DisSImJADE: A framework for the development of
Agent-based Distributed Simulation Systems

Daniele Gianni
Computing Laboratory
Oxford University

Oxford, UK
gianni@comlab.ox.ac.uk

ABSTRACT

The adoption of an aentbased apmech that irorporates
intelligence, adaptation and learning ahgbt has proved to
significantly increase the ealism and lie accuracy of the
simulation. Simuléion systemsof such a kind, however, require
computationalreourcestha might be considerabléor a single
aget, so to become unfdable when thenumber ofsimulated
agents scalesup. A dstributed environment ishus neede to
allow theexecutionof such smulation g/stems paricularly in the
case of scenariopopulated bya large nurber of agents. Building
an agent-based disbuted smulation system, however, requires
both specificexperti® and knowledge of digbuted smulation
standardsind a non-negligible amount of effort to devedolghoc
components This paper introduces aimulation framework
named DisSIimJADE, which enalles the ircorporation of
distributed sinulation facilities into exising agent-basd systens.
DisSImADE is built on top of thepopular agent-basd
framework JADE and allowsto define gent-basedsimulaion
systemsthat can be tansparatly executed either in a local or
distributed, therefee bringing sgnificant svings in terms of
effort and developmertime. In addition, DisSImJADE providesa
uniform interface to the JADE framewok, which further
facilitates the production of distributed &mulation systems to
developers of ADE-based multi-agent sstems.

Categories and Sibject Descriptors

D.2.13 Sftware Reuability, D.2.10 Design, D.3.2 Language
Classfication, D.3.3 language ©nstructsand Featurg 1.2.11
Distributed Artificial Intelligence, 1.6.5 Model Development, 1.6.7
Simulgion Support Sstems 1.6.8 Discrée Event, 1.6.8
Distributed, 1.6.2 Simlation Language.

Gerneral Terms
Design, Experimentation, Language

Pernission to nake digital or hard copesof al or pat of this work for
personal orclassoomuse isgranted wihout fee provided thatcopiesare
not made or distribied for profit or conmerciad advantage and thet
copies bear tis notice and thedl citation onthe first page. To copy
othemise, or republish, to post onservers or to relistribute tolists,
requiresprior speific pemission ad/or afee.

SIMUTods 09, Rorre, Italy

Copyright 2009 ICST 97863-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

Andrea D’Ambrogio and Giuseppe lazeolla
Dept. of Computer Science
University of Rome TorVergata

Rome, Italy
{dambro,iazeolla}@info.uniroma2.it

Keywords

Discrete event simuldion, Distributed Simuléion, Agent-baed
Simuldion, Franework, JADE, HLA

1. INTRODUCTION

Physical s/stens ae often compo®d of autonomous, intesting,
possbly intelligent entitiesthat cooperate, compte andcarty out
tasks to achieve invidual or collective goals [1]. When
simulating swch systams, an aget-basd malding approach
offers an efedive conceptualizatioparadigmthateasily allows
to capturing the interactions and the individualfdlective
intelligence that such syens exhibit. The incoporation of
sophsticated intelligence té#n equirescomputatbnal resurces
in terms of memay for the data epresentatia andCPU cycles
for the reasning rues or critera, that are d¢én not avadble on a
sinde hog. The use of difibuted exeation environmentgan be
seen asa solution to the problenof guaanteeingthe needed
accuray and efficiency whenlargely populaed scenariosare to
be smulated [2].0On theotherhand, developing smulator ina
distributed environment requiresspecialized know-how that goes
far beynd the agent-basl nodelling techniques.In addition,
acquring such knowledges a coniglerable nitial invegmentthat
can pevent the adoptioof such techniques.

In this paper, we face the problem ohaking easer the
devdopment of distributed agéia®d simlation g/stams. To
this purpo®, the paper introduc&isSmJADE, a frameworkthat
makes trargarent the development of disributed agent-basl
simulation systemsby raising the agent-basefdveloper from dl
the concernsof the locé or distributed simlation environrent.
At the same time, DisSmJADE provdes asimulated aget
container that an al® be used to hog conventional agent
components

Therefore, the benefits of DisSSmJADE are amplified by
combining the effortless devebpment of distributed isulation
systens with the incomporation of distributed siotation fadlities
into existng agentbased frameorks. In such a settng,
DisSmJADE dlows developer®f multi-agentsystens to easiy
producedistributed versions of gent-based imulation sytems
with a very limited effort and without being required t@an
specific knowledge about distributedmsilation $andardsand
implementatios.

To this purpos:

(a) DisSmJADE isbuilt on top ofthe popula agent-basd
framework JADE 3] and povidesa unform interface
with it, both n local anddistributed environments

(b) DisSmJADE has been integrated into $nArch, a
layered smulation achitecturethat allows to defne
simulation g/stemsthat can betrangarently executed
eitherin a local or ditributed environment [4].

A side benefitof point (a) istha DisSImJADE is compliant with
the FIPA specifcaions [4] asin the cas of JADE, while pont
(b) provides a uniform approach to develop agent-basd
simulation systems without explicit knowledge about the
execution environment (local ordistributed) andthe spedfic
distributed smuldtion infrastructure (g., HLA).

The paper isorganizd as follows. Section2 points ait thiswork
contribution compared to othetage-of-art workswhile Section 3
introduces the technologiesipon which DisSimJADEhas been
built (i.e., ADE and SimArch). Section 4 gives a detailed
description of the propes framework and, finally Section 5
illustratesan exarple scenad of use.

2. RELATED WO RK

DisSimade provides the following
contributions

two main innovative

0] theincorporaton of dstibuted smulation facilities ino
exiging agent-based frameworks

(i) the effortless development of disbuted simulation
systemsas a transparent égngon of the corresponding
conventiod (i.e., centralied) simulation gstem.

