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ABSTRACT

The empirical study of large-scale distributed systems of-
ten calls for the use of computer simulations as real-world
experimentation is too costly or simply infeasible. Com-
puter simulations can also provide results on a much shorter
timespan, increasing productivity. Nevertheless, large-scale
system simulation can prove to be non-responsive on modern
computers, especially when the modeled system has a high
level of complexity or when detailed and compute intensive
models are used. In order to fully harness the computa-
tional power of modern multi-core computer architectures,
computer simulations need to execute in a parallel fashion.

In this paper we investigate the potential of parallelizing
the execution of the Grid Economics Simulator (GES), a
Java-based discrete-event simulator that is targeted towards
the simulation of distributed systems in general, and eco-
nomic forms of resource management in grids in particular.
We present the design of a parallel continuation-based sim-
ulation core that uses a conservative time synchronization
protocol. We analyze the performance of the parallel simu-
lation core through synthetic benchmarks. The results of our
performance evaluation give a clear insight in the impact of
simulation model properties such as event arrival rates, com-
putational workload, remoteness of events, and look-ahead
size, on the speedup that can be achieved through parallel
execution.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous; I.6.8 [Simulation And Modeling]: Types of
Simulation—parallel, discrete event

General Terms
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1. INTRODUCTION
Distributed and parallel processing techniques are com-

mon today in a wide range of applications. The increasing
scale and complexity of distributed applications and sys-
tems necessitates research into more scalable and efficient
algorithms and techniques for e.g. resource management
and job scheduling. The evaluation of new algorithms on
real testbeds is however impeded by their limited flexibil-
ity, controllability and availability. In addition, the costs
of building and configuring large-scale testbeds are high.
For this reason, researchers turn to simulation to evaluate
new algorithms and techniques, especially during the ini-
tial phases of development. The Grid Economics Simulator
(GES) [29] was developed for the evaluation of various eco-
nomic approaches to resource management with regard to
their ability to efficiently allocate and schedule tasks in a
grid. The simulator consists of a time-stepped and a dis-
crete event-driven simulation core. The discrete event core
uses a process-oriented approach, and supports the simula-
tion of interactions between various entities connected in a
communication network.

In recent years, the rate of raw speed increase of individ-
ual processor units has been decelerating. Scaling up has
become harder to do because of the physical limitations of
the integrated circuits. First, the benefits of higher clock fre-
quencies decrease as the memory speeds are not increasing as
quickly as the logic speeds. Additionally, smaller and denser
transistors, result in longer interconnection wires which in-
troduce path delays that cancel the clock speed increase.
Finally, the higher number of transistors packed together
consume more power and produce more heat, causing cool-
ing difficulties [17]. Because of these limitations, companies
have searched for other techniques to create faster and more
energy-efficient processors. These new developments have
lead to the assembly of multi-core processors, which are es-
sentially multiple processors joined together in a single pro-
cessor socket and running in parallel. The change to a more
parallel hardware design also requires a more parallel design
of the software. However, this conceptual change to a par-
allel programming paradigm introduces new challenges and
problems for software developers [27, 12, 20]. To fully bene-
fit from the continued increase in computing power, applica-
tion software must support a concurrent mode of execution
on multiple processor cores.

In this paper, we describe the design of a parallel discrete
event simulation core for GES. Our goal is to analyse to what
extent an approach based on proven techniques and mech-
anisms for the implementation of parallel and distributed
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simulators [7, 8, 9, 10], can result in satisfactory speedups
on modern multi-core commodity hardware. In this regard,
the presented results are a valuable reference point for more
optimized implementations that are specifically tailored to
multi-core and/or multi-processor hardware.

2. SIMULATOR DESIGN

2.1 Simulation Basics
This section gives a brief introduction concerning the ter-

minology used in the field of simulation [7, 10] and through-
out this paper. A simulation is a representation of a physical
system evolving over time. This physical system or physical
process is modeled by a logical process (LP). An LP consists
of a number of virtual entities that are completing tasks or
procedures, and that interact with each other by exchang-
ing messages which are represented by events on the level of
the LP. The state of these entities changes over time, conse-
quently causing an evolution in the system. The process of
these accumulated changes is driven by advancing the vir-
tual time (VT) in the simulation. The modeling of the time
progression is either continuous or discrete. Continuous time
flow mechanisms represent the behavior of the system as a
set of functions of time. In a discrete time simulation, state
changes can only occur at certain discrete points in time.
A discrete-event simulation advances simulation time to the
execution time of the succeeding action, also referred to as
an event. An event has an associated firetime, indicating
the simulation time at which the event will occur. The exe-
cution of an event may create new events and the complete
simulation finishes when all events have been processed. To
summarize, a discrete-event simulation executes a sequence
of events in time order and advances its time according to
the event firetimes.

