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ABSTRACT  

The adoption of an agent-based approach that incorporates 
intelligence, adaptation and learning abilities has proved to 
significantly increase the realism and the accuracy of the 
simulation. Simulation systems of such a kind, however, require 
computational resources that might be considerable for a single 
agent, so to become unfeasible when the number of simulated 
agents scales up. A distributed environment is thus needed to 
allow the execution of such simulation systems, particularly in the 
case of scenarios populated by a large number of agents. Building 
an agent-based distributed simulation system, however, requires 
both specific expertise and knowledge of distributed simulation 
standards and a non-negligible amount of effort to develop ad-hoc 
components. This paper introduces a simulation framework 
named DisSimJADE, which enables the incorporation of 
distributed simulation facilities into existing agent-based systems. 
DisSimJADE is built on top of the popular agent-based 
framework JADE and allows to define agent-based simulation 
systems that can be transparently executed either in a local or 
distributed, therefore bringing significant savings in terms of 
effort and development time. In addition, DisSimJADE provides a 
uniform interface to the JADE framework, which further 
facilitates the production of distributed simulation systems to 
developers of JADE-based multi-agent systems. 

Categories and Subject Descriptors 
D.2.13 Software Reusability, D.2.10 Design, D.3.2 Language 
Classification, D.3.3 Language Constructs and Features, I.2.11 
Distributed Artifi cial Intelligence, I.6.5 Model Development, I.6.7 
Simulation Support Systems, I.6.8 Discrete Event, I.6.8 
Distributed, I.6.2 Simulation Language.  

General Terms 
Design, Experimentation, Languages. 

Keywords 

Discrete event simulation, Distributed Simulation, Agent-based 
Simulation, Framework, JADE, HLA  

1. INTRO DUCTIO N  
Physical systems are often composed of autonomous, interacting, 
possibly intelligent entities that cooperate, compete and carry out 
tasks to achieve individual or collective goals [1]. When 
simulating such systems, an agent-based modeling approach 
offers an effective conceptualization paradigm that easily  allows 
to capturing the interactions and the individual/collective 
intelligence that such systems exhibit. The incorporation of 
sophisticated intelligence often requires computational resources, 
in terms of memory for the data representation and CPU cycles 
for the reasoning rules or criteria, that are often not available on a 
single host. The use of distributed execution environments can be 
seen as a solution to the problem of guaranteeing the needed 
accuracy and efficiency when largely populated scenarios are to 
be simulated [2]. On the other hand, developing a simulator in a 
distributed environment requires specialized know-how that goes 
far beyond the agent-based modelling techniques. In addition, 
acquiring such knowledge is a considerable initial investment that 
can prevent the adoption of such techniques. 

In this paper, we face the problem of making easier the 
development of distributed agent-based simulation systems. To 
this purpose, the paper introduces DisSimJADE, a framework that 
makes transparent the development of distributed agent-based 
simulation systems by raising the agent-based developer from all 
the concerns of the local or distributed simulation environment. 
At the same time, DisSimJADE provides a simulated agent 
container that can also be used to host conventional agent 
components. 

Therefore, the benefits of DisSimJADE are amplified by 
combining the effortless development of distributed simulation 
systems with the incorporation of distributed simulation facilities 
into existing agent-based frameworks. In such a setting, 
DisSimJADE allows developers of multi-agent systems to easily 
produce distributed versions of agent-based simulation systems 
with a very limited effort and without being required to gain 
specific knowledge about distributed simulation standards and 
implementations. 
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To this purpose: 

(a) DisSimJADE is built on top of the popular agent-based 
framework JADE [3] and provides a uniform interface 
with it, both in local and distributed environments 

(b) DisSimJADE has been integrated into SimArch, a 
layered simulation architecture that allows to define 
simulation systems that can be transparently executed 
either in a local or distributed environment [4].  

A side benefit of point (a) is that DisSimJADE is compliant with 
the FIPA specifications [4], as in the case of JADE, while point 
(b) provides a uniform approach to develop agent-based 
simulation systems without explicit knowledge about the 
execution environment (local or distributed) and the specific 
distributed simulation infrastructure (e.g., HLA). 

The paper is organized as follows. Section 2 points out this work 
contribution compared to other state-of-art works, while Section 3 
introduces the technologies upon which DisSimJADE has been 
built (i.e., JADE and SimArch). Section 4 gives a detailed 
description of the proposed framework and, finally, Section 5 
illustrates an example scenario of use. 

2. RELATED WO RK 
DisSimJade provides the following two main innovative 
contributions: 

(i) the incorporation of distributed simulation facilities into 
existing agent-based frameworks; 

(ii ) the effortless development of distributed simulation 
systems as a transparent extension of the corresponding 
conventional (i.e., centralized) simulation system. 

As regards contribution (i), DisSimJADE can be compared to 
similar works, such as SIM_AGENT [6], the Time-Extension for 
MAS [7] and JADE-HLA [8]. 

