
ECOOSE: An Echo Cancellation Object Oriented
Simulation Environment

Stephen Braithwaite and Ron Addie
University of Southern Queensland

Toowoomba, Australia
braithwa@usq.edu.au, addie@usq.edu.au

ABSTRACT

This paper introduces an object oriented Matlab toolbox which is

being developed for the testing and development of echo cancel-

lation algorithms. The obvious objective of an echo cancellation

simulation toolbox is to allow any simulated audio environment to

be used with any echo cancellation method, and observed by any

system for statistical observation and analysis. Such flexibility is

hard to achieve. In this paper we explain the advantages of using

an object oriented approach, as provided in Matlab 2008, for the

design of this toolbox. The design is presented along with some

initial results.

Categories and Subject Descriptors

I.6.5 [SIMULATION AND MODELING]: Model Develop-

ment—Modeling methodologies; H.5.5 [INFORMATION IN-

TERFACES AND PRESENTATION (e.g., HCI)]: Sound and

Music Computing—Signal analysis, synthesis, and processing;

D.2.13 [SOFTWARE ENGINEERING]: Reusable Software—

Reusable Libraries

1. INTRODUCTION
Echo cancellation has been studied for several decades and mil-

lions of devices which implement particular instances of echo can-

cellation algorithms now exist in our communication networks,

computers, and telephones. However, as our appetite for interac-

tive video and audio communication over the Internet grows, and

becomes more and more a part of the way we work and live, there

is a need for ever more sophisticated echo cancellation algorithms.

In the study and development of such algorithms, it is essential to

read and understand descriptions of algorithms developed by echo

cancellation researchers, and to independently evaluate and com-

pare these algorithms, with each other, and with new algorithms

which are under development.

A flexible echo cancellation object oriented simulation environ-

ment (ECOOSE) has been developed as part of a project to de-

velop echo cancellation for remote auscultation. The software

for ECOOSE is written in Matlab 2008 and is available at [1].

This project aims to allow echo cancellation algorithms, recorded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Simutools March 2008, Rome Italy
Copyright 2009 ICST 978-963-9799-45-5.

sounds, experimental channels (from measurements or purely the-

oretical), and statistical analysis methods to be specified, inter-

changed and used together in experiments which investigate (pri-

marily) the ability of the algorithms to cancel echoes. In this way

it is hoped that the process of evaluating and comparing echo can-

cellation algorithms can be promoted and developed as efficiently

as possible.

In Section 2 the context of echo cancellation research and de-

velopment is explained; in Section 3 the reasoning which lead us

to choose an object oriented approach is explained; in Section 4

the reason why Matlab 2008 was found to be both necessary and

adequate for the development of this toolbox is explained; in Sec-

tion 5, the design of the current version of the toolbox is described;

and in Section 6 some shortcomings of this design are described

and a new design is outlined. Finally, conclusions are presented in

Section 7.

2. ECHO CANCELLATION BASICS
Echo management first became necessary in the 1930’s when

international telephony introduced one way delays of up to 80 mil-

liseconds(e.g. London-Hawaii [3]). Transmission over distances

of this length requires amplification, which is only practical in sys-

tems which use 4 wires: 2 in each direction. At that time, and still

today, telephone systems use just two wires between the local ex-

change and the residence, so at some point near the residence, usu-

ally the local exchange, a conversion between 2 wire and 4-wire

communication must take place.

The device which implements this conversion is known as a hy-

brid. Unfortunately, hybrid’s inevitably produce an echo, which is

very disturbing to audio communication unless the level of the echo

signal is reduced to considerably lower than the intended voice sig-

nal passing in the same direction or the delay of the echo path is

very small (eg 10 milliseconds).