2.2 Single-core Design
A discrete event simulation core, which runs the LP, con-

tains a control loop that continuously executes events per-
forming operations, in firetime order, on the entities in the
simulation. The main components of the discrete event core
are the clock, keeping the virtual time value, and the event
queue or event list (EVL), containing Events in the order
of their firetime. The event queue is implemented using the
Sun Java priority queue, which provides O(log n) time inser-
tions, linear time removal and constant time retrieval. The
control loop of the logical process running in the EventCore

pops the next event from the event queue for processing and
then advances its time to the next event’s firetime. The ex-
ecution of an event may result in the creation of new events,
which are again added to the event queue for later execution.
The use of a priority queue combined with the condition that
newly created events need to have a time stamp greater than
or equal to the current virtual time, will ensure consistent
execution of events in the right time order. The simulator
core continues executing events until the event queue be-
comes empty. A schematic of this design is shown in Fig. 1

2.3 Entity Modeling & Communication
The discrete event simulator core of GES allows to declare

certain objects as entities, representing real-world objects
in the simulation [11]. Entities are able to communicate
with other entities over a network link. Entities can be con-
structed in three ways: namely, by annotating the Java class

EVL

VT

EventCore

Events

Figure 1: Single-core Design

with @Entity, by implementing the EntityInterface or by
extending a Process. The first method creates only pas-
sive entities that can communicate with other entities but
do not act on their own. A Process is an active thread-like
entity that interacts with other entities on its own initiative.
To the event core, a Process is essentially an Event whose
execution can be suspended and resumed. The suspending
of a Process causes the creation of a ResumeEvent that re-
sumes the Process again at a later time, effectively simulat-
ing thread behavior. Processes are implemented using the
JavaFlow library, that provides continuations [6]. Continu-
ations provide an interesting alternative to threads for mod-
eling concurrent behavior of entities in a simulation. They
are lightweight structures that contain the stack contents
and program counter. As such, they allow for the simula-
tion of concurrent processes in a single system thread, and
thereby give the programmer full control over the scheduling
of simulated processes.

Methods in entities can be tagged with a @ProcessMethod

annotation, causing the encapsulation of the method’s ex-
ecution in a Process, which is scheduled as an event and
executed by the event core at a later time. This method
encapsulation into a Process is performed by using AspectJ
code weaving [16].

GES facilitates communication between simulation enti-
ties using an RPC-like mechanism. The simulator supports
both synchronous and asynchronous remote method calls.
A synchronous method call on another entity suspends
the Process-context of the calling entity until the remote
method returns, whereas an asynchronous method call is ex-
ecuted while continuing the calling Process. Remote entity
methods are annotated with @SynchronousNetworkMethod

or @AsynchronousNetworkMethod. The network calls are
encapsulated into events, which are then rescheduled
incorporating the appropriate network delay according to
the network model used.

2.4 Multi-core Design
In order to parallelize the execution of the simulation, we

install multiple event cores in the simulator that process
events in parallel. The switch to a multi event core model
requires several changes to the implementation of the simu-
lator. First, the simulator must be able to support multiple
event control loops in parallel, each in a separate thread and
having its own local virtual time (LVT) and each running an
LP. These different threads interact by adding events to each
other’s event queues. Second, these independent event cores
need to synchronize their time, requiring a time manage-
ment infrastructure. Both are the most important changes
to the simulator to support execution on multi-cores.
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2.4.1 Simulation Core Driver

The bootstrap phase of the simulator consists of three
steps. First, during the initialization of the EventSystem,
multiple EventCores are created. Then the simulation user
code creates entities which are associated with an event core.
Finally, the EventCores enter the start-up phase of their
control loop, effectively starting the simulation.