SIM_AGENT provides a framework to develop agent-based 
modeling and simulation systems. It differs from DisSimJADE 
because it does not formulate the simulation in terms of agent-
based system and binds the reasoning, planning, etc. mechanisms 
to the framework. Differently, DisSimJADE deals only with the 
issues related to the simulation, and therefore allows the use of 
JADE-compliant frameworks currently available (e.g.: Jess rule 
engine [9] or JADEx [10]). 

The Time-Extension shares with DisSimJADE the partial 
objective of bringing the simulation time concept into agent-based 
systems. However, there are considerable differences. First of all, 
DisSimJADE has a wider scope. It presents a formulation of 
discrete-event simulation (DES) systems as agent-based systems. 
Secondly, the Time-Extension uses innovative aspect-oriented 
methodologies [11] to bring the duration concept within agent-
based systems. Differently, DisSimJADE shows how 
conventional object-oriented techniques can effectively support 
this through the mere application of the Decorator Pattern 
concept [12]. Thirdly, the Time-Extension mechanism introduces 
some discontinuities between an agent-based system and the 
corresponding simulated agent-based system. They are due to the 
use of the aspect oriented technology, which is specifically used 
to produce the simulated agent-based system, and to the non-
encapsulation of the implicit wall -clock time concept that agents 
have. 

Both SIM_AGENT and the Time-Extension do not deal with 
distributed simulation of agent-based systems, as instead 
DisSimJADE does. 

A contribution that, similarly to DisSimJADE, provides 
distributed simulation facilities is JADE-HLA, which is built on 
top of JADE and makes us of the High Level Architecture (HLA) 
distributed simulation standard [13]. However, the following 
differences between JADE-HLA and DisSimJADE can be found: 

x DiSSimJADE adopts a general DES modelling 
approach, and therefore is not related to any specific 
distributed simulation standard; 

x DisSimJADE implements an agent-based 
conceptualisation of DES systems; 

x DisSimJADE is compliant with the JADE design 
outline, and therefore enables JADA developers to 
easily carry out agent-based modeling and simulation 
activities. 

With respect to contribution (ii) , i.e., the effortless development 
of distributed simulation systems as transparent extension of the 
corresponding conventional – local – simulation system, 
DisSimJADE can be compared to works carried out in the 
distributed simulation community, such as PDNS [14], 
DisSimJava [15], DEVS/HLA [ 16], OSA [17] and JAMES [18]. 

All such works provide valuable contributions in the field of 
distributed simulation, but fail to address point (i), which refers to 
the issue of incorporating distributed simulation facilities into 
agent-based frameworks. 

Therefore, in this paper case, the benefits of contribution (ii) are 
amplifi ed by combination to contribution (i), which is the 
application of (ii) to the development of distributed agent-based 
simulation system. In such a setting, DisSimJade allows 
developers of multi-agent systems to easily  produce distributed 
versions of agent-based simulation systems with a very limited 
effort and without being required to gain specific knowledge 
about distributed simulation standards and implementations. 

The distributed simulation of multi-agent systems using HLA as 
underlying platform has already been targeted in [19]. This paper 
contribution however differs from the above one since it is not a 
methodology to produce distributed agent-based simulation 
systems but only a method to effortlessly incorporate distributed 
simulation facilities into existing agent-based frameworks, as 
results from the combination of contributions (i) and (ii). 

Moreover, the proposed approach does not pretend to give an 
answer to overcome the pitfalls of agent-based systems outlined 
by Jennings and Wooldridge [1]. Indeed, the approach is only 
intended to reuse existing agent-based systems (e.g., JADE-based 
systems) into distributed simulation contexts. 

3. BACK GROUND 
The following sub-sections introduce the JADE framework and 
the SimArch software architecture, respectively. 

3.1 JADE 
JADE [3] is a Java-based framework for the implementation of 
agent-based systems. It provides a base element, the agent, which 
maintains an internal state and whose dynamics can be configured 
through a set of pluggable behaviours. Each behaviour consists of 
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a sequence of internal operations and interactions with other 
agents, or other behaviours, which can be composed according to 
several constructs (e.g. parallel, serial, etc.). 

The fundamental JADE aspect is the communication [20], which 
is carried out according to FIPA specifications [4] through an 
asynchronous mailbox-based mechanism. As FIPA defines, JADE 
messages are composed of the following attributes: sender, list of 
recipients, performative action, content, content language 
reference, content ontology reference, and a set of minor fields to 
control concurrent conversations. Besides attributes of immediate 
understanding, the message contains a performative action 
attribute, and two references to the content coding language and 
to the shared ontology, which needs further details.  

The performative action attribute specifies the type of 
communication, which has been classified by FIPA into twenty-
five different communicative acts. For example, it can be of value 
REQUEST when the sender agent asks for a service request to the 
recipient agents, or can be of value INFORM in the case of a 
“notification” of state change.  