Initially, in the 1940’s and 1950’s, echo suppression, which in-

hibits both-way conversation, was used to reduce the impact of

echos. The introduction of satellite links caused long delays of up

to half a second [3]. This encouraged research into echo manage-

ment and echo cancellation was introduced. Instead of avoiding

echos by preventing simultaneous two-way communication, echo

cancellation estimates the echo and removes it on its way back from

the point where it is generated. Bell Laboratories was the first com-

pany to patent a practical echo cancelling design [12]. This design

or algorithm is commonly known as the Least Mean Squares algo-

rithm.

2.1 Echo Cancellation
Echo cancellation works by modelling the "channel" that acts

upon the input giving the delayed echo, e.g. the telephone line, or

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

Figure 1: Block diagram for basic echo cancellation.

the speaker/microphone/room combination. The echo canceller au-

tomatically develops a model for the channel, and uses this model

in combination with the input to predict what the echo will be. It

then removes the predicted echo from the output, by subtracting it.

In most cases the channel is linear, time invariant and causal, so

that the echo canceller models the channel using a finite impulse

response, as illustrated in Figure 1. In this diagram, x(t) represents

the speech signal from the remote end. z(t) is the speech signal

from the local end, and ẑ(t) is the desired result, relatively free

from any echoes of x(t). The real impulse response of the echo

path channel is h(t) and our estimate of h, used in the cancellation

of the echo, is denoted by ĥ. The equation connecting z, h, x and ẑ

is as follows:

ẑ j = z j +(h∗ x) j− (ĥ j ∗ x) j, j = 0,1, . . . ,

= z j +((h− ĥ j)∗ x) j, j = 0,1, (1)

We denote by y(t) the signal given by the convolution y(t) =

h(t)∗ x(t) and we set ŷ(t) = ĥ(t)∗ x(t).

2.1.1 The Least Mean Square algorithm

If we let ĥi denote the vector (ĥ0, ĥ0, . . .)
′, sampled at time i, and

zi denote (zi,zi−1, . . .)
′, the Least Mean Squares algorithm, after

initializing ĥ0 to zero, uses the iterative step:

ĥi+1← ĥi + k ẑi xi (1)

where k is an arbitrary constant between 0 and 1.

White noise is the ideal excitation for the LMS algorithm and in

fact the algorithm will not converge to the true value of h if x is

frequency deficient [19].

Many patents for incremental enhancements were applied for

and awarded after the basic LMS algorithm.

One of the most important enhancements to the algorithm is the

introduction of a normalisation term, first used by Nagumo and

Noka in 1967 [15]. Since y and ŷ are both proportional to x, our

update is proportional to |x|2, i.e. the square of the volume. At low

volumes, (i.e. for a quiet talker), the basic LMS algorithm will only

converge very slowly; if we make k large in order to compensate

for this problem, at high volume (loud talker) convergence could

become unstable.

This is fixed by adding a normalisation term.

ĥi+1 = ĥi +
k ẑi xi

xT x+∆

The ∆ in the denominator prevents the algorithm from becoming

unstable when x is very small. The normalisation term itself can be

updated rather than recomputed, so it does not represent any sub-

stantial computing overhead. This version of the LMS algorithm

may be more explicitly referred to as the Normalised Least Mean

Squares (NLMS) algorithm.

2.1.2 Recursive Least Squares

Godard by applied the Kalman filter to the problem of adaptive

equalization [7]. By doing this, he introduced the Recursive Least

Squares (RLS) algorithm. Subsequently Gitlin and Magee derived

the same algorithm using Woodbury’s inversion lemma [8] [6].

The RLS algorithm features fast convergence and can achieve

up to 40 dB of echo cancellation in practice [9]; it also converges

well if the input is frequency deficient [11]. It has complexity of

order N2 however "fast" versions of the RLS aglorithm have been

developed which can perform a single iteration in 8N operations,

as opposed to 2N operations with the NLMS algorithm [11].

In general, the channel is not fixed and information from the re-

cent past is more important than information from the distant past.

Weightings are used in practice, so that the effect of information

from the past reduces exponentially with time [9].