Multi-core execution increases the complexity of the
EventCore, requiring a more advanced event core control
loop. Events might be scheduled by another core, which
introduces possible concurrent access to the event queue.
Therefore, all access to the event queue needs to be
protected by locking directives. Furthermore, determining
when to start and stop the whole simulation becomes
more complicated in the multi-core set-up. Instead of just
executing events in a simple loop until the event queue is
empty, the simulator core now consists of several program
states:

Figure 2: EventCore state transition diagram

STARTUP The start-up of the event core needs to be syn-
chronized across all event cores. All cores have to enter
this state before the simulation starts.

TRY EVENT This core state is a dispatch state, as it
will check certain conditions and cause a transition to
another state. First, the event queue is checked for
emptiness. If there are no events left in the queue,
the core jumps to the EMPTY QUEUE state. Con-
sidering there is at least one event in the queue, the
core performs a time advance request for the next
event’s firetime to the core’s time management ser-
vice. The request returns the amount of time a core
is allowed advance its time. If the next event’s fire-
time is set before the allowed time, the core jumps
to the PROCESS EVENT state to process the event.

When the firetime is after the allowed time, the event
core switches to the WAITING FOR ADVANCE state
and waits for a time update from the time management
service.

PROCESS EVENT In this state, the event core pops the
next event from the event queue and then starts pro-
cessing it. The execution of an event simulates state
changes in the simulation model and possibly generates
new events. On event completion, control is returned
to the TRY EVENT state.

QUEUE EMPTY An empty event queue in a multi-core
simulation does not necessary mean the simulation is
finished. New events originating from other cores can
still arrive in the queue. The simulation is only finished
when all cores are in the QUEUE EMPTY state and
no events are running or in transit between cores. In
that case, control transfers to the FINISHED state.
If the simulation is not yet finished, the core waits
using the Java wait() and notify()-mechanism. This
blocks the event core thread until a new event arrives
in its queue or a time update is received from another
core.

WAITING FOR ADVANCE The core is waiting, until
a request for time advance is granted or a new event
has been scheduled in the event queue. The EventCore
thread waits using a wait()-call and is blocked until a
new event is scheduled or a time update from another
core is received.

FINISHED The finished state ends the simulator core
thread, hence finishing the simulation.

A state diagram of the control process running in each
EventCore is depicted in Fig. 2.

2.4.2 Time Management Infrastructure

Generally, time stamp order execution in a simulation
with a single logical process (LP) is ensured by the fact
that an event that is being processed can only spawn new
events with a firetime after its own firetime. Extending the
simulation to multiple LP’s must also ensure that all events,
including events from other LP’s, are processed in time or-
der in each LP. If the LP’s in all event cores comply with
this condition, referred to as the local causality constraint
[8], the results from a single core simulation are the same as
those from a multi-core simulation. To realize this, the use
of a synchronization mechanism or protocol is indispensable.
There are two groups of protocols that ensure time stamp or-
der execution: namely, conservative and optimistic time syn-
chronization protocols [8]. An LP following the conservative
synchronization protocol is allowed to only process an event
if it is guaranteed that no events with a smaller firetime can
arrive in the event queue. On the other hand, an optimistic
synchronization protocol is less restrictive and tolerates the
occurrence of causality errors, possibly violating the local
causality constraint, but provides a roll-back mechanism to
recover from these errors. The achievable parallelism in case
of optimistic synchronization protocols is higher because all
event cores run independently, rolling back their state if nec-
essary. However, the roll-back mechanism requires the LP
to keep previous simulation states which has implications
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on performance and memory cost. In addition, for simula-
tions with a high frequency of interactions between entities,
roll-backs are common and performance gains from higher
parallellism therefore limited. In this paper, we focus on the
performance of a conservative time-synchronization proto-
col, leaving an analysis of the feasibility and performance of
optimistic protocols for our simulation core to future work.

Look-ahead.
An event core running an LP processes both internal

events, as well as external events originating from other
cores, which may arrive in the event queue at any time. If
logical process LPa with LVT Ta sends an event to logical
process LPb with LVT Tb, then the firetime of this event
cannot be smaller than Tb. Because the event is sent by
LPa and received in LPb at the same virtual time, the
local causality constraint requires that Ta must be equal
to Tb, in which case only simultaneous events are executed
in parallel. Therefore, the concept of look-ahead is crucial
for conservative time synchronization protocols in order
to introduce parallelism. Consider the example again
where LPb receives an event from LPa, in other words, an
entity living in LPa sends a message to an entity residing
in LPb. As a physical system is being simulated, there
is a delay inherent to the communication between these
entities. In practice, if LPb receives a message from LPa,
and the communication delay is d, the arrival time of this
message in LPb will be at least Ta + d. So that, LPb is
allowed to process events up to Ta + d, where in this case
d is the look-ahead factor. In general, the minimum delay
of a communication between entities can be used as the
look-ahead l, effectively meaning that the lowest and the
highest simulation time of a logical process in the simulation
can differ at most by l time. Consequently, a logical process
LPp may process events with a firetime up to Tp + l. It is
clear that the look-ahead value is intrinsically related to
the details of the simulation model.