Concerning the reference attributes to the content language and 
content ontology, they provide the information needed to decode 
and interpret the semantics of the content field, respectively. 
JADE ontologies are in turn to be built on top of the basic 
ontology, which provides basic concepts for primitive data types, 
and can define three types of elements [20]: predicates, concepts, 
and actions. 

Predicates represent facts in the modelled world, and can be true 
or false. Concepts represent complex data structures, which are 
composed of standard simple types like String, Integer, etc., while 
actions are a specialization of concepts that are internally 
associated to the actions performed by agents. 

3.2 SimArch 
SimArch is a software architecture that offers a layered view of 
simulation systems. Figure 1 illustrates the four layers, whose 
detailed description is given in [4].  

 

Distributed Discrete 
Event Simulation Layer

Discrete Event Simulation 
Service Layer

Simulation Components 
Layer

Simulation Model Layer

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Distributed Computing 
Infrastructure

General Purpose 
(CORBA, WS, 
Globus, etc.)

Simulation 
oriented (DIS, 
HLA, ALSP)  

Figure 1 SimArch's layered architecture [4] 

Layer 4 is the top layer where the simulation model is defined 
through the invocation of the simulation language primitives. 

The primitives’ implementation, i.e., the components’ simulation 
logic and the model configuration services, are provided by Layer 
3, while Layer 2 deals with the transparent synchronization and 
communication among simulation components, for both local and 
distributed execution. The distributed version of this layer uses in 
turn Layer 1 to achieve global time synchronization and to 
provide communication with the remote simulation components.  

Finally, Layer 1 provides a DES (discrete-event simulation) 
abstraction [21], such as sendEvent, waitNextDistributedEvent 
and waitNextDistributedEventBeforeTime, on top of the 
distributed computing infrastructure conventionally identified by 
Layer 0. Such bottom layer does not belong to SimArch and 
therefore the interfaces between Layers 1 and 0 are not defined. In 
the case of a HLA-based implementation of Layer 1, such 
interfaces are subsets of the RTI-Ambassador and 
FederateAmbassador interfaces for the communication between 
Layers 1 and 0 and between Layers 0 and 1, respectively. 

The communications between the layers are bidirectional and the 
provided interfaces have to be implemented to successfully use 
the available layers implementations. For example, when using 
Layer 1, the Layer1ToLayer2 interface is to be implemented and 
its implementation is to be provided as reference to Layer 1. In 
the specific case, Layer1ToLayer2 interface intercepts the 
distributed events and takes care of scheduling a proper handler in 
the local event list. 

4. DisSimJADE 
DisSimJADE is a Java framework for agent-based modelling and 
simulation. It is built on top of JADE and structured according to 
SimArch. Distinctive features of DisSimJADE are the compliance 
with the FIPA specifications [4], inherited from JADE, and the 
integration with HLA, given by SimArch. 
The framework is implemented with the objective of simplify ing 
the development of distributed agent-based simulation systems. 
Specifically, DisSimJADE aims to: 

1. making the development of agent-based simulation 
systems similar to the development of conventional 
agent-based systems; 

2. enabling the transparent execution of agent-based 
simulation systems either in a local or a distributed 
environment. 

 
To achieve objective 1, DisSimJADE introduces a set of software 
components that conform to the JADE and FIPA standards and 
that can encapsulate conventional JADE components, while 
objective 2 is achieved by integrating DisSimJADE into the 
SimArch software architecture. Specifically, DisSimJADE uses 
the Layer 1 provided by SimArch and implements the SimArch 
Layer 2 interface. 
In particular, the DisSimJADE framework consists of the 
following components:  

x a simulation ontology; 
x a simulation agent society and a set of agents; 
x an interaction protocol; 
x a set of simulation behaviours; 
x a set of simulation event handlers. 

 

The simulation ontology, named DES-Ontology and illustrated in 
Section 4.1, defines the semantic base for the communications 
among the simulation agents. It consists of DES concepts 
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(simulation time) and actions (DES and simulation li fe cycle 
management services), and allows the incorporation of any other 
JADE ontology thus enabling the reuse of standard agent-based 
components. 
 
The simulation agent society, illustrated in Section 4.2, is 
structured hierarchically and is based on two types of simulation 
agents, the simulation entity agent and the simulation engine 
agent, with the former encapsulating the simulation logic, i.e. the 
sequence of states and DES service requests, and the latter 
managing the agents. The society defines which agents (types and 
names) can be part of the simulation execution. DisSimJADE 
defines local societies, which are composed of a specified number 
of simulation entity agents and are managed by a locally  running 
simulation engine agent, and a global society, which interconnects 
the local societies. A local society can be run in isolation, in case 
of local simulation execution, or can be interconnected with other 
societies, in case of distributed simulation execution.  
 
The interaction protocol, illustrated in Section 4.3, defines the 
communication rules between agents belonging to the same 
society. Due to the hierarchical structure of the society, the 
communication takes place only between the entity agents and the 
engine. The distributed execution extends the interaction protocol 
for the local version by transparently masking the synchronization 
and communication issues behind SimArch and HLA services, 
which are out of entity agents visibility. 
 
