model the node system since they are 
normally incapable to model the concurrency within the node and 
provide a direct path to HW/SW synthesis [11]. The energy 
consumption is usually based on some assumptions or estimations 
of the software execution, which is not as accurate as the node 
emulator.   

5.2 NSNE 
Two main simulators have been developed in this category. 
Heemin Park et al. [29] have developed a unified network and 
node level simulation framework. They developed the Embedded 
Systems Power Simulator (ESyPS) by integrating sensor and radio 
modules into EMSIM [37]. EMSIM is an energy simulation 
framework for embedded systems featuring in StrongARM 
microprocessor and Linux OS. Then, they integrated the ESyPS 
with SensorSim [27]. The framework can explore the interactions 
between network level and node level.  

Another example is sQualNet [40], which is a scalable and 
extensible sensor network simulation framework built on top of 
QualNet [31]. It uses QualNet as the network simulator and 
provides the emulation of the SOS operating system [18]. 
sQualNet allows using the QualNet’s detailed models of channel, 
propagation, mobility, etc. The user also can use the rich protocol 
suite for other kinds of networks to model heterogeneous sensor 
networks. sQualNet introduces a sensor stack parallel to the 
networking stack and provides accurate simulation models for 
various layers in the sensor and networking stack.  

These two simulators integrate the advantages of both the network 
simulators and node emulators. They provide accurate results 
about the energy consumption of the whole network. However, 
they are both constrained to particular hardware and operating 
system. Moreover, interactions between the network simulator 
and the node emulator have to be well maintained, which 
increases the simulation time and impacts the scalability.  

5.3 NSSNM 
There are mainly two simulators in this kind. Kashif Virk et al. 
[41] have developed a SystemC-based modeling framework for 
WSN. It enables system-level modeling of sensor network 
behaviors by modeling the applications, real-time operating 
system, sensors, processor, and radiofrequency transceiver at the 
node level and the signal propagation at the network level. But the 
simulation result is simple. Only a MAC behavior (states of the 
sending and receiving tasks) simulation result has been presented.  

The SystemC Network Simulation Library (SCNSL) [11] is a 
Networked Embedded Systems simulator, written in SystemC and 
C++. Because SystemC is a C++ class library, it has the advantage 
that the hardware, software, and network can be modeled with a 
same language. SCNSL contains three modules: node, node-proxy 
and network. The network module is written in C++. The node-
proxy and the node modules are written in SystemC. The node-
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proxy can access the network instance. It is the interface between 
the nodes and the network. By using Node-Proxy, nodes can be 
designed as pure SystemC modules without object references to 
other non-SystemC classes; this approach enables the use of all 
the advantages of SystemC in HW/SW co-design, verification and 
the design flow. There are two limitations of that library. One is 
that only an IEEE 802.15.4 non-beacon model communication 
protocol has been implemented. The other is that important 
network simulation results are not given in [11]. 

These simulators usually model WSN at the system level, so they 
scale well. New hardware and software modules can be easily 
added to the existing library. However, the simulation results only 
can be used to the system level design, and no GUI has been 
provided by these two simulators.  

5.4 NENM 
Two kinds of node emulator, operating system emulator and 
instruction set simulator, are studied separately in this section. 
One special simulator providing the both features will be 
presented too. 

TOSSIM [21] and PowerTOSSIM [33] are two emulators 
designed to emulate the execution of TinyOS [17]. Software 
development for WSN can be simplified by using these emulators. 
They permit developing algorithms, studying system behaviors 
and observing interactions among the nodes in a controlled 
environment. The application code of TinyOS can be compiled to 
the simulation framework by only replacing a few low-level 
TinyOS components that deal with hardware. TOSSIM can 
capture the behavior of the network of thousands of TinyOS nodes 
at bit granularity. TOSSIM allows developer to easily transition 
between running an application on motes and in the simulation 
environment. PowerTOSSIM is an extension to TOSSIM in 
evaluation of the power consumption. The main problem with 
such frameworks is that the user is tied to a single platform 
(typically MICA motes) and a single programming language 
(typically TinyOS/NesC) [43]. In addition, TOSSIM loses the 
fine-grained timing and interrupt properties of the code that can be 
important when the application runs on the hardware and interacts 
with other nodes [35]. 

ATEMU [30] is an instruction-level cycle-accurate emulator for 
WSN written in C. It simulates programs of each individual node 
with accuracy down to the clock cycle. Its core is an ISS. Along 
with support for the AVR processor, it also includes support for 
other peripheral devices on the MICA2 sensor node platform, 
such as the transceiver. ATEMU provides a GUI, called Xatdb, 
which provides users a complete system for debugging and 
monitoring the execution of their code. Avrora [35], written in 
Java, improves the performance of ATEMU in the scalability 
aspect. Avrora can scale to networks of up to 10000 nodes. Both 
ATEMU and Avrora provide the highest behavioral and timing 
accuracy of the WSN programs. Moreover, they are both language 
and operating system independent. The main disadvantage of such 
frameworks is that they only support systems based on 
components that have already existed, e.g. memories and 
processors, like MICA motes. Unfortunately they do not cover 
systems containing new hardware blocks. And they are not 
implemented by HW description languages, so they can not use 
the typical HW design flow and verification tools. 

Fummi, F. et al. [12] have developed an energy-aware simulator 
by integrating an ISS of node’s microcontroller and a functional 

SystemC model of the network module on SCNSL [11]. They 
used the !Csim as the ISS for the Intel 8051 microcontroller of 
the Texas Instruments CC2430–F128 chip. Using ISS makes it 
possible to run the exact binary embedded software on the 
simulated hardware platform. The SystemC kernel is modified to 
communicate with the ISS through inter-process communication 
primitives (e.g. a socket or shared memory). Instruction cycle 
level node emulator can provide more accurate information of the 
software than the node model does. But it is slow because it deals 
with much detail at the cycle-accurate level, and the inter-process 
communication between ISS and the SystemC kernel takes much 
time. 

COOJA [25] is a Java-based simulator that provides both the 
operating system emulation and the instruction set emulation in a 
single framework. The Contiki operating system [5] can be 
compiled to the simulation framework. It executes native code by 
making Java Native Interface (JNI) calls from the Java 
environment to a compiled Contiki system. MSPSim [9] is used as 
the instruction set simulator in the COOJA. MSPSim is also 
written in Java. It supports the Texas Instruments MSP430 
microcontroller and includes some hardware peripherals such as 
sensor, communication ports, LEDs, and sound devices. Recently, 
the COOJA/MSPSim platform [10] has been extended to support 
the TinyOS, so the interoperability testing of nodes with different 
operating systems is realized. 

The main advantage of using such tools is that the code used for 
emulation can also run on the real node with no or minor 
modifications, which reduces the effort to rewrite the code. And 
they often provide detailed information about resource utilization. 
The main problems are that they are always constrained to certain 
hardware platforms or operating systems, and it is difficult for 
them to support heterogeneous networks. They can not scale as 
well as the node system models at system level.  

6. Conclusion 
In this paper, the particular requirements of the WSN simulation 
were studied. A typical WSN system model was presented. Based 
on these, a taxonomy of WSN simulations was proposed, and a 
survey of the existing simulation tools for WSN was made 
according to the taxonomy. Most of the significant existing 
simulation tools with relatively widespread uses have been 
studied. We believe that the survey is broad enough to prove that 
almost all the simulation tools for WSN can be divided into one of 
the four categories in our classification scheme. This paper can be 
used by WSN designers to find an appropriate simulator to their 
special requirements. 
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