The behavior of the parallel LPs is shown in Fig. 3. Con-
sidering the look-ahead is equal to the minimum message
delay d of a communication between entities. The event at
t1 in LPb sends a message to LPa, arriving at t4 with a delay
of d. LPa can already process the event at t2 when LPb is
still processing the event at t1, because no event could arrive
in LPa from LPb with a firetime smaller than t4. Likewise
LPb can process the event at t4 when LPa is still processing
t2.

Figure 3: Look-ahead explained

Synchronization Protocol.
The synchronization protocol we applied is based on the

conservative approaches often referred to as Chandy-Misra-

Bryant (CMB) protocols [22]. These protocols associate
each outgoing event e with a send time Ts(e) and a fire-
time Tf (e). A logical process (LP) contains an incoming
message first-in-first-out (FIFO) queue for each other logi-
cal process. Events are sent with non-decreasing send time
Ts(e) to other LPs, which implies that the sequence of events
arriving in each input queue will also have a nondecreasing
order of sent timestamps Ts(e). Each input queue i has
a timestamp field T (Qi) associated with it, containing the
time Ts(e) of the queue-front or the last received message
if the queue is empty. Then, the LP interleaves the exe-
cution of events from its own queue with those arrived in
the incoming message queues, repeatedly processing events
with the smallest timestamp. All pending events can be
processed until time mini(T (Qi)) + l is reached, where l is
the look-ahead. The minimum mini(T (Qi)) is essentially a
lower bound for the local virtual time (LVT) in all logical
processes, also referred to as the lower bound time stamp
(LBTS). However, if one of the input queues in an LP be-
comes empty, the LP must wait until new messages arrive
in that queue. Events in other queues can be processed up
to the time of the last processed event. This mechanism
may result in a deadlock or memory overflow in the system.
The problem is that a cycle of logical processes blocked by
an empty queue can cause a deadlock situation, where the
simulation cannot advance further, although there are sev-
eral events that still have to be processed. To avoid this
situation, an LP must receive updates on the LBTS of the
simulation, so that it can ensure no events before a certain
time can arrive. The solution to this issue is the concept of
null-messages. These messages are empty events that carry
only a Ts(e) timestamp. The protocol sends null-messages
after each event has been processed in an LP, guarantee-
ing that the LBTS of the simulation is updated accordingly.
Other more optimized variants of this protocol exist, which
for example incorporate a reduction of the amount of null
messages by sending them more intelligently [22].

Q1 Q2 Q3 Qi

t1

t2

t7

t9

t3

t5

t1 t5 t3 t4

t4

t9

LBTS

EVL

LVT

Local Events

Remote Events

EventCore

EventCoreTimeManager

Time Communication

Event Communication

Events

To Other Cores

Events

From Other Cores

Time Update

To Other Cores

Time Updates

From Other Cores

Time Advance

Request/Grant

Figure 4: Multi-core Design

Implementation.
We have integrated the principles of this protocol in our

event core to allow for parallel execution of events. Our
single-threaded EventCore already contained a priority
queue functioning as the event queue. We use this existing
queue for both internal as well as external messages arriving
from the other event cores. Note that this design potentially
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raises a problem with lock contention on the queue, but
measurements of the time an EventCore is waiting for a
lock show that in most cases this is below 2% of the core
runtime for 8 parallel EventCores. The time management
service is provided by the EventCoreTimeManager present
in each EventCore. The time manager controls the time
advances of the EventCore by keeping track of the LVT of
the other event cores. In a traditional null-message protocol
implementation, the event core has an event queue for each
other core’s external events. In our implementation, these
separate queues are only used for time synchronization
messages by the EventCoreTimeManager. The time manager
has an input queue for time update messages for each other
event core and an associated timestamp field for the last
received time update, similar to the T (Qi) field described
previously. When a EventCore advances the internal
simulation time, the EventCoreTimeManager sends a time
update message to the the other cores. This message arrives
in the time manager’s input queue for the sending core,
and then the T (Qi) field is updated, based on the incoming
time updates. After that, the LBTS estimation for the
simulation is re-calculated in the EventCoreTimeManager.
If the EventCore wants to advance its LVT, it performs a
time advance request to the EventCoreTimeManager. The
request is granted for time LBTS+l, with look-ahead l.
Depending on the answer of the time management service,
the EventCore advances its time or waits for new events.
The described custom protocol acts as a distributed event
core time synchronization protocol.