The simulation behaviours define the actions taken by both types 
of agents in response to the reception of any of the DES-Ontology 
action, by implementing the interaction protocols. They conform 
to the JADE interfaces and can encapsulate standard JADE 
behaviours. 
 
The simulation event handlers define the routines that must be 
locally processed by the engine agent to deal with the scheduled 
requests, such as wake up or event notification. They can be 
considered as support components that are visible to the engine 
only. 
 

4.1 DES-Ontology 
The DES-Ontology extends the JADE standard ontology [19] 
introducing concepts and actions that characterize the simulation 
domain. The concepts are related to the simulation time, while the 
actions are related to the interaction between simulation entities 
and simulation engines. 
 
As regards concepts, the DES-ontology defines two different 
representations of the simulation time: AbsoluteSimulationTime, 
for absolute values of the simulation time; and 
RelativeSimulationTime, for relative values of the simulation 
time, with “relative” having default semantics “with respect to the 
current time”. The two concepts are related by the fact that the 
AbsoluteSimulationTime is given by the sum of the current 
AbsoluteSimulationTime and the RelativeSimulationTime. 
Nevertheless, the definition of a relative time concept is included 
in the ontology because it is a parameter required by several DES 
services. 
 

As regards actions, the ontology defines simulation management 
services and DES services. 
 
A simulation management service defines an action that manages 
the simulation life cycle, i.e.,: 

x register agent: to request to join a simulation society; 
x registration successful: to acknowledge the acceptance 

of a registration request;  
x remove agent: to resign from the society; 
x move agent: to move the agent to another society; 
x simulation end: to notify  that the society objective has 

been reached. 
 

The actions register agent and remove agent, which are both of 
performative type REQUEST, have no attributes because the 
action object, i.e. the name of the agent requesting the action, can 
be inferred from the message envelope.  
The move agent action is of performative type REQUEST and is 
characterized by the name of the recipient engine where the agent 
is to be started with the initial state (also provided).  
The actions registration successful and simulation end, which are 
both of performative type INFORM, inlcude an instance of 
AbsoluteSimulationTime that specifies either the simulation start 
time (in case of registration successful action) or the simulation 
end time (in case of simulation end action). 
 
The DES services define actions of the following types: 

x conditional hold time: to request an hold for a given 
simulated time, under the condition that no event 
notifications are received; 

x hold time: to request an unconditional hold for a 
specified simulated time; 

x notify time: to inform that the specified time has been 
reached; 

x notify message: to inform that the specified event was 
requested to be scheduled for the receiving agent, at 
the current time; 

x send message: to request the delivery of the specified 
event at the specified time to another simulation entity 
agent; 

x wait message: to request a wake up when a simulation 
message is to be notified. 

 

The conditional hold time and hold time actions, which are both 
of performative type REQUEST, are characterized by a relative 
simulation time that specifies the simulation sleep time.  
The notify time action, which is of performative type INFORM, 
informs the receiving agent of the absolute simulation time 
reached. The notify message action, which instead notifies a 
message, is described by the following four attributes: sender 
agent, recipient agent, message and time. The first three attributes 
are of type String, while the fourth is of type 
AbsoluteSimulationTime.  
The send message action is complementary to the notify message 
action. It is described by the same attributes, but it is of 
performative type REQUEST. In the specific case, to maintain a 
logical uniformity with the common practice in DES, the time is 
of type RelativeSimulationTime. 
Finally, the wait message action, which is of performative type 
REQUEST, informs the engine that the sender agent is blocked 
and waiting for new messages. 
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With the exception of the move agent action, all the actions are 
indifferently used by the entity agents either with the a local or a 
distributed engine agent. 

4.2 Simulation Agents 
A simulation agents’ society is populated by two types of agents: 
the simulation entity agents and the simulation engine agents. 
The simulation entity agents incorporate the simulation logic by 
use of custom simulation behaviours, while a simulation engine 
agent is in charge of coordinating the society, and therefore 
includes a list of the simulation events and a record of the society 
composition, as detailed in the following sub-sections. 

4.2.1 Simulation entity agent 
Figure 2 describes the state diagram that defines the lifecycle of a 
simulation entity agent. The states in the diagram of Figure 2 are 
simulation states built on top of the standard states of a JADE 
agent [19] and are transparently integrated with them. 
The state diagram of a simulation entity agent looks similar to the 
state diagram of a conventional DES simulation and therefore this 
section only focuses on the differences, while additional details 
on the rest of the diagram can be found in [22]. 
The changes introduced by the state diagram of a simulation 
entity agent concern the Waiting for Registration Acknowledge 
state and the Mobility state. In the former, the simulation engine 
collects the registration requests and checks when the society is 
ready to execute the simulation. In the latter, the agent forwards 
the request to the engine and terminates the life cycle. These 
differences are due to the decentralised and dynamic nature of the 
agent-based simulation framework, which differently from a 
conventional DES framework allows the creation and termination 
of logic processes. 
 