As regads contribution (i), DisSmJADE can be compad to
similar works such asSIM_AGENT [6], the Time-Extensio for
MAS [7] and JADE-HLA [8].

SIM_AGENT provides a framework to develop agent-tzsis
modeling and isnulation systems. It differs from DisSimJADE
beause it doesnot formulatethe smulation in terms of agent-
based gstem and Indsthe reasning, panning, etcmechanisns
to theframework. Diferently, DisSmJADE deals onlywith the
issues related to the simlation, andtherefoe allows the use of
JADE-complant frameworks cuently available (e.g.: ebs rule
engine [9] or ADEXx [10]).

The Time-Extenson slares wth DisSmJADE the parial
objective of binging the simdation time mnceptinto agent-basd
systems However, here are conderable diferences First of all,
DisSimADE has a wider scope. It presnts a formulation of
discrete-eventisnulaion (DES) systens & agentbasedsystems
Secondly the Time-Extensionuses innovative gsect-oriented
methodologis [11] to bring the duratio concept withinagent-
based sstems Differently, DisSmJADE shows how
conventionalobject-oriented techniquesan éfectively support
this through the mere pplication of the Decorator Pattern
concet [12]. Thirdly, the Time-Etenson mechanisn introduces
sone discontinuities between an agent-Bsed system andthe
correpondingsimulated agent-basl ystem. They aredueto the
useof the agpect oriented technology, whicks specifialy used
to produce the smulated agent-based ystem, and to the non-
enapsilation of the inplicit wall-clock ime concept that agents
have.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

Both SIM_AGENT and the Time-Extenson do not deal with
distributed s$mulation of agentbased systems as instead
DisSmJADE does.

A contribution that, similarly to DisSmJADE, provides
distributed smulation facilies isJADE-HLA, which is built on
top of ADE andmakes uof theHigh Level Archigdure (HLA)
distributed &mnulation $andard [13] However, the following
differences between JADE-HLAand DiSSmJADE can be fand:

e DISSmJADE adopts a general DES modelling
approach,and therebre is not related to anyspecific
distributed simiation sandard;

e DisSmJADE implemens an
conceptualiation of DES gstems;

e DisSmJADE is conpliant with the JADE desgn
outline, and therefore rables JADA developergo
easily carry out agent-bsed modelingand simulation
activities

agent-baed

With respect to entribution (ii), i.e., the efortless developnent
of distributed simulation stemsas transgrent extengon of the
correponding conventional — local —insulation system,
DisSImADE can be ompared to works carried out in the
distributed simlation comnunity, such as PDNS [14],
DisSmJava[15], DEVSHLA [16], OSA [17]and JAMES [18]

All such works provide valuable contributions the field of
distributed amulation, butfail to addresspoint (i), which refesto
the isue of incorpaating ditributed $mulation facilities irto
agent-bad frameworks.

Therebre, n this mper case the benefits of ontribution (i) are
amplified by combination to contibution {), which is the
application of (ii) to the developmenof distributed agent-basd
simulation system In such a setting, OsSmJade allows
devdopers of multi-agent systens to eadly prodice distributed
vergons of agent-basedimulaion systems with a very limited
effort and without beingrequired to gain pecific knowledge
about digributed simuation ¢andardsand implementations.

The distibuted sinulation of mdti-agentsystems usng HLA as
underlying platform hasalreadybeen targeted in19]. This pgper
contribution howevediffersfrom the above onesince it isnot a
methodology to produce difributed agent-tged dmulation
systemsbut only a method to féortlesdy incorporatedistributed
simulation facilities into exiging agent-basd frameworks as
resuts fromthe combination of contrittions (i) and (ii).

Moreover, the proposedappro&zh doesnot preéend to give an
answer to overcome thpitfalls of agent-baed systemsoutlined
by Jennings and Vbldridge [1]. Indeed,the approach is ont
intendedto reuseexisting agent-basl systems(e.g., JADE-basd
systemg into distributed snulaion contexts

3. BACKGROUND
The following sub-sectionsntroducethe ADE framewak and
the SimAch sofware architectug, respectiely.

3.1 JADE

JADE [3] is a Java-@sed framewerk for the implenentationof
agent-ba®d systems It providesa bae element, theagent which
maintainsan interral state and whasdynamics can be configured
through asetof pluggable betaviours Each behaviouconssts of

a sequence of internal operatioaad interations with other
agents, or other behaviours, wich can be compes! accordindo
several constructs @ parallel, srial, etc.).

The fundamental JADE9ect is the commanication [20],which
is caried out according to FKe specifiations H] through an
asynchronous mailbox-dsed mechanim. As FIRA defines JADE
messgesare composed athe following attibutes sender, list of
recipients performative action, conte content language
reference, contat ontologyreference, anda set ¢ minor fieldsto
control concurrent conveations. Besidesattributes ofimmediate
undersanding, the messge containsa performative action
attribue, and tworeferencesto the contentoding laaguage and
to the diared ontolog, which needs further details.

The performaive adion attribute species the typ of
communication, which habeen clasdied by FIPA into twenty
five differentcommunicative acts$-or exanple, it can be of value
REQUES when the sender agerasks for aservice request tthe
recipient agentsor can be of value INBRM in the cae of a
“notification” of state dhange.

Concerning the reference attributet® the contentlanguage and
contentontology, they provide the information needed to decode
and intempret the semantis of the contentfield, respectively.
JADE ontobgies ae in turn to be built on top of the bai
ontology, which providesasic conceptfor primitive datatypes
and candefine threetypes of elementq20]: predicates, concepts
and ations.

Predicatesrepregentfacts in the moelled world and can be true
or false. Conceptsrepregnt conplex data $ructures, which are
compogd of sandard Bnple types like Sring, Integer gtc., while
actions are a pecialization of concepts that are intergall
as®ciated to the actiongerformed by agents

3.2 SimArch

SimAch is a software archiectue that offers a layeredview of
simulation systems. Figure 1 ilustrates tle four layers, whose
detailed description igiven in[4].