2.1.3 The Affine Projection Algorithm

The Affine Projection (AP) algorithm is an attractive compro-

mise between the NLMS and the RLS algorithm [16]. An AP algo-

rithim of order L lies in between the two. It uses the L most recent

innovations, with L being a small number typically in the range 2

to 5.

The performance of the AP algorithm approaches the perfor-

mance of the RLS algorithm in practice [9]. Fast version of the AP

algorithm exist, and their numerical complexity approaches that of

the NLMS algorithm.

2.1.4 Non Linear Echo Cancellation

While most echo channels are linear, distortion such as speaker

clipping can easily introduce non linearity into the channel, which

can nevertheless still be cancelled by a suitably designed echo can-

cellation algorithm [2]. A general class of non linear echo cancel-

lation algorithms based on the Volterra series is described in [18].

3. JUSTIFICATION OF THE DEVELOP-

MENT OF AN OBJECT-ORIENTED

TOOLBOX
Matlab is an attractive platform for the implementation of the

algorithms because it is a high level language with a wide range of

medium level operations immediately available.

Mathworks Simulink is a popular platform for performing the

simulation of echo cancellation [4] [17]. Simulink allows the mod-

elling of echo cancellation blocks in a natural and obvious way, and

reveals the end results.

However, the concept of channel with which Simulink deals may

not be adequate for certain types of experiments. For example,

when there is frequency deficient input, it is possible for algorithms

such as LMS to converge on an echo path channel estimate such

that the echo is cancelled without convergence to the true channel.

It may be instructive to see whether the algorithm finds the correct

model , as well as correct results. Also, it can be instructive to

see how different parts of an estimate converge. An example is

shown in Figure 2 where the non linear part of the channel estimate

actually gets worse, initially. We chose to use a simulation that

allowed us to monitor the convergence of the model itself, which

made the use of simulink impractical.

Development of a new object-oriented framework (in the sense

defined in [10]) for echo cancellation experiments has allowed us,

in particular, to incorporate facilities which compare the internal

state of an estimate with the actual model.

We originally implemented an echo cancellation toolbox using

only the procedural features of Matlab in 2007. Interfaces for the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

various elements of a simulation were defined, so that they could

be interchanged as needed. This earlier toolbox had the following

elements as well as code that allowed the elements to be selected

and run:-

• A directory of sound files in waveform audio format.

• A directory of linear channels in waveform audio format

• A directory of non linear distortions in the form of Matlab

functions.

• A directory of echo cancellation algorithms in the form of

Matlab functions,

• A directory of experiment specifications or run files in the

form of small Matlab functions. Each file performed one

experiment or run.

This first implementation was unsatisfactory because it was not

flexible enough to meet the primary goal of the project. Any exper-

iment could be carried out, but it was necessary to meddle with the

code for algorithms and other elements in order to do so. Examples

of the way the first implementation lacked flexibility are as follows:

• It was difficult to separate the algorithm from the channel.

Ideally, the algorithm should not already know the chan-

nel, but should have to discover the channel for itself. But

progress, typically in the form of euclidean distances, needed

to be monitored at each iteration, and that required knowl-

edge of the channel. If the algorithm state variables were not

to be passed out of the algorithm in order to save the values

between calls, it was necessary for the algorithm to be pro-

vided with the information about the channel and do those

calculations with each iteration.

Because the algorithm and the channel were not separated,

it was difficult to try out random combinations of channel

and algorithm, e.g. trying a non linear channel with a linear

algorithm, or a linear channel with a non linear algorithm.

• Each new algorithm seemed to impose new demands on the

algorithm interface. The algorithm interface had to be ex-

panded at each turn. In order to allow interchangeability, the

changes in the interface had to be propagated back to the ex-

isting algorithms. The only alternative to this would be to

have a huge, all encompassing interface with every need an-

ticipated.