 
Figure 2 State diagram of the simulation entity  agent 
 

To implement the above described dynamics, the entity’s 
behaviour is configured as a serial composition of the 
RegisterAgentBehaviour and EntityMainCycleBehaviour 
behaviours, with the latter to be configured according to the 
model specifications. 
In order to allow the easy plugging of any conventional JADE 
behaviour into the EntityMainCycleBehaviour behaviour, the 
simulation entity agent interface must be consistent with the 
JADE agent standard interface. To achieve this, the simulation 
entity agent must therefore invoke the simulation actions 
conditional hold time, hold time, send event, and wait event by 

use of the JADE standard methods blockingReceive(millisecs),  
doWait(), send(), and blockingReceive(), respectively.  
 

4.2.2 Simulation engine agent 
The simulation engine agent can be similarly described both for 
local and distributed engines. The distributed engine is indeed 
built by extending the local, which is therefore presented first in 
the following sub-section. 
 

4.2.2.1 Local engine 
Figure 3 describes the state diagram of the simulation local engine 
agent. 
The local engine state diagram consists of a sequence of states 
that can be grouped in three phases, denoted as Phase 0 through 
Phase 2 in Figure 3. 
Phase 0 is the registration phase that takes care of synchronizing 
the start-up phase through the Waiting for Registration Requests 
and Confirm Registration Successful states. In such a phase, the 
engine accepts incoming register agent requests while checking 
whether the simulation society becomes complete. Once the 
society is completed, the engine notifies the registration 
successful to all the registered agents. Such states are not present 
in a conventional DES framework because the entities registration 
is carried out through the static invocation of local methods at 
coding time. Similarly to the entity agent state diagram, the Phase 
0 states originate from the inherent decentralised nature of the 
system. 

 
 

Figure 3 State diagram of the simulation local engine agent [24] 

 
After completing this phase, the engine proceeds to the Phase 1 
that consists of the states Waiting for Simulation Requests and 
Processing Internal Event, which contribute to define the 
EngineMain-CycleBehaviour. Such behaviour executes the 
following algorithm: 

 

While (numberOfRunningAgents > 0) { 
    wait for a simulation message; 
    Case of: 
        SendEvent:  schedule sendEventHandler; 
              break; 
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        HoldTime:   numberOfRunningAgents--; 
              schedule wakeUpHandler; 
              break; 
        WaitEvent:   numberOfRunningAgents--; 
              break; 
        RemoveAgent:  
                           numberOfRunningAgents--;  
             start RemoveAgentBehaviour; 
             break; 
        ConditionalWaitEvent:  
             numberOfRunningAgents--; 
             schedule wakeUpHandler; 
             store agentName in conditionalList; 
             break; 
        RegisterAgent: 
             numberOfRunningAgents++; 
             registerAgent; 

            start RegistrationSuccessfulBehaviour;       
         } // end case 
} // end while 
 

If (eventsList.size() > 0) { 
    nextEvent = eventsList.remove(0); 
    nextEvent.process();  
} else { 
    setSimulationEnd(); 
}  
 

The algorithm is composed of two main blocks: a while block for 
the requests collection at a given simulation time, and an if-then-
else block to process the next scheduled event and advance the 
simulation time. 
The algorithm is based on the following assumptions: 

x the cardinality of the simulation society is known from 
the previous phase and stored in the local variable 
numberOfRunningAgents; 

x the agents requesting hold time, conditional hold or wait 
event simulation services block their execution and do 
not process further requests until they receive proper 
simulation notifications. 

The second assumption defines the interaction protocol between 
entity and engine agents, and guarantees that within the if-then-
else block the actual number of running agents is zero, as verified 
through the value of the local variable numberOfRunningAgents.  
The while block executes until there are running agents in the 
society. In this block, the activities follow a sequential wait-and-
serve cycle that processes the requests by properly updating the 
numberOfRunningAgents variable and by performing the relevant 
action: either the scheduling of a new event handler in the list or 
the activation of a simulation service behaviour. As an example, 
upon receiving a send event request, the engine schedules a new 
local SendEventHandler with the proper data (recipient, time, 
message, etc.). Similarly, in case of wait event requests, the 
engine verifies that the requesting agent is blocked and will not 
proceed until a local event unblocks the agent.  
The algorithm also manages the dynamic composition of the 
agent society by processing register agent and remove agent 
requests. 
Once the simulation end event is reached, the engine stops and the 
EngineMainCycleBehaviour terminates. 
 

After that the engine proceeds to the last phase, denoted as Phase 
2, which includes the Simulation End Notification state. In such a 
phase, the engine notifies a simulation end message to the entire 
society before terminating its li fe cycle and removing itself from 
the agent container. 