Simulation Model Layer Layer 4

Simulation Components

Layer Layer 3

Discrete Event Simulation

Service Layer Layer 2

Distributed Discrete

Event Simulation Layer Layer 1

Distributed Computing
Infrastructure

- T~ 7

General Purpose
(CORBA, WS,
Globus, etc.)

Layer 0O

Simulation
oriented (DIS,
HLA, ALSP)

Figure 1 SimArch's layered architecture [4]

Layer 4is the top layer where the siralation nodel is defined
throughthe invocation of theimulation language primitiwe

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

The primitives’implementation,i.e., thecomponents’ amulation
logic and the radel configuation services areprovided by Layer
3, while Layer 2 dealswith the tranparent syichionization and
communication anong simulation componentdor both locdand

distributed ercution. e distributed ‘ersion of this layer uses in
turn Layer 1to achieve global time sghronizationand to

provide comranication with the remotamulationcomponents

Finally, Layer 1 provides a DES (discrete-eventimulation)

abstradion [21], such as sendBrent waitNextDistributedEvent
ard waitNextDisributedEventBeforefme on top of the
distributed computingnfragructue conventionallyidentified by
Layer Q Such bottomlayer doesnot belongto SimArch and
therefoe theinterfacesbetween Lagrs1 and O & not defined. h

the ca®e of a HLA-basd implementation of hyer 1, sch

interfaces ar sbsts of the RTI-Ambasador and

FederateAmbassadr interfaces forthe communication between
Layers 1 and 0 and between yars Oand 1, resgdively.

The conmunications between theylers are bidirectional anthe

providedinterfaceshave to bemplemented to successully use

the awailable layers imdementations. For example, whenngsi
Layer 1, theLayerlTolLayer interface isto be implementedand

its implementation is to be providess referenceto Layer 1. In

the spedfic case, LayerlTolLayer2 nterface inércepts the

distributed events and takeae ofschedulinga properhandlerin

the local event lis

4. DisSmJADE

DisSIimADE is a Jva franewak for agent-basednodellingand
simulation. It isbuilt on top ofJADE and guctured acording to
SimArch. Distinctive featues of DisSImJADE are the compliance
with the FIPA spedfications [4], inherited fromJADE, and the
integration with HLA, given bySimAch.

The famework is implemented vith the objective of simplify ing
the deelopment of digributed agent-based simuation systems.
Specifically, DisSmJADE aims to:

1. making the developrent of agent-bad smulation
systems sinilar to the development b conventional
agent-baed s/stems

2. enabling the transparent exagion of agent-basd
simulation systemseither in a local or a didributed
environment.

To achieveobjective 1, DisSmJADE introducesa st of software
componentsthat conform to theJADE and FIPAstandardsand
that can encapslate conentional JADE componentswhile
objective 2 is achievedby integrating DisSmJADE into the
SimArch software architecture. ggdfically, DisSmJADE uses
the Layer 1 provided bySimArch and inplementsthe SimArch
Layer 2interface.
In particular, the DiSmJADE framework consiss of the
following components

e asimulation ontology

e a smulation agent societgnd a et of agents

e an interactiorprotocol;

e a set of simulation behavims)

e a set of simulation event handie

The smuldion ontology namedDES-Ontologyand illugrated in
Section4.1, defines the ®mantic base for the conmunications
among the simulation agentsit consi¢s of DES concepts

(smulation time) and actions (DES andsimulation life cycle
managementesviceg, and allowsthe inorporatian of any other
JADE ortology thus enabling thereue of sandardagent-basd
components

The simulation agent society illustrated in Section 4.2, is
structuredhierarchicallyand isbagd ontwo types & smulation

agents, the simulation eitity agent and the simulation engine
agent with the rmer en@psilating the smulation logic,i.e. the

sequence of tates and DES service rguess, and the latter

managinghe agents The societydefineswhich agentgtypesand

names)can be pa of the smulation execution. BSIimJADE

defineslocal sodeties, whic are compoed of aspedfied number

of simulaion entity agents and amnanayed by a locdly running

simulation engine agent, andgéobalsociety whichinterconnects
the local saieties A local societycan be un inisolation, in cae

of local simulation executionpr can be inteconnected with o

societes, in ca® of digributed simiation execution.

The interaction protocol, illustrated in Section 4.3, defindbe
communication ries between agentbelonging to the sme
society Due to the herarchical $ructure of the society, the
communicatiortakes place only between ¢&enity agentsandthe
engine.The distributed exeaution extendsthe interation protocol
for the localverson by transgrently making the gnchronzation
and @mmunication isues behind ®n1Arch and HLA ervices
which are out oentity agentsvisibility.

The simulation behaviows define theadionstaken byboth types
of agentdn respong to the reeptionof any of the DES-Ontology
adion, by implementing the interaction protocols. "hey conform
to the JADE interfaces and can encapsate $andard JADE
behaviours

The smulation event handlerdefire the rodines that rast be
locally processedy the engine aget to ded with the sheduled
requests, i&h aswake up or event notification. They can be
considered asupport componentthat are visible to the engine
only.

4.1 DES-Ontology

The DES-Ontologyextendsthe ADE standard ontolog [19]
introdudng conceptsand a&tions that charcteize the smulation
domain. Theconcepts arerelated to theisulation time, while the
actionsare related tdhe ineradion between snulation entities
and simulation engines

As regardsconcepts the DES-ontologydefines two different
repregntationsof the sinulation time: AbsolteSimiationTime,

for abslute values of the Smulation time; and
RelatveSmuationTime, for relative vdues of the simulation

time, with “relative” having dedult semantics “with respecto the
currenttime”. The two concepts are related hije fact that the
AbsoluteSinulationTime is given by the sum of the current
AbsoluteSinulationTime and the RlativeSinulationTime.
Neverthelessthedefinition of a relativdime concept isncluded
in the ontology becaus it is a parameter reqed by seveaal DES
sewices.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

As regardsactions, the ontlbgy definessimulation management
sewvices andDES senges.