Fig 4 displays a graphical representation of this system.
The EventCoreTimeManager on the right shows its input
queues, containing time updates, and the T (Qi) field, con-
taining the value of the last received time update, based
on which it calculates the LBTS value. The EventCore de-
picted on the left, contains the LVT clock and the event
queue. Event processing may spawn new internal or external
events, that are rescheduled locally or sent to other cores re-
spectively. The solid lines represent the flow of events, while
the dashed lines represent the communication relevant to the
time synchronization mechanism.

2.4.3 Data Distribution

Currently, the multi-core implementation of the GES sim-
ulator runs parallel cores using Java threads. These threads
have a shared memory space, managed by the Java Virtual
Machine (JVM). Consequently no real data distribution ser-
vice is required, as all objects in memory are accessible to all
event cores. The simulation entities and other objects can
be created and used by any thread in the program. How-
ever it is still necessary to assign entities to a specific event
core, to avoid concurrency problems when multiple cores ex-
ecute events in parallel affecting the same entities and their
datastructures.

Only entities with a communication delay in between
them can be distributed among different event cores, as the
minimum communication delay between entities provides
the look-ahead necessary for achieving parallelism. A higher
look-ahead value, results in a larger possible time difference
between event cores and a higher degree of possible parallel
execution of events, consequently improving the obtained
speedup compared to a single-core execution. Entities that
have a communication delay between them smaller than
the look-ahead, or even zero, should be associated with the

same event core. This may happen if a physical entity is
modeled as a composition of several cooperating entities
and processes.

The process of associating entities with an event core is
managed by AspectJ code weaving. Entities that are created
by another entity get associated with the same event core as
their parent entity. Entities created elsewhere are currently
assigned to an event core in a round robin fashion. Events
also have an event core affiliation, which is established using
the same parent-child relation, unless the event represents
a network message and travels between entities in different
event cores. If an entity A sends a message to another entity
B in another event core, or entity A calls a network method
on entity B, an event is created, and associated automat-
ically with the event core of entity A. The AspectJ code
actually performing the network call then re-associates the
event with destination core B and schedules the event in the
event core of entity B, where the event will be processed.

3. PERFORMANCE EVALUATION
This section presents a parallel performance evaluation of

our multi-core discrete event system implementation. We
investigate the impact of several event core and simulation
scenario parameters on the efficiency and performance of
the system using a synthetic test scenario. The results are
obtained by averaging the data of 5 runs on a Linux cluster.
Each cluster node consists of a dual socket motherboard
containing two Intel Xeon 2 GHz quad core CPUs and 16GB
of memory. Cluster nodes all run a 2.6 Linux kernel. The
tests were compiled and executed with Sun Java 1.6.0.16.
In our experiments, the relative standard deviation of the
measured runtimes used in the speedup calculations is in
most cases below 1% and peaks at 3%. The relative wait
time measurements have a standard deviation less than 1%.

In order to quantify the impact of different scenario
parameters on the parallel performance of the event
core, a synthetic test scenario was developed. This
allows us to easily configure all the involved parame-
ters. The test scenario consists of 100 entities of type
TestEntity, that have a main loop with a tunable num-
ber of local and remote method calls. Local calls are
@AsynchronousNetworkMethod calls to entities living in
the same event core and generate events local to the
core. Remote calls are @AsynchronousNetworkMethod calls
to entities that reside in another event core and involve
sending a remote event to this core. Both types of calls
consist of two loops with a tunable number of iterations.
One of these loops performs memory allocations and the
other one is used to simulate computation time. The main
loop of the TestEntity spawns events at a configurable rate
using a Poisson distribution. We examine the impact of the
event arrival rate, the remoteness of events, the look-ahead,
the event duration and the amount of memory allocations
on the achievable speedup, and on the amount of waiting
time in the event cores. The results give an indication of
the CPU usage efficiency and the overhead introduced by
the multi-core discrete event simulation implementation
under varying simulation model parameters.