4.2.2.2 Distributed engine 
The distributed simulation engine agent makes use of the JADE 
framework for the local interactions and uses SimArch Layer 1 
and HLA for the synchronization and communications among 
distributed entities, as illustrated in Figure 4. 
The choice of not using JADE as distributed platform is motivated 
by the following considerations: 

x SimArch and its HLA-based implementation allow the 
integration with other simulation systems developed by 
use of such technologies; 

x the integration with SimArch allows to obtain a multi-
paradigm (e.g. agent-based, process interaction, event 
scheduling, etc.) distributed simulation environment;  

x HLA proves to perform better in terms of simulation 
workload compared to RMI-based communications 
between the JADE nodes [19]; 

x the implementation remains extremely simplif ied and 
conforms to a general reuse and integration trend 
currently observed in the software and simulation 
industry. 

 
The distributed engine is compliant with the local engine for what 
concerns the interactions to be carried out with the simulation 
entity agents, which can be therefore deployed regardless the type 
of engine. Vice versa, the distributed engine deals with the 
following extra issues: 

1. synchronization and communication between local and 
distributed environment; 

2. agent mobility  between simulators; 
3. handling of distributed events in the framework. 

 

 
Figure 4 DisSimJADE archit ecture 

 
The synchronization and communication concern the consistency 
between the local and distributed environments with the addition 
of event delivery to agents running on remote simulators. The 
agent mobility allows simulation time-stamped transfer of an 
agent from a given simulator to a remote one. All such 
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functionalities require that new event handlers are introduced to 
properly processing such requests. 
 
The engine deals with the above issues using SimArch Layer 1 in 
conjunction with: 

x An improved life cycle and algorithm; 
x Mobility Event; 
x Distributed event handlers, for which interested users 

are sent to [4]. 
 
The agent life cycle is described by the diagram in Figure 5. It 
consists of five phases, denoted as Phase 0 through Phase 4. Phase 
0 is the initialization of the distributed environment and proceeds 
as illustrated in [4][22]. Phase 1 is shared with the local version; 
and similarly Phase 2 (Simulation main cycle), which however 
presents two significant differences. 
 

 
Figure 5 State diagram of the simulation distr ibuted engine agent 

 
The first is that the local events cannot be processed before 
advancing the distributed time, which is carried out within the 
Advancing Distributed Time state. The transition from this state to 
the next state only occurs when either the time has been granted 
or a distributed event has been received. In this last case, the 
distributed event is transparently scheduled as a local event by 
SimArch layer 1. 
The second difference is that, when an agent is moving to the 
simulator, the simulation has to temporarily block until the agent 
is loaded up and joins the local simulation society. In case of an 
agent mobility  event, the society composition is updated and the 
society complete condition is no longer satisfied. This 

corresponds to the transition from the processing next internal 
event state to the waiting for registration requests state of Phase 1 
in Figure 5. 
Phase 3 follows the main processing cycle and concerns the 
notification of the simulation end event to all the local agents. It is 
activated by Phase 2 when receiving the corresponding event 
from the distributed environment. 
Phase 4 concludes the engine life cycle restoring the distributed 
environment set up. It follows the operations specified in [4] and 
[22]. 
 
The distributed engine li fe cycle is implemented similarly to the 
locale engine one, with the addition of the advancement of the 
distributed time and the transition from the processing next 
internal event state to the waiting for registration requests state. 
The adapted algorithm is as follows: 
 
While (numberOfRunningAgents > 0) { 
    wait for a simulation message; 
    Case of: 
        SendEvent:  schedule sendEventHandler; 
              break; 
        HoldTime:   numberOfRunningAgents--; 
              schedule wakeUpHandler; 
              break; 
        WaitEvent:   numberOfRunningAgents--; 
              break; 
        RemoveAgent:  
                           numberOfRunningAgents--;  
             start RemoveAgentBehaviour; 
             break; 
        ConditionalWaitEvent:  
             numberOfRunningAgents--; 
             schedule wakeUpHandler; 
             store agentName in conditionalList; 
             break; 
        RegisterAgent: 
             numberOfRunningAgents++; 
             registerAgent; 

            start RegistrationSuccessfulBehaviour; 
MoveAgent: 
            forward mobility request to recipient simulator; 

             numberOfRunningAgents--;  
             start RemoveAgentBehaviour; 
             break; 

       
         } // end case 
} // end while 
 

If (eventsList.size() > 0) { 
    nextEvent = eventsList.read(0); 
    waitNextDistributedEventBeforeTime(nextEvent.time); 
    nextEvent = eventsList.remove(0); 
    nextEvent.process();  
} else { 
    waitNextDistributedEvent(); 
    nextEvent = eventsList.remove(0); 
    nextEvent.process();  
}  

where the bold text denotes the changes with respect to the 
algorithm of the local engine. The handling of a mobility  event 
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request consists of the forwarding of the request to the remote 
simulator, the update of the society cardinality and finally the 
removal of the agent from the society. 
 