A simulation managemeiservice defines an actionthat manages
the simulation life cycle, i.e.,:
* registe agent to requesto join a smulation society;
o registration sweesstil: to acknowledge the @ceptance
of aregidration request;
e remo\e agent to resgn from the ciety;
e move agentto move the agent to anothasciety
e simulation end to natify that thesociety objedive has
been reached.

The ationsregister agent andremove agnt, which are bah of
perfomative ype REQUEST, haveno attributes becausethe
adion object, i.e the name ofhe agent requéng theadion, can
be infered fran the mesage envelope.

The move agentactionis of performativetype REQUESTandis
charadterizedby the nane of the ecipient engine wherthe aget
is to be stated with the intial sate (al® provided)

The actiongegistration sucessful and snulation end which are
both of performative tye INFORM, inlcude an insnce of
AbgluteSimulationTime that specifes either the siolation stat
time (in case of registration succesful action) or thesimulation
end time (in cae of simulation end action).

The DES senwes defineactims ofthe following types

e conditional holdtime: to request an hold for a given
simulated tine, urder the cadition that no evet
notificationsare received;

e hold time to request an unconditiondhold for a
spedfied smulated time;

* notify time to inform that thespecified timehasbeen
reached;

* notify mesage: to informthat thespecified eventwas
requesed to be hedukd for the receiving agent, at
the curent ting;

e send mesage: to request the déivery of the specifed
event at tk specified time toanothersimulation entiy
agent;

e wait messge to reques a wake upwhen a smulation
mesage igo be notified.

The condtional hold time andhold timeactions which are both
of perfomative type REQUES, arechamacteized by a rdative
simulation time that specifes the smulation deep ime.

The notify time action, which is of performatie type INFORM,
informs the receiving agent ofthe absdute smulation ime
reache. The notify nmessage action, which ingead notifies a
messge, isdescribé by the following four attributessender
agent, recipient @ent messge and timeThe first three atibutes
are of type String while the farth is of type
AbgluteSinmulationTime.

The £nd mesageaction is conplementry to the notify mesage
action. It is de<xribed by the sam attribdes, but it is of
perfomative ype REQUEST. Irthe sgcific case, to maintaina
logical unformity with thecommon practice inDES, the time is
of typeRelativeSiralationTime.

Finally, the wait messge action, which is of peformative type
REQUEST, informsthe enginethat the ®nder agent is blocked
and waiting for new mesages.

With the exception of themove agentactian, all the actims are
indifferentlyusedby the ently agents eithewith the a localor a
distributed enginegent.

4.2 Simulation Agents

A simulationagents’ saiety is populated ¥ two typesof agents
thesimulation entty agents and thesimulaion engine agents
The simulation entity agents incorpoate the smulation logic by
use of custom sintation beha&iours while a sirmulation engine
aget is in chage of coordinathg the society and therefae
includes dist of the simulation eventand a ecord of the ®ciety
compodtion, asdetailed in the followinguh-sctions

4.2.1 Simulationentity agent

Figure 2 describeghe statediagram thatlefinesthe lifecycle of a
simulation enity agent.The datesin the diagramof Figure2 are
simulation statesbuilt on top of thesandard tates of a JADE
agent [19] and are tranparentlyintegrated with tem.

The sate diagam of a $mulation entityagent looks shilar to the
statediagramof a mnventional ES smulation and therefoe this
section onlyfocuseson the differences, while additional details
on the resof the diagram can be found in [22]

The changesntroducel by the sate diagren of a smulaion
entity agent concern th&Vaiting for Regisration Acknowledge
state andhe Mobility state. h the former, the simulation engine
collects the regtsation requets and cheks when the societyis
readyto executethe smulation. In thelatter, the aget forwards
the requesto the engine and teinates tle life cycle. Thes
differences are die to the decentradied and dyamic natureof the
agent-basd smulation framework, which differentlyfrom a
conventional DES framewordllows the creationand termination
of logic processs.

RegisterAgent

[Waiting for Registration Acknowledge]

SimulationEnd RegistrastionSuccessful

Mobility Event

Mobility

NotifyTime,
NotifyEvent or
SimulationEnd

NotifyTime or Hold

N ! NotifyEvent or
SimulationEvent

SimulationEnd

WaitEvent
ConditionalHold

WaitEvent HoldUnlessIncomingEvent

Figure 2 State digram of the smulation entity agent

To implement the above described dynamjcghe entitys
behaviour is configuredas a serial conposition of the
RegisterAgentBehaour and EntityMainCycleRehaviour
behaviours with the latter to beconfigured according to the
model pedfications

In orderto allow the easyplugging of anyconventional JADE
behaviour into the EntityManCycleBehaviour behaviour, the
simdation entity agent interface nust be congstent with the
JADE aent standard ingrface. To achieve thighe smulation
entity agent mug therdore invoke the isnulation actions
conditional hold timehold time send event andwait eventby

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

use of the ADE sandard nethods blockingReceivetillisecs)
doWait() snd(), andblockingReceivg{ resgctively.

4.22 Simulation engiaagent

The simulation egine agentcan be smilarly describe both for
local and distributed engine3he distributed engine is indeed
built by extendingthe locd, which is therefoe presented frst in
the following sib-section.

4.2.2.1 Local ergine

Figure3 describe the sate diagram fothesimulationlocd engine
ager.

The local egine state diagram consists of sequenceof states
that can k grouped in three phas,dencted asPhase 0through
Pha® 2 in Figure 3.