3.1 Event Rate
The first test analyses the impact of the number of gen-

erated events per virtual time unit on the performance of
the simulator. For this test we tune the local and remote
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event rate of the Poisson process in our TestEntity. Gener-
ating events with a Poisson distribution makes sure events
are spawned at random times but with an average rate over
a longer time. This also ensures that the entities generate
events distributed evenly over time, but not all at the same
time.

We ran the test scenario ranging both local and remote
event rate from 1 event per second to 1 event per millisecond
(for each entity), while keeping the other simulation model
parameters in the test fixed. Note that the TestEntity also
runs a control loop that creates one resume event for each
call made. This is the case because after each call (local or
remote), the control loop Process suspends until the next
time a method call is generated. There are 100 entities in
the simulated scenario. The look-ahead is fixed to 100ms,
which corresponds to the network delay of the remote calls.
We configure the events to have computational cost ranging
from 0µs to 0.5ms, generated by a uniform random number
distribution.

Note that this computational cost, much like the event
rate itself, is application-dependent. The lack of statistical
data in this matter, compels us to resort to a distribution
of computational times, something we would like to address
in future work. In the simulation of market mechanisms for
resource allocation in grids for example, the majority of the
computational cost of the simulation is located in the bid-
ding functions of the agents that participate in the mecha-
nism, and in the functions that clear the market. Although
the formulation of a bid can be done in a few microsec-
onds, in the case of a simple English auction, we have deter-
mined that a more involved Gjerstadt-Dickhaut [13] bidding
strategy in a continuous double auction setting, can easily
lead to 50ms of computational load per bid that is placed.
Similar considerations apply to the market clearing process.
Whereas this cost is insignificant in case of an English auc-
tion, clearing a combinatorial auction can take minutes if
not hours, depending on the size of the market and clearing
algorithm used [26, 24].

Speedup.
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Figure 5: Speedup in relation to the local event rate
(l/s) and the remote event rate (r/s)

Fig. 5 shows the test results indicating the impact of the
event rate in the simulator on the speedup. At high event

rates, the type of event, whether local or remote is not a
determining factor for the speedup as there is only a small
difference between curves where local events are dominant
and curves where remote events prevail. The accumulated
total event rate is the determining factor. With the 100 enti-
ties each spawning at least 100 events per second, or 1 event
every 10 ms, the attained speedup is satisfying. Consider-
ing an event rate of 1 event every ms, or 1000 events per
second, the speedup reaches almost 7 on the dual quad-core
machine. At an even higher event rate (e.g. 2000 events
per second) the speedup stays nearly the same. If the event
rate is to low, e.g. 2 events per s, the maximum attainable
speedup drops to 2.3. This is a consequence of the relatively
higher time synchronization overhead in relation to the event
process time at lower event rates. At lower event rates, we
also note that the distribution of local versus remote events
does have an impact on the speedup.

Event Core States.
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Figure 6: Event core waiting time in relation to the
local event rate (l/s) and the remote event rate (r/s)

To analyse the event core state machine, we tested the
amount of time the simulator core spends in each state. The
tests revealed that the majority of time is spent in the PRO-
CESS EVENT and the WAITING FOR ADVANCE states
of the event core, while the time spent in the other states
is mostly constant and relatively insignificant across all of
our tests. We therefore focus on the impact of the simulation
model parameters on the percentage of execution time spent
in the WAITING FOR ADVANCE state. Fig. 6 shows this
percentage for varying local and remote event rates. If the
rate of events is low (e.g. 2 events per s), the waiting time
increases significantly with the number of event cores. In
that case, the number of events in the system can’t keep the
CPU cores busy all the time, resulting in more waiting time
for other cores, and a correspondingly higher time synchro-
nization overhead. Higher event rates result in lower event
core wait times. Event rates higher than 1000 events per
second result in waiting times of about 5% for eight event
cores, whereas the lower rate of 2 events per second already
extends to 40% wait time. The increased wait time limits
the useful CPU time and decreases the achievable speedup of
the system. At event rates above or higher than 100 events
per second, wait times are below 13% up to 8 event cores
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3.2 Look-ahead
This section evaluates to what extent the value of the look-

ahead influences the performance of the simulator. We test
the look-ahead for values of 1ms, 10ms, 50ms and 100ms,
and keep the other parameters the same as in the previous
test. We run this test also for different event rates, as this
parameter changes the sensitivity of the system to different
look-ahead values. In the network we are simulating, all
entities have a fixed communication delay of 100ms.