• Different algorithms required different parameters, and in or-

der to cater for this, it was necessary to format arguments into

a string and implement parsing. In practice, it was so much

easier to hack, changing the parameters in the code itself.

• Algorithms had to be modified in a major way to model a

change in the parameters of a channel during a run.

4. OBJECT ORIENTED PROGRAMMING

IN MATLAB 2008
We looked for an alternative way to implement the echo cancel-

lation test harness. We considered implementation in a 3rd genera-

tion object oriented language such as C++. Using C++ would allow

us to solve the above problems, but we would lose the easy access

to well developed well tested mathematical primitives offered by

Matlab. Instead, we would have to search for them or implement

them. Then, of course, we would have to test them ourselves.

We considered using the object oriented capabilities offered by

Matlab 2007, but soon discovered that it was too limited. No refer-

ences are possible to Matlab 2007 objects and Matlab 2007 objects

are not mutable. Matlab 2007 permits only objects that need to be

recreated each time a value in the object is modified.

The object oriented capabilities available in Matlab 2008, on the

other hand, are sufficient to justify taking an object-oriented ap-

proach in the development of a toolbox [14]. In Matlab 2008 it is

possible to have objects that can be referenced from elsewhere in a

program and to have methods that alter only some of the properties

of an object[13].

Properties and methods can be private, protected or public, as

one might expect in an object oriented language. Constructors, de-

structors, abstract classes, static methods and even multiple inheri-

tance are all part of the language[13].

Objects that are no longer referenced are automatically de-

stroyed, which seems appropriate to a high level application-

oriented language such as Matlab (although currently, memory

space associated with destroyed objects is not re-used, unless one

manually destroys all variables [5]).

We opted to upgrade to Matlab 2008 and recreate the echo sim-

ulation environment from scratch.

5. DESIGN OF THE OO ECHO CANCEL-

LATION TOOLBOX

5.1 Requirements
The echo cancellation toolbox will be used to develop echo can-

cellation algorithms and to characterise existing echo channels.

The toolbox should be able to take any local or remote sound in

the form a waveform audio input.

The toolbox should be able to handle the following types of

channels:-

• Static Linear Channel

• Channel with a timewise discontinuity.

• Slowly changing linear channel.

• Channel preceded by non linear instantaneous distortion.

• General non linear channel.

The toolbox should be able to handle the following types of

algorithms:-

• NLMS algorithm.

• RLS algorithm, and fast RLS algorithms.

• AP algorithms, fast AP algorithms.

• Block based time domain algorithms.

• Block based frequency domain algorithms.

• Algorithms that work with a channel preceded by non linear

instantaneous distortion.

• The Volterra general non linear algorithm.

The toolbox should be able to generate the following types of

output.

• Graphical depiction of algorithm convergence.

• Numerical indicators of obtained convergence.

• File output of obtained channel.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

5.2 Object-Oriented Design of an Echo Can-
cellation Simulation Toolbox

Figure 3 is a class diagram which shows the relationships be-

tween the various classes. There is an abstract class for the channel,

from which real channels are derived and also an abstract class for

the algorithm from which other algorithm classes are derived.

5.3 The Algorithm Classes
The algorithm class is responsible only for the algorithm, so that

the development of an algorithm can be performed with minimal

effort.

The algorithm classes are derived from the base algorithm class,

algBase. The algorithm classes do not know the channel. It is the

job of the algorithm to discover the channel. An important abstract

method of the base class is called next(), which is called for each

iteration and has as its arguments, just the current value of x and

the current value of ξ, just as a real echo canceller would have. The

algorithm classes make the results available by means of methods.

One of the abstract methods of the base algorithm class is getY(),

which returns the current estimated result from the echo channel y.

5.4 The Linear Algorithm Class
The linear algorithm class is a specialization of the base algo-

rithm class. Most of the echo cancellation algorithm classes are

linear, and will be derived from this class. Since linear channels

are characterised by their impulse response, getH(), which returns

the impulse response is one of the methods of this class. setH()

which allows the current value of the impulse response to be set

artificially, is also a method of this class.