Phas 0is theregidration pha that t&es careof synchroniing
the gart-up phas throughthe Waiting for Registration Reguests
and Confirm Raeistration Sucesdul states. In sch aphasethe
engine acceptsncomng register agentrequets while cheking
whether thesimulation society becomes complete. Once the
society is conpleted, the engire notifies the registration
succeskll to all the egisteral agents. Suchtatesare notpreent
in a conventional DESdmework lecau® the entitiesegidration
is carried out through the stic invocation of local methodat
coding time. Similarly to the entityagent tate diagam the Phas
0 statesoriginate from the inheret decentrdised nature othe

system.
3 RegisterAgent

| Waiting for Registration requests

Phase 0 | Society Complete

| (Confirm RegistrationSuccessqu

C {old / Hold /
WaitEvent / SendEvent /

RemoveAgent /

Register Agent

Waiting for Simulation requests

Phase 1 Agent running ==
Processing next internal event
Phase 2 Simulation End Notification

—

Simulation End

Figure 3 Statke diagram of the simulation local engine gent [24]

After completing thisphase, the engine proceeds tihe Phase 1
that consits of the states Waiting for Smulation Requestand
Procestng Internal Bvent which contribte to define the
EngireMain-CycleBehaviou Such behaiour executes the
following algorithm:

While flumberOfRunningAgents0) {
wat for a smulation messge;
Case of:
SendBant: schedulesendEventHander;
break;

HoldTme: numbedfRunningAgents-;
schedule wakeUpHandjer
break;

Waitvent: numberOfRRnningAgents-;
break;

RemeeAgent:

numbedfRunnirgAgents-;
sart RenoveAgentBehawir;
break;

@nditionalWaitEvent:
numberOfRunningAgents
schedule wakeUpHandjer
store agentName in conditionalt;is
break;

RegsterAgent
numberOfRunningAgents;
regigerAgent;
start RegisationSuccesfulBehaviour,;

}I end cas

} /1 end while

If (eventdist.5ze() > 0) {
nextEvent = eventidtremoveQ);
nextEvent.qrcess);

}else{
stSmulationEnd()

}

The algaithm is composed dfvo main blocksawhile block for
the requegs collection at a givesimulation time, and aiif-then-
elseblock to processthe next €hedued event and advance the
simulation time.

The algorithm isba®d on the following assumptions:

e the cadinality of the smulation society is knownfrom
the previous phag and sored in the local \ariable
numbeOfRunningAgents

e the agentsequeting hold time, conditioal hold or wait
eventsimuation servies block their executiorand do
not pocessfurther requets urtil they receive propr
simulation notifications.

The second ssumption definesthe interaction protocolbetween
entity and engie agentsand guarantees thatithin the if-then-
elseblock the actualnumber of running agents zero, aserified
throughthe value of the leal variablenumberOffRRnningAgents
The while block exectes untilthere @ runningagentsin the
society In this block, the activies follow a sequentll wait-and-
servecycle tha processs the rejuests by propely updatingthe
numberOfRunningAgentariable ad by performng the relevant
adion: either the £hedulingof anewewent handlerin the lis or
the activatio of a simulation srvice behaviour As an example,
upon reeiving asend gentreques the engineschedules anew
local SendEentHandler with the proper data (recipient, time,
messge, etc.). Simiarly, in case ofwait ewnt requess, the
engineverifies that the requestinggent isblocked and will rot
proceed until a lcal event nblocks tle egent

The algorithmalso manages thelynamic compsition of the
agent society by processng register ageit and emowe agent
requess.

Oncethesimuation endeventis reached, the enginéopsand the
EngineMainCycleBehaviouterminaies

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

After that the engin@roceedsd the las phag, denotecasPhas
2, which indudes the Simdation End Noification state. h such a
phasethe engine nifies a simulation endnessgeto the entie
societybeforeterminating itslife cycle and removingtself from
the agent container.

4.2.2.2 Distributed engne

The distributed isnulation engine agenmakesus of theJADE
framework for the local interactionsind usesSmArch Layer 1
ard HLA for the gnchroniation and communiations among
distributed entiies, asllustrated in Figure 4.

The choice ofnot usng JADE as ditributed platform is motivated
by the following conglerations

e SimArch and its HLA-based implementation allowthe
integration with other isnulation systemsdeveloped by
use of suich technologies

e theintegraton with SimArch albws to oltain amulti-
paradign (e.g. agent-ba&sl, processnteraction, event
scheduling, etc.) dstributed gmulation environment;

e HLA provesto perform beter in terns of simulation
workload compared ot RMI-based conmunications
between theAIDE nodeq19];

e the implementation emains extenmely smplified and
confaoms to a general rase and integration trend
currently observed in the ddtware and simulation
indudry.

The didributed engine isompliant with the lo@l engine for what
concems the ingractionsto be caried out wth the smulation
entity agentswhich can be thefore deplogdregardles the type
of engine. Vice versathe didributed engie deals with the
following extra isues:

1. synchronizatim and communication between local and
distributed environrent;

2. agent nobility between smulators;

3. handlirg of didributed event# the franework.

Simulation Model Logic

Distributed
Simulation Engine
Agent

Society j] [

Distributed
Simulation Engine
Agent

JADE]

Society i ﬂ ﬁ
B)

SimArch Layer 1

HLA

Figure 4 DisSmJADE archit ecture

The synchranization and @mmunication oncern the constency
betwea thelocal and digibuted environmentswith the addition
of event deliveryto agens ruming on renote smulators. The
agent mobility allows simulation time-gamped tansfer of an
agent from a given simulatorto a remote one. All such

functionalities requirghat new event handlersare irtroducedto
properly procesingsuch requds.

The engire deds with the above ssies usng SimArch Layer 1 in
conjunction with:
e Animproved life cycle ad dgorithny
e Mobility Event;
e Distributed evat handers, for which interestedusers
are £nt to [4.