Speedup.
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Figure 7: Speedup in relation tot the look-ahead for
different event rates (e/s)

Fig. 7 displays the impact on the speedup of the look-
ahead parameter for different event rates. The influence of
the look-ahead is clearly visible in this synthetic test, where
a lower look-ahead results in a reduced speedup. The graphs
show that the effects of the changing value for the look-ahead
decrease with higher event rates.

Event Core States.
A higher look-ahead results in a higher speedup, conse-

quently the event core waiting time decreases with a higher
look-ahead. This effect is illustrated in Fig. 8, where the
event core wait time is shown for different look-ahead values
and several event rates. As expected, the benefit of a higher
look-ahead parameter is much higher when the event rates
are lower. The look-ahead allows for higher virtual time dif-
ferences between event cores, which is more important for
achieving a high speedup at lower event rates.

3.3 Event Duration
In this section, we look at the impact of duration of events.

To achieve maximum speedup, we have to make sure that
all event cores are processing events all the time to limit the
waiting time. By creating and processing events that have a
high computational cost, taking a long time to process, the
overhead resulting from the synchronization mechanism can
be relatively reduced.

The following experiments evaluate these assumptions by
running the simulation with various event durations. An
event consists of a simple loop that is executed a variable
number of times, resulting in a change in length of the event
runtime. The loop is executed as a result of a local or remote
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Figure 8: Event core waiting times in relation to the
look-ahead for different event rates (e/s)

call on an entity, but there are still other events (e.g. the
resume-events from the test driver Process, as described in
Sect. 3). In this test, the event rate is set fixed at 200e/s,
but the same effects are visible for other event rates. We
test various upper limits for the uniform random distribu-
tion that determines the busy loop count, ranging from 0 to
750000 loop iterations, corresponding with a computation
time ranging from 0 to 750µs on our test hardware.

Speedup.
As shown in Fig. 9, longer events result in a higher

speedup, whereas the speedup drops significantly if the
events are to short. The impact of the average event
duration on the achieved speedup is most pronounced in
the range of 10 µs to 500 µs.
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Figure 9: Speedup in relation to event duration

Event Core States.
The graph in Fig. 10 evaluates how the event core waiting

times relate to the duration of an event. The overall impact
of the event duration on the waiting times is rather limited,
but shorter events result in a higher relative overhead of the
time synchronization mechanism, the event core state ma-
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chine and more lock contention on the event queues, which
explains the decreased speedup.
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Figure 10: Event core waiting time in relation to the
event duration

3.4 Memory Allocations
In this section, we analyse how the number of memory

allocations performed during the processing of each event
influences the parallel performance of the system. The loop
that simulates memory allocation time during the process-
ing of each event performs the allocation of a small string
of 5 characters and an array of doubles with size 10 for a
configurable amount of iterations. The computational loop
has a cycle count that is given by a uniform random number
between 0 and 250000.

Speedup.
As shown in graph Fig. 11, the behaviour of the event core

is different from previous tests. The graph illustrates that
more allocations result in a lower achieved speedup, which
is an opposite effect compared to the event duration test,
where more computation time results in a higher speedup.
The change in speedup caused by additional memory allo-
cations becomes more important at higher event rates.
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Figure 11: Speedup in relation to the number of
allocations per event for different event rates (e/s)

Some additional experiments were run in order to inves-
tigate this behavior. We created a test code running a loop
that calls a computationally intensive function and a func-
tion allocating an array of 10 doubles. The loop runs a fixed
number of times distributed across a variable number of
threads from 1 to 8. We then compare the achieved speedup
for different ratios of computation time versus memory al-
location time. The graph in Fig. 12 shows that the amount
of memory allocations in an application has a significant
impact on the parallel performance. If 3% of the runtime
is spent on memory allocations, a much lower speedup can
already be observed. As the percentage of time spent on
memory allocations reaches 100%, a speedup of two becomes
unattainable irrespective of the number of cores used.

An identical experiment in C++ shows a different pic-
ture with significantly lower degradation of speedup under
increasing intensity of memory allocation operations. The
C++ results are shown in Fig. 13. Our tests have indicated
that the JVM’s garbage collector is not responsible for the
speedup loss, as the garbage collection runtimes are neg-
ligible in relation to the total application runtime. How-
ever high allocation rates cause the garbage collector to add
much more synchronization points in the JVM. The time
lost reaching these so called synchronization safepoints, mea-
sured with Sun’s HotspotRuntimeMBean, can reach up to
50% of the application runtime. The point at which these
issues arise is dependant on the size of the young generation
part of the JVM heap [21], which can be tweaked with the
NewSize JVM parameter.
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Figure 12: Impact of Java memory allocation on
speedup (for different allocation time % per run,
on a dual quad-core CPU)

Event Core States.
The graph shown in Fig. 14 depicts the time spent in the

wait state of the event core for different allocation amounts
and event rates. The event rate is a more important factor
that determines the wait time. The number of allocations
has little effect on the waiting time. In case of a higher
allocation rate, the speedup loss is caused by the increased
time spent in the JVM.

4. RELATED WORK
Initial research on discrete event simulation dates back
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to the 1950s. Early work on parallel and distributed sim-
ulation was driven by the development of the null-message
protocol, also referred to as the CMB protocols by Chandy
and Misra in 1978 [4], and independently Bryant in 1977 [3].
In the years thereafter, many additions and improvements to
the original conservative protocol were designed. Some opti-
mizations to reduce the number of null-messages by sending
them more intelligently (e.g. on demand or delayed until
some timeout occurs) were described in [22]. Another ex-
tension is the carrier null-message protocol [25], handling
the synchronization more effectively by propagating more
information in the null-messages. In contrast to the previ-
ous deadlock avoidance null-message algorithm, the dead-
lock detection and recovery algorithm [5] allows deadlocks
to occur but providing a mechanism to detect and recover
from them. Other more global oriented time synchronization
mechanisms, where the basic null-message synchronization
is decentralized, also became available (e.g. the bounded lag
algorithm [19]). Simulations using a conservative time syn-
chronization protocol have been evaluated using synthetic
application benchmarks simulating queueing networks [2,
10, 30], communication networks [1] or electronic circuits

[23, 1].
The publication of the Time Warp protocol by Jefferson

in 1985 [15], introducing an optimistic synchronization pro-
tocol was another milestone in the history of parallel and
distributed simulation. This protocol introduces a roll-back
mechanism providing proper synchronization across event
cores, by reverting to a previous state if a causality er-
ror occurs. Numerous extensions and improvements have
been developed since then. For example, lazy cancellation
reduces the number of roll-backs by only cancelling events
that do not have the same outcome and lazy re-evaluation
tries to keep as much state in formation as possible to al-
low a quick roll-back, at the cost of a higher memory us-
age. Furthermore, additional techniques to efficiently keep
as much previous state information as possible with a min-
imal amount of memory (e.g. Cancelback [14], Artificial
Roll-back [18], etc.) were developed. Parallel discrete event
simulation performance evaluations using an optimistic syn-
chronization protocol have been conducted using synthetic
benchmarks simulating communication networks [1, 28] or
electronic circuits [1].

Most of the parallel and distributed simulation basics and
the conservative and optimistic optimization techniques are
well described in [7] and [10].

Performance evaluation studies for both conservative and
optimistic time synchronization have been limited to an eval-
uation of parameters specific to the simulation model, while
our performance evaluation analyses the impact of more gen-
eral discrete event simulation parameters such as event ar-
rival rate, look-ahead, event duration and the remoteness of
events.

5. CONCLUSION
In order to harness the power of multi-core architectures,

simulators can be developed to execute discrete-event simu-
lations in a parallel fashion. We have described the applica-
tion of a conservative parallel discrete-event core design to
the Grid Economics Simulator in this regard. Our perfor-
mance evaluation shows to what extent the implementation
of a conservative time synchronization protocol in our Java-
based event core can result in a speedup of the simulation on
a multi-core architecture with a dual quad-core setup. The
results of our synthetic tests quantify the impact of various
simulation model parameters on the attained speedup. As
such, our results can be used to assess to what extent a par-
ticular simulation can benefit from parallel execution under
a conservative time synchronization protocol.

We show that high parallel performance can be attained
with the proposed parallel core, provided that a number of
simulation model parameters reach adequate levels. The
key parameters in this regard are the lookahead used, the
average duration of events and the event arrival rates.
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