5.5 The Channel Classes
The channel class knows the characteristics of the channel, and

knows how to calculate the real value of y from the values of x. The

channel class, calculates ξ = y+ z, and provides the algorithm with

x and ξ. The channel will use a method provided by the algorithm

to obtain the estimated value of y, and will use it to report the errors

to the output classes such as the graphing class.

5.6 Algorithm Delay
The estimate of y is normally produced by convolving x with the

estimated channel. This is instantaneous if this is implemented in

hardware, but this is not the most efficient method of calculating y

in a digital algorithm. The fast Fourier transform actually makes

it possible to convert x and ĥ to the frequency domain as blocks,

perform the calculations in the frequency domain which become

trivial, and convert the results back to the time domain with less

computational time than it would have taken to perform the calcu-

lation directly in the time domain.

These frequency domain algorithms generally require informa-

tion to be calculated as a block, and such block based echo cancel-

lation algorithms impose a blocking delay. The algorithm knows

how long this delay will be and has a method which returns the

delay measured in discrete time periods to the caller. At each iter-

ation, a request to the algorithm for the y value will return the es-

timated value of for y at that many time periods ago. The channel,

having obtained the delay from the algorithm performs its compar-

isons with the real value of y that many time periods ago.

6. FLAWS IN THE FIRST DESIGN, AND

THEIR SOLUTION IN THE NEW DE-

SIGN

6.1 Problems in the existing Channel Class
Ideally the channel class would be responsible only for the rep-

resenting the channel. In the current implementation, however, the

channel class is not only responsible for calculating the real chan-

nel response to x, it is currently used to calculate and plot the dif-

ferences between the real channel characteristics and the estimated

characteristics over time. This was done because the channel class

is well placed to know what can be graphed, and well placed to cal-

culate the difference between the real channel characteristics and

the estimated channel characteristics, so it was convenient to have

the channel class perform both tasks.

Unfortunately it became apparent that the short term advantages

of this approach are a small benefit, but the long term cost of includ-

ing functions which are not really part of a channel in the channel

class is too serious to be tolerated. For example, temporary code

modifications were required in the algorithm class itself in order to

create the graphs shown in Figure 2 for the purpose of exploring

a non linear echo cancellation algorithm. These graphs show the

performance of both a linear and a nonlinear algorithm applied to

both a linear and a non-linear channel, and demonstrate the need to

arbitrarily mix and match channels and algorithms.

In designing classes representing linear and non-linear channels

and algorithms we face a challenge in O-O design: naturally, the

linear channel understands how to interface to linear algorithms.

Likewise, the non linear channel understands how to interface with

the non linear algorithms. The linear channel can interface with the

non linear algorithm class without difficulty, because although the

methods which are exclusive to the nonlinear algorithm class won’t

be called, this is not a problem. However, the non-linear channel

cannot interface with the linear algorithm, without a workaround,

because it calls methods of the non-linear algorithm that the linear

algorithm does not implement.

This is illustrated by the algorithm being explored in Figure 2.

The linear channel and the linear algorithm are fully characterised

by an impulse response, while the non linear channel and the non

linear algorithm were characterised by both a linear channel and a

distortion polynomial.

6.2 Solution
The solution to this, shown in Figure 4, is to take the function-

ality that the class called channel now has, and split it into two

class hierarchies. One of them will be a hierarchy of channel cal-

culator classes, and the purpose of channel calculator classes will

be to calculate y, given x. The other will be a hierarchy of algo-

rithm observer classes. An algorithm observer class is responsible

for obtaining the estimated echo characteristics from the algorithm

class at each time step, comparing them known echo characteris-

tics, and prepare, at a high level, final results such as graphs. The

algorithm observer needs to know the details of the channel ex-

pressed as nearly as possible in the same model that the algorithm

class uses, even if this model would be inadequate for calculating

the real result, y.