The agent life gcle is deseibed by the diagran in Figure5. It
consigs of five phasesdenoted as PhaSghroughPhase 4. Phag
0 is the nitialization of the distributed environnent and proceeds
asillustrated n [4][22]. Phase 1is shared with the local ersion;
and s$milarly Phase 2 (Simulation main cgle), which howeve
preents two $gnificant differences.

’

Phase 0 (Imtlallzmg Distributed Enwronment)

T

\LSociety Complete

RegisterAgent

(Conﬂrm RegistrationSucoessqu

c Hold / Hold /
WaitEvent / SendEvent /
emoveAgent / Mobility

Event

Phase 3 :) T
Simulation End Notification

Phase 4 | Distributed Environment Post Processing)

Simulation End
Figure 5 State diagam of the simulation distributed engine agent

The first is tha the local events canndie procesed before
advanaing the distributedtime, which is carried out within the
Advancing Distibuted Tmestate. The tansition from this state to

the next stte only occurs wheneitherthe fme hasbeen ganted

or a disributed event has been received. Ithis lag cas, the

distributed event isranparently schedukd as a local event by
SimArch layer 1.

The second diference isthat, when an agent iamoving to the

simulator, the smulation hasto tenporarily block wuntil the agent

is loaded up angbins the local simiation society. In cas of an

agent mobiity event, the societycompogtion is updatedand the
society conplete cadition is no longer satfeed. This

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

correppondsto the trangion from the processng next internh
eventstateto thewaiting fa registration requess state ofPhag 1
in Figure 5.

Phae 3 follows the mainprocesing cycle and concens the
notification of tre smulation end event to all the locagents. It is
adivated by Phag 2 when reeiving the corrgpondirg event
from the digributed environment.

Phas 4 concludes thenginelife cycle restoring the disbuted
environmentset up.lt follows the operationspedfied in [4] and
[22].

The distibuted engindife cycle is implemented sirlarly to the
locale engie one, with the addition of the advameent of the
distributed time andthe transition from the procesgng next
internal eventstate to thewaiting for registration requets sate.
The adapted algithm is as bllows:

While fumberOfRunningAgentsO0) {
wat for a smulation messge;
Case of:
SendEent: schedulesendEentHander;

break;

numbedfRunningAgents-;

schedule wakeUpHandjer

break;

WitEvent: numberOfRnningAgents-;

break;

RemeeAgent:
numbedfRunnirgAgents-;
stat RenoveAgentBewiour;
break;

@nditioralWaitEvent:
numberOfRunningAgenrts
schedule wakeUpHandler
stae agentName in conditionalltjs
break;

RegisteAgent:
number OfRunningAgents++;
registerAgent;
start RegistrationSuccessfulBehaviour;

MoveAgent:

forward mobility request to recipient simulator;
number OfRunningAgents--;

start RemoveAgentBehaviour;

break;

HoldTme:

I end cas
} /1 end wlie

If (eventd.ist.size() > 0) {
nextEvent = eventsList.read(0);
waitNextDistributedEventBeforeTime(nextEvent.time);
nextEvent = eventittremoveQ);
nextEvent.qocess);
}else{
waitNextDistributedEvent();
nextEvent = eventsList.remove(0);
nextEvent.process();

where thebold text denotesthe changeswith respect to the
algorithm of the local engine.The handling of a nobility event

requestcongsts of the forwardng of thereques to the remote
simulator, the update of the societycardnality and firelly the
removal ofthe agent m the society

When all the agents have been executed arelblocked waiting
for a repon® from the engine, differentijrom the lo@l engine,
thedistributed verdon proceedsy chedking the &e of the events
list. If thelist containsat least oneevent, the distbuted engine
will verify if eventsare available n the distributed envirorment

before the next local event, byus of a call to the SimAh

service waitNextDisributedEvent Oncethe service call returns,

the next locakvent is procesed ad oneor more agents vl be

reactivated, as in the local vems. The ca® of the eventslist

empty is sightly different. In such a case, the ewice

waitNexDistributedEvet is to be invoked. Similarly when the
sewice call returrs, thenext local event io be retieved fromthe

list and procesed.

The mobility ever logic, which is triggered in resnseto a Move

Agert requesg is to be implemeted by acepting the incoming
aget and locallyremoving the migratedagent. This is achieved
using SimArch laye 1. To u® this layer, the engine hasto

implementthe Layer 1 to Layer 2interface b allow therecepton

of the distiibutedsimulation events. The ietface implementadin

includes the code toary out tte transtion from the processing

nex internal eventstate to thewaiting for registration requests

state.

In cese of a sandard event, e.g., a commuw@ion between two
agets, the eventwill be shedukd as an mternal eventthat
specifes theremote sender. Ciérently, in caseof an incoming
agen, the engire state wriable denotinghe ®ciety cardinalty is
properly updatedio include theincoming agentThe enginewill
then block the procesgy and willwait for theregidrationreques
to proceed onConcurrent requés will ill be colectedby the
engine but noneof them will be atually procesed because tlie
extra running agentnot yet in a blocked wte. $ich reques
collection doesnot compronise thevalidity of the algorithm
beaus it does wt allow anyagentsto run over e currentocal
simulation time.

The digrimination betveen a &andard evenand a mobility event
is to be spcifiedwhen sending thé&kRemoeAgentevent. This can
be easily achiewk with SmArch Layer 1 sewvice sendEvat,
which allows the pedfication of an event &g thatdiscriminates
the type of event. By setting a different vale for both types,the
discrimination beomes trivial for the receiving enge

The dstributed execution eguires that event handers are
introduced to spgcifically ded with distributed eventsThey are
similar to the handlerdgntroduced \ithin the SimArch sofware
architecture and ampresentedri the following sulsection.

4.3 Interacti on Protocol

The interaton protacol deines the rules pon which the
converstion between the agés t&es place, e.g. which agent
talks whichlistens, wiich expectswhat. It ca bedistinguised in
intra-societyprotocoland inter-soiety protocol. The former takes
placefor the conmunicationsin a local envionment, loth in the
case of local anddistibuted simtation. Differently, the latteris
used in the disibuted environmentonly and involvesagents

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

either engine or entities, which are runningwithin different
societies

The intra-society piotocol is used beteenthe entityagents and
the engineagent to request and acknowledgde $mulation
adions defined irthe DES-Ontology It is based onthe blocking
and non-blockingproperties of the smulation servies On the
entity agent side, the adion requests &ch asregister agent,wait
time or hold timeneed that thegent interruptsts exeation until
given proper conditios aremet. Sich conditons are monitored
by the engne agent, which ds the entire view of the societyand
the agentsreques$ and which actigtes the individual agentby
respnding to their requets Far the correct execution ofthe
simulation it is fundamental that ¢hentity agentsare awareand
respect sich prdocol.

The inter-society piotocol conplements the intra-society rules
when operatig in a distributed environment. The disbuted

engine implements such a protodnladdition to the inta-ciety

one and therefee can immediatelyreplace the local engine
without modifying thesimulation entity agents The inter-sciety

protocoldefinestwo typesof interactionsthe ®nding of an evet

to arenmote entity agent, ad the mobility of an agent on amote

society

The sending of arevent toa remoe entity agentoccurswhen a
local entityagent equestghe delvery of a messgeto a speciked
entity agent. The engineoliects the requésand verifies if the
recipientis runninglocally or on a renote machine. Iboth cases
the intra-sciety pratocol is appliedfor the nteractionbetween
the engine and the entity agent In the case ofa digributed
recipient, theprotocol ssumes that the enginéorwards the
request to the menote agent before continuirg the local
procesig. The commuicaion bdween the two enginess
obtained bySimArch and HLA andherefoe is not compliant to
the FIRA standard. However,ush an approach brings several
advantages — as shan above, and does naffect tre peculiarities
of the local iteraction, vhich istill FIPA conpliant.

The agent mobility is based on @ milar approach but isnare
complex. Figure 6 Bows an exarple of agent nobility with the
adors of this phaseandthe sequencesf seps Besidesthe entity
agent andthe engines othe souce and ddmation sites, another
agent sipportsthis action It is theresource managr, which is in
charge of starting the agent on theemotesite. The pesence of
this agentis esential becase toguarantee the proper applton
specifc initializationtypical of an agenttartup.

SimArch - HLA

Figure 6 Example of agent mobility

Let's asume that Agent A in Figue 6 wants to move from
SocietyA to SocietyB at smulation time t. It frst sends aJADE-

conpliant mobility requestto engine A (stepl). The reques
consigs of a smulation event to be delivered ¢ the renpte
Re®urce Manager and an attached esialization of agent tate.
EngineA sendsthe event t@ngine Bby spedfying that theevent
is of type nobility (step 2). At the pecifiedtime t, SimArch and
HLA deliver the gent to egine B (steps2A and 2B), which
processs the event ¥ updating thesociety compogdion and
deliveringthe event tdhe Resource Manager tep3), asinitially
specified byEntity A. Differently from aconventional eventhe
delivery andthe processg of themobility event doesnot allow
Engine B to continte. The local society on site B is now
incomplete and eng:nB cannot proceed untit receivesthe
request of joining the society After having opered the
initialization of the agent paranetess, the Resarce Manage
adivatesentity A agent vith the provded state tep 4). Oce
running the agent firsrequestgo join the local ociety andafter
proper acknowledge sirts its smulation cycle asat the first
adivation (step 5). Such rechanisn guarantees thateimobility
is operated trans@rently and in swychroniation with the
simulation clock, local and distributed.

5. EXAMPLE SCENARIO OF USE

A significant scenario for thepplication of DisSSmJADE can be
found within the dmain ofmanufcturirg system smuldion. For
the sake of simplicity, let us considr a sinplified system where
workersmove aroud a manufactuiing factory premisesin order
to reach the machines theyeed to useln such ascenario, a
significant aspect for the pmer scope is repregnted by the
movenent of the wokers. A possible space atelling fa this
system is represented bya graph whos nodes identify the
possble pogdtions, and wo® edges repsentthe possible
movementsof workers between two pasons. The nodes als
repregnt physical resources thatcan exdusively be usedy only
oneworker & a time, whereas the edges camultaneoudy be
traverged bymore workersat the ame time.

A possible agent-based modellingf such system could include
two typesof agentsa ResourceManageragent, which coordinates
the accessto the physical points and a Worker agert, which is
provided with a slf-updated view of theworld, a acision model,
a motbn modl and aset of machinesto use. A synthetic
sequencealiagramof a local smulation gstem for two worke
agets anda resurce manager ishownin Figure7. The workers
inform the ResourceManage whenthey reach the node anthen
wait for an autlerization eventThe ResourceManageauthorizes
the movement when the requétenode is free and delag
authorizatios when the nodds busg. The diagram doeson
include the engine agent beau® it is not viside at gstem
modelling levé

Wall-clock | orker 1 Worker 2 ResourceManager
time
Sim-fime Sim-time. -
| 0 ' 5 . Arrived at (node i, time t2) — Sim-time
| Arrived at i WaitEvent 0
} (node i, uwn1§Jt;) } Simtime
i el Event i WaitEvent 11
! Sim-time__| i !
| t1 | | |
I I I I
} } I Sim-time
| | " | WaitlEvent 13
| | Sim-time t3 Authorized toMove (time t3) |
I I I
N i - i i

Figure 7 Example sequenceliagram [24]

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

Assuming thatthe simulatedspaceis vad and lagely populated,
it could be appopriate, if not neceswmy, to executeit in a
distributed environent. This can be obtaed by smply

subsituting thelocd engine vith the disributed enginefor what
concernsthe framework, andy instructing theresourcemanaer
and the worler agentgo supportthe application sgific logic for

the mobility event. Thisregads in particubr three apects,which

are however related to the spécifpplication:

1. the definition of the molity trigger condition;

2. the rialization of thestate totranser on the remote
simulator;

3. the desrialization é such state at theamote simulator.

The first aspect concerrthe boundarig of the world simulated
by eat of thesimulators. It can be ealy addresed byspecifying
the ReurceManayer nameon each node. In such a wayhe
workers can eay detemine whether the mobility triggering
condition is true bychecking that theeurce managername of
the detination node differs from the name of the currentnode
resairrce manager.

The secondand thethird aspectsare standara@perations in dva
and manylibrariessupport the autoatic seridization of olject on
String, seh asXStreamString [25]. The control of the data to be
seridized remainsin charge ofthe application, havever. Only at
application level it is possible to determine which datahasto be
caried on and which igo be reconstructedn the destination
simulator. In the $iown application, e workers are provided
with a detailedmap of thelocal wald, asin the local smulator,
and a condened represntation of the remote world. This
includes,for example, rain gateway, stairs, aswell connections
betwea the smulated areasTo the purpose of demotmating the
framework, we locdly stored congant dataand reducedthe
mobility data. In paticular, each esouce managermaintairs a
copy of the world view from the local area anayplicates for each
of the incoming workers At the sama time, eachworker brings
with it only the specift paranetas of the decisiorand motion
model, in adition to the lig of the machinesto ue. Themobility
of the workers that reach a border noddldavs the procelure
descrbed in Section 4.3. The procedue and thednctionalites of
theframewak are ndepedent from the modeihg characteriics
of the wakersand moe accurate decisianand noetion models
can dso beused.Their implementton is out é the £ope of this
pape and therefore not disssed here.

6. CONCLUSIONS

The adoptionof an aent-basd approah has proven effective
when $mulating complex senariosconssting of a lage numkber
of autononousand interactingentities. In such sttings it is often
requiral to exploit distributedsmulation to deal with the required
scalabilityand acuragy charaderigtics.

This paper hasintroduced D§SMJADE, a simulation framework
which provides a uniform approah to developagent-basd
simulation systemsthat can be tansparery executed eitér in a
local or digributed envirament.

The paper has detbed the severd benefits that DisSImJADE
provideswith respectto comparale contributions Mog of such
benefitscome fromthe use of ADE as the underlying agent-
based platform and fronthe integration with the SimArch
simulation archiectue, and ca besunmmarized as éllows:

e theincorporaton of dstiibuted smulation facilities irio
conventiod agent-based framework

e the effortless development of disbuted simulation
systemsas a transparent ésngon of the corresponding
conventiod (i.e., centralied) simulation gstem;

e the povison of a nobility facility to easly migrate
simulation agentsfrom a given smulation ®cety to a
remote simuation ciety.

An example scenariof use hasalso been liustrated b give the
flavor of the efectiveness provided by the DiSmJADE
framework.

7. ACKNOWLEDGMEN TS

This research has begartially funded bythe ALADDIN project,
fundedby BAE and EPSRCby the euHart project, funded by
Europea Union 7, by the FIRB projet on “Software
frameworks and technologe for the development and
maintenance obpen-surce distifuted smulaion code”, funded
by the Italian Ministry of Re®arch, and by the Unversty of
Roma ToWergata CERTIAResearch Qeer.

8. REFERENCES

[1] N.R. Jennings and M Wooldridge, ‘“Application of
Intelligent Agents, Agent techntogy: fourdations
applications, ad markets Springer-Verlag, 1998, pp. 328.

[2] R. Fujimoto, Parallel and Disbuted Sinulation Systems
Wiley (2000).

[3] JADE projed hone, http:/jade.tilab.itTelecomitalia.

[4] D. Gianni, A. D’Ambrogio and G. lazeolla, A Layered
Architectue for the Model-diven Development of
Distributed Simulators’, The First Internaional Canference
on SimulationTools and Technologie (SMUTOOLS08)
Marseille, Mart, 2008.

[5] FIPA Spediication, http://www. fipaorg.

[6] A. Somanand B. Logan, Building cognitivelyrich agents
usng the SIM_Agent toolkit, Communicatiorof the ACM
vol. 42, n. 3, 1999, pp. 71 - 77.

[71 A. Hellebogh, T. Holvoet,D. Weyns, and Y. Berkers,
“Extending Time Management $port br Multi-agent
Systems”. Procealings d the 2004 Wrkshop onMulti Agent
Simulaton and Multi Agent-basd Ystems LNCS
3415/208®, Springer Verlag, 2@ pp. 37 — 48.

[8] F. Wang,S.d Turner,and L Wang, “Agent Communigtion
in Distributed Sinalations”, Procealings ofthe Multi-Agent
and Multi-Agent-Based Simulation(MABS 2004), Spinger-
Verlag, LNAI 3415, 2005, pp. 11-24.

[9] Jess Poject http://www.jessruls.com.

[10] A. Pokahr, L Braubach, ad W. Lamersdorf, “ADEXx:
Implementing a BD-Infrastucture br JADE Agents, EXP -
In Sarch of InnovationSpecial Isse on JADE, vol 3, n. 3,
Telecom ltalia L, Turin, Italy, 2003, pp. 76-85.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5725
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5725

[11] G. Kiczales, J.Lamping A. Menhdhekar, C. Meda, C.
Lopes, J. Loingtier, and J. Irwin, “Aspect-oriented
programming”,Proceadings ofthe HiropeanConfeena on
Object-Orented Pogramming Vol. 1241, Springer-Verlag,
1997, pp. 220 — 242.

[12] E. Gamma, R. HelmR. Johnen, J Vlissides, Design
Pattens: