Cable-Anchor Robot Implementation using Embedded CD++
[Poster Abstract]

Keith Holman Jeremy Kuzub

Mohammad Moallemi

Gabriel Wainer

Carleton University Dept. of
Systems and Computer Engineering
1125 Colonel By Drive, Ottawa, Canada, K1S 5B6

{keith, jkuzub, omoallemi, gwainer}@sce.carleton.ca

ABSTRACT

We show the design and implementation of aroba controller with
aunique locomotion system. We demonstrate that a discrete-event
simulation based design provides a cost-effedive, flexible, open
workflow for moduar robatic development. The roba is designed
to trandate against a verticd surfaceusing cables fixed at one end
that can wind on motor-controlled spods attached to the robat.
This architedure was implemented first as a regressvely tested
simulation within CD++ then ported to Red-time CD++. Using
the NXT++ interface library, a hardware implementation of the
roba using Lego® Mindstorms™ was shown to be controll able.

Categories and Descriptions
B.1.2 [Control Structure Performance Analysis and Design Aids]
simulation, 1.2.9 [Robatics] Commercial robots and applications

General Terms
Design, Verificaion

1. Cable-Anchored Robot

In applicaions where terrain is too difficult to traverse using legs
or wheds, other forms of robat locomotion must be found Exam-
ples include disaster areas, such as building collapse, or environ
mentally sensitive locaions where no disturbance can be tole-
rated. One form of locomotion that could allow 2D and 3D loco-
motion involves a céble-anchored roba. Rather than wheds, a
cable-anchored roba is designed to hang from two or more points
fixed above and aroundthe desired areaof movement conreded
by cables. The ends of the cables med at the robat and are eah
wrapped aroundmotor-driven spods which the roba can rotate to
let out cable or take it in. This effedively al ows motion througha
spaceor aaossa plane.

The use of DEV S dlowed for a bottom-up development and test-
ing process The use of DEVS madeit easier to produce a modu
lar design. Unit testing eat of these models was simplified be-
cause of the use of simulation.

Permisson to make digital or hard copies of al or part of thiswork for
personal or classoom use is granted withou feeprovided that copies are
not made or distributed for profit or commercia advantage and that copies
bea this naticeand the full citation on the first page. To copy otherwise,
to repubish, to post on servers or to redistribute to lists, requires prior
spedfic permisson and/or afee

SIMUTools 2009, Rome, Italy

Copyright 2009ICST, ISBN 978963979945-5

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5743
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5743

This enabled design flaws identified and isolated prior to porting
the design to hardware. Simulation also gave visihility into the
state of the system at any given time.

Using a bottom-up development and testing processresulted in a
complex roba controller system that met desired performance
goals. The flexibility of the anchor-cable locomotion system is
off set by its geometric complexity; however, this was shown to be
successully addressed with a path planner that could lineaizero-
bot motions with controll able fidelity.

2. Implementation

A subset of this problem using two cables and a planar surfacefor
movement was used as a red-world design spedficaion. The ro-
bot would translate against a verticd surfaceusing fixed cébles
that can wind on motor controlled spods attached to the top of the
roba (Figure 1). The attachment points to the surfacecan be arbi-
trary, and the controll er is modeled in such away that target (X, y)
Cartesian coordinates can be trandated to desired cable take-up
and incremental motor movements. The roba model is imple-
mented so that the path between the current roba pasition and the
desired position is cdculated in steps of defined resolution. This
alows linea roba movement to the target position regardless of
the geometry of the roba and cable attachment poaints.

cable attachment point cable attachment poink

"Linearized” path has
less overal
/ unpredictability

/

T T~
esaT?
iz ey,
o I S
5 e,

P O)
Robot target
ooordinates

intermediate “waypoints" created by
robot’s Path Plannes

surface

Figure 1: Robot path between start/target using path planner

The control algorithms were first simulated using the CD++ simu-
lator [1] and it was then integrated to a hardware prototype im-

plemented using the Lego Mindstorms™ robdatics construction
toolkit and E-CD++ [2].

3. System Architecture

A hardware implementation of the roba using Lego Mindstorms
was shown to be controll able using event files. Open-loop motor
control was demonstrated using the fundamentals of a simulated
roba inthered world.

Roba
Ev_ent Generator
File Path Generator
out | out outy |0
0 Chalk noager
> R0 engeey
dore read in
do in Motor 1
Trand nextPosition out
in Lansalor motorOut
out motorOut?2 Vkin Motor 2

dore
Figure 2: Overall Model of Robot System

Developing architedure for the roba controller involved bre&ing
down the behaviour of the roba into sequentia, event-driven
steps. Each step had a unique function and could be more easily
tranglated into atomic models for CD++ implementation.

The Robot is the top-level couped model (Figure 2). This
represents a cable-stay roba. Each roba is composed of a
Gener at or and Chal k Engager andtwo motors. This simulates
how the hardware cable-stay roba would work. A roba would
contain controllers, in this case a chalk engager, and two motors
that communicate with Mindstorms. The Gener at or trandates
input into a format understandable by ead controller. The roba
can bein either passve or adive state. When in passve the roba
is waiting for the next event from the event file when in adive the
roba is handliing an event from the event file or interpreting are-
sporee from the subsystem [4].

Each atomic model within the design is resporsible for a spedfic
task. For example, the Mot or isan atomic model that is provided
with anew length for the amount of cable to expel. It also trans-
lates desired input from the system into corred values before for-
warding the instructions to a conneded Mindstorms aduator. If
the Mot or isrequested to move to an impaossble position an error
flag is returned on an output port. Each movement instruction is
sent as an event, which alows for testingin isolation.

4. Simulation Analysis

The initia design was implemented in CD++ to simulate roba
behaviour. The simulation initialy was not completely successul,
and indicaed an error in the path planning a gorithms was not ini-
tially deteded in the atomic model tests of the Pl anner and
Tr ansl at or . Spedficadly, the path planner failed to generate in-
termediate waypoints in the spedal case of verticd and horizontal
lines. Initial model tests were dore with only diagorel lines, so

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5743
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5743

cases where the slope was infinite or zero were not part of that test
plan. A simulation-based development like this allows more op-
portunities to test the system in a larger data space The greaer
the level of integration when an error is found the more difficult
it isto pinpant its source the lesonisthat exhaustive unit testing
is necessary, but not sufficient, as some test cases will likely be
missed.

This smulation also showed the value of testing algorithmsin re-
gresson using two different derivation methods. Inputs and out-
puts shodd match if the system is working as expeded; errors
oversights are more easily spotted. The disadvantage may be in
development time as a partial second set of roba control algo-
rithms must themselves be derived, tested and debugged. The re-
sult, however, provides an additional level of confidence on the
path to hardware implementation.

5. Robot Construction using Mindstorms

After deteding and fixing the initial problems, the simulated
model behaved as expeded, planning and following a physicdly
feaible set of paths. Thus, we ported the model to E-CD++ con-
trolling a Lego Mindstorms robat (in order to be able to reuse the
model as an engineeing educaion todl). Two servo motors were
used to wind and unwind the cable spods. A third motor aduated
the chalk writer.

Mindstorms hardware control via NXT++ and E-CD++ was suc-
cesgul. Motor commands were properly issued and aded uponby
the hardware. Red-time DEV S alowed acaurate timing of motor
movements; with the motors properly charaderized it was poss-
ble to provide goodacairacy.

6. Conclusion

A hardware implementation of the roba using Lego Mindstorms
was shown to be controll able using event fil es. Open-loop motor
control was demonstrated using the fundamentals of a simulated
roba in the red world as well as using simulation techniques to
build a more robust system by intermediary analysis.

This implementation controlled Mindstorms hardware via a
DEVS atomic model within a complex couped model. This de-
mongtrates that other Mindstorms sensors or adtuator can be effec
tively modeled as atomic models within DEV S++ and the asw-
ciated Red-time DEV S atomic model can be substituted in the E-
CD++ framework with littl e additional modificaion required. A
workflow was thus successully demonstrated from simulation to
hardware implementation with DEVS, Red-time DEVS, and
Mindstorms.

7. REFERENCES

[1] Wainer, G., "CD++: atoadlkit to define discrete event
models". Software, Pradice and Experience Vol. 32,
No.3. pp. 1261-1306 November 2002

[2] E-CD++: atod for modeling embedded red-time appli-
caions’. J. Yu, G. Wainer. In Proceedings of the 2007
SCS Summer Computer Smulation Conference. San Di-
ego, CA. 2007.