The base algorithm observer class will be able to observe all al-

gorithm classes, because it only observes the estimated ŷ, and com-

pares it to the real y as calculated by the channel calculator class.

The linear algorithm observer class will observe the estimated

impulse response, ĥ as well as estimated result, ŷ. It will be able

to observe all algorithms where the characterisations include the

impulse response h. Note that the channel itself may be linear or

non linear, now that the channel calculator has been separated from

the observation.

6.3 Dynamically Updating the Channel

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

Figure 2: Linear/Nonlinear Channels with Linear/Nonlinear Algorithms

Both the channel class and the algorithm observer class need to

know about the channel. From the requirements, ECOOSE must

be able to handle a channel that changes slowly, or is subject to

sudden change during the course of the simulation. It is there-

fore highly desirable to have the true source of the channel char-

acteristics in a single class. Failure to do this could easily result

in wrong results, because the algorithm observer’s understanding

of the channel characteristics could easily diverge from those of

the channel calculator. Therefore we need a hierarchy of channel

source classes.

Having the channel source class call methods in the algorithm

observer class and the channel calculator class would not not be a

flexible arrangement, because then channel source class would have

to make exactly the right calls, i.e. it would have to be matched to

both the algorithm observer class and the channel calculator class.

Having the algorithm observer class and the channel calculator

class call methods of the channel source class is a much better ar-

rangement. The channel source class must have methods that pro-

vide the information for the channel calculator class and the algo-

rithm observer class, i.e. it must have its knowledge in both models.

But it need not be an exact match to the algorithm observer class

and the channel calculator class, as it can potentially have methods

that are not called.

The channel source class knows when the channel has changed,

i.e. it knows when the algorithm observer class and the channel

calculator class need to call the channel source class to update the

channel. When the channel changes, the channel source class will

notify these classes via a method, in order to tell them that they

need to update.

7. CONCLUSION
The development, analysis, and comparison of echo cancellation

algorithms has reached a stage where it is essential that indepen-

dent and objective tests of algorithms need to be carried out in an

agreed manner. The toolbox presented here is publicly available

(at [1])and can be readily used by anyone undertaking research

in this field. Researchers who wish to propose new algorithms or

analyse new ones are welcome to provide Matlab definitions of an

algorithm class which can be used with this toolbox, by them or by

others, thereby providing objective evidence regarding its perfor-

mance.

The creation of a flexible toolbox for the simulation of echo can-

cellation proved difficult to achieve using procedural technology. It

proved impractical to separate the algorithm from the channel. Ac-

commodating the extra parameters that each algorithm may have

was hard work. A dynamically changing channel would have been

a programming challenge. The adoption of object oriented technol-

ogy will solve these problems, and also give us flexibility without

the penalty of having to re-implement all the features of an audio

channel or of an algorithm if most of its features are similar to one

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

Figure 3: Class Diagram for current design of the Echo Cancellation Object-Oriented Simulation Environment (ECOOSE)

Figure 4: Class Diagram for the improved design for ECOOSE

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

already implemented.

In developing an OO framework, as discussed in [10], we need

to think carefully about its design so that a wide range of appli-

cations can readily be accommodated. In this paper we have ex-

plained some of the difficulties, described our first design, and

also an improved OO design for our framework/toolbox which we

feel can adapt to the present and future needs of designers of echo

cancellation algorithms. Figure 2 shows how the simulation envi-

ronment has been used, with channels and algorithms having been

mixed and matched arbitrarily, allowing us to fully investigate the

strengths and weaknesses of the algorithms under study.

8. REFERENCES
[1] Ron Addie and Stephen Braithwaite. Ecoose home page.

Web Page, 2008. URL:

http://www.sci.usq.edu.au/projects/ecoose.