When all the agents have been executed and are blocked waiting 
for a response from the engine, differently from the local engine, 
the distributed version proceeds by checking the size of the events 
list. If  the list contains at least one event, the distributed engine 
will verif y if  events are available in the distributed environment 
before the next local event, by use of a call to the SimArch 
service waitNextDistributedEvent. Once the service call returns, 
the next local event is processed and one or more agents will be 
reactivated, as in the local version. The case of the events list 
empty is slightly different. In such a case, the service 
waitNextDistributedEvent is to be invoked. Similarly, when the 
service call returns, the next local event is to be retrieved from the 
list and processed. 
 
The mobility event logic, which is triggered in response to a Move 
Agent request, is to be implemented by accepting the incoming 
agent and locally removing the migrated agent. This is achieved 
using SimArch Layer 1. To use this layer, the engine has to 
implement the Layer 1 to Layer 2 interface to allow the reception 
of the distributed simulation events. The interface implementation 
includes the code to carry out the transition from the processing 
next internal event state to the waiting for registration requests 
state. 
 
In case of a standard event, e.g., a communication between two 
agents, the event will be scheduled as an internal event that 
specifies the remote sender. Differently, in case of an incoming 
agent, the engine state variable denoting the society cardinality is 
properly updated to include the incoming agent. The engine will 
then block the processing and will wait for the registration request 
to proceed on. Concurrent requests will  still be collected by the 
engine, but none of them will be actually processed because of the 
extra running agent not yet in a blocked state. Such request 
collection does not compromise the validity of the algorithm 
because it does not allow any agents to run over the current local 
simulation time. 
The discrimination between a standard event and a mobility event 
is to be specified when sending the RemoveAgent event. This can 
be easily achieved with SimArch Layer 1 service sendEvent, 
which allows the specification of an event tag that discriminates 
the type of event. By setting a different value for both types, the 
discrimination becomes trivial for the receiving engine. 
 
The distributed execution requires that event handlers are 
introduced to specifically deal with distributed events. They are 
similar to the handlers introduced within the SimArch software 
architecture and are presented in the following subsection. 
 

4.3 Interacti on Protocol 
The interaction protocol defines the rules upon which the 
conversation between the agents takes place, e.g. which agent 
talks, which listens, which expects what. It can be distinguished in 
intra-society protocol and inter-society protocol. The former takes 
place for the communications in a local environment, both in the 
case of local and distributed simulation. Differently, the latter is 
used in the distributed environment only and involves agents, 

either engines or entities, which are running within different 
societies. 

The intra-society protocol is used between the entity agents and 
the engine agent to request and acknowledge the simulation 
actions defined in the DES-Ontology. It is based on the blocking 
and non-blocking properties of the simulation services. On the 
entity agent side, the action requests such as register agent, wait 
time or hold time need that the agent interrupts its execution until 
given proper conditions are met. Such conditions are monitored 
by the engine agent, which has the entire view of the society and 
the agents’ request and which activates the individual agents by 
responding to their request. For the correct execution of the 
simulation it is fundamental that the entity agents are aware and 
respect such protocol.  

The inter-society protocol complements the intra-society rules 
when operating in a distributed environment. The distributed 
engine implements such a protocol in addition to the intra-society 
one and therefore can immediately replace the local engine 
without modifying the simulation entity agents. The inter-society 
protocol defines two types of interactions: the sending of an event 
to a remote entity agent, and the mobility of an agent on a remote 
society. 

The sending of an event to a remote entity agent occurs when a 
local entity agent requests the delivery of a message to a specified 
entity agent. The engine collects the request and verifies if the 
recipient is running locally or on a remote machine. In both cases, 
the intra-society protocol is applied for the interaction between 
the engine and the entity agent. In the case of a distributed 
recipient, the protocol assumes that the engine forwards the 
request to the remote agent before continuing the local 
processing. The communication between the two engines is 
obtained by SimArch and HLA and therefore is not compliant to 
the FIPA standard. However, such an approach brings several 
advantages – as shown above, and does not affect the peculiarities 
of the local interaction, which is still FIPA compliant. 

The agent mobility is based on a similar approach but is more 
complex. Figure 6 shows an example of agent mobility with the 
actors of this phase and the sequences of steps. Besides the entity 
agent and the engines of the source and destination sites, another 
agent supports this action. It is the resource manager, which is in 
charge of starting the agent on the remote site. The presence of 
this agent is essential because to guarantee the proper application 
specific initialization typical of an agent start-up. 

 

Figure 6 Example of agent mobility 

Let’s assume that Agent A in Figure 6 wants to move from 
Society A to Society B at simulation time t. It first sends a JADE-
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compliant mobility r equest to engine A (step 1). The request 
consists of a simulation event to be delivered to the remote 
Resource Manager and an attached serialization of agent state. 
Engine A sends the event to engine B by specify ing that the event 
is of type mobility  (step 2). At the specified time t, SimArch and 
HLA deliver the event to engine B (steps 2A and 2B), which 
processes the event by updating the society composition and 
delivering the event to the Resource Manager (step 3), as initially 
specified by Entity A. Differently from a conventional event, the 
delivery and the processing of the mobility  event does not allow 
Engine B to continue. The local society on site B is now 
incomplete and engine B cannot proceed until it receives the 
request of joining the society. After having operated the 
initialization of the agent parameters, the Resource Manager 
activates entity A agent with the provided state (step 4). Once 
running, the agent first requests to join the local society and after 
proper acknowledge starts its simulation cycle as at the fi rst 
activation (step 5). Such mechanism guarantees that the mobility 
is operated transparently and in synchronization with the 
simulation clock, local and distributed. 