[2] Ron Addie and Stephen Braithwaite. Non-linear echo

cancellation - a bayesian approach. In Proceedings of the

International Conference on Signal Processing and

Communication Systems, Dec 2008. URL:

http://icspcs2008.trackchair.com.

[3] J.W. Emling and D. Mitchel. The effects of time delay and

echoes on telephone conversations. Bell Systems Telephone

Journal, 22:2869–2891, Nov 1963. URL: .

[4] G. Eslinger and J. Dixon. Dynamic adjustment of system

parameters improves echo and noise cancellation. Technical

report, Texas Instruments, 2006. URL:

http://focus.ti.com/lit/wp/spry094/spry094.pdf.

[5] D. Foti. Inside matlab objects in r2008a. Matlab Digest, Sep

2008. URL:

http://www.mathworks.com/company/newsletters/

digest/2008/sept/matlab-objects.html.

[6] R.D. Gitlin and F.R. Magee. Self-orthogonalizing adaptive

equalization algorithms. IEEE Transactions on

Communications, 25(7):666–672, Jul 1977. URL:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=1093886.

[7] D. Godard. Channel equalization using a kalman filter for

fast data transmission. IBM Journal of Research and

Development, 18(3):267–273, May 1974. URL:

http://www.research.ibm.com/journal/rd/183/

ibmrd1803I.pdf.

[8] W.W. Hager. Updating the inverse of a matrix. SIAM Review,

31(2):221–239, 1989. URL:

http://link.aip.org/link/?SIR/31/221/1.

[9] E. Hansler and G. Schmidt. Topics in Acoustic Echo and

Noise Control: Selected Methods for the Cancellation of

Acoustical Echoes, the Reduction of Background Noise, and

Speech Processing. Springer-Verlag, 2006. URL:

http://www.amazon.com/

Topics-Acoustic-Echo-Noise-Control/dp/

354033212X/ref=pd_bxgy_b_text_b.

[10] Ralph E. Johnson and Brian Foote. Designing reuseable

classes. Journal of Object-Oriented Programming,

1(2):22–35, June/July 1988.

[11] M. Kahrs, G.W. Elko, S.J. Elliot, S. Makino, J.M. Kates,

M. Bosi, and J.O. Smith. The past, present and future of

audio signal processing. IEEE Signal Processing Magazine,

14(5):30–57, Sep 1997. URL: .

[12] J.L. Kelly and B.F. Logan. Self-adaptive echo canceller. US

Patent, Oct 1966. URL:

http://www.freepatentsonline.com/3500000.html.

[13] Mathworks. Matlab classes and object-oriented

programming. Matlab 2008 built in help, 2008.

[14] S. McGarrity. Introduction to object-oriented programming

in matlab. Matlab Digest, Mar 2008. URL:

http://www.mathworks.com/company/newsletters/

digest/2008/mar/matlab_oop.html.

[15] J. Nagumo and A. Noda. A learning method for system

identification. Automatic Control, IEEE Transactions on,

12(3):282–287, Jun 1967. URL:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?

isnumber=24095&arnumber=1098599.

[16] K. Ozeki and T. Umeda. An adaptive filtering algorithm

using an orthogonal projection to an affine subspace and its

properties. Electronics and Communications in Japan,

67-A(5):126–132, Feb 1984.

[17] V. Stewart, C.F.N. Cowan, and S. Sezer. Adaptive echo

cancellation for packet-based networks, August 2004. URL:

http:

//www.springerlink.com/content/2chlxje3pm3yk3c.

[18] E.J. Thomas. Adaptive echo canceller for non linear systems.

US Patent Application, Mar 1970. URL:

http://www.freepatentsonline.com/3647992.html.

[19] Bernard Widrow and Samuel D. Stearns. Adaptive Signal

Processing, chapter ch4. Prentice Hall, 1985. URL:

http://www.amazon.com/

Adaptive-Signal-Processing-Prentice-Hall/dp/

0130040290.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5775
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5775