5. EXAMPLE SCENARIO  OF USE 
A significant scenario for the application of DisSimJADE can be 
found within the domain of manufacturing system simulation. For 
the sake of simplicity, let us consider a simplified system where 
workers move around a manufacturing factory premises in order 
to reach the machines they need to use. In such a scenario, a 
significant aspect for the paper scope is represented by the 
movement of the workers. A possible space modelling for this 
system is represented by a graph whose nodes identify the 
possible positions, and whose edges represent the possible 
movements of workers between two positions. The nodes also 
represent physical resources that can exclusively be used by only 
one worker at a time, whereas the edges can simultaneously be 
traversed by more workers at the same time.  

A possible agent-based modelling of such system could include 
two types of agents: a ResourceManager agent, which coordinates 
the access to the physical points; and a Worker agent, which is 
provided with a self-updated view of the world, a decision model, 
a motion model and a set of machines to use. A synthetic 
sequence diagram of a local simulation system for two worker 
agents and a resource manager is shown in Figure 7. The workers 
inform the ResourceManager when they reach the node and then 
wait for an authorization event. The ResourceManager authorizes 
the movement when the required node is free and delays 
authorizations when the node is busy. The diagram does not 
include the engine agent because it is not visible at system 
modelling level. 

 

 

Figure 7 Example sequence diagram [24] 

 

Assuming that the simulated space is vast and largely populated, 
it could be appropriate, if not necessary, to execute it in a 
distributed environment. This can be obtained by simply 
substituting the local engine with the distributed engine, for what 
concerns the framework, and by instructing the resource manager 
and the worker agents to support the application specific logic for 
the mobility event. This regards in particular three aspects, which 
are however related to the specific application: 

1. the definition of the mobility  trigger condition; 

2. the serialization of the state to transfer on the remote 
simulator; 

3. the deserialization of such state at the remote simulator. 

The first aspect concerns the boundaries of the world simulated 
by each of the simulators. It can be easily addressed by specifying 
the ResourceManager name on each node. In such a way, the 
workers can easily  determine whether the mobility  triggering 
condition is true by checking that the resource manager name of 
the destination node differs from the name of the current node 
resource manager. 

The second and the third aspects are standard operations in Java 
and many libraries support the automatic serialization of object on 
String, such as XStream String [25]. The control of the data to be 
serialized remains in charge of the application, however. Only at 
application level it is possible to determine which data has to be 
carried on and which is to be reconstructed on the destination 
simulator. In the shown application, the workers are provided 
with a detailed map of the local world, as in the local simulator, 
and a condensed representation of the remote world. This 
includes, for example, main gateways, stairs, as well  connections 
between the simulated areas. To the purpose of demonstrating the 
framework, we locally stored constant data and reduced the 
mobility data. In particular, each resource manager maintains a 
copy of the world view from the local area and replicates for each 
of the incoming workers. At the same time, each worker brings 
with it only the specific parameters of the decision and motion 
model, in addition to the list of the machines to use. The mobility 
of the workers that reach a border node follows the procedure 
described in Section 4.3. The procedure and the functionalities of 
the framework are independent from the modelling characteristics 
of the workers and more accurate decisions and motion models 
can also be used. Their implementation is out of the scope of this 
paper and therefore not discussed here. 

6. CONCLUSIONS 
The adoption of an agent-based approach has proven effective 
when simulating complex scenarios consisting of a large number 
of autonomous and interacting entities. In such settings, it is often 
required to exploit distributed simulation to deal with the required 
scalability and accuracy characteristics. 

This paper has introduced DisSimJADE, a simulation framework 
which provides a uniform approach to develop agent-based 
simulation systems that can be transparently executed either in a 
local or distributed environment. 

The paper has described the several benefits that DisSimJADE 
provides with respect to comparable contributions. Most of such 
benefits come from the use of JADE as the underlying agent-
based platform and from the integration with the SimArch 
simulation architecture, and can be summarized as follows: 
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x the incorporation of distributed simulation facilities into 
conventional agent-based frameworks; 

x the effortless development of distributed simulation 
systems as a transparent extension of the corresponding 
conventional (i.e., centralized) simulation system; 

x the provision of a mobility  facility  to easily  migrate 
simulation agents from a given simulation society to a 
remote simulation society. 

An example scenario of use has also been illustrated to give the 
flavor of the effectiveness provided by the DisSimJADE 
framework. 
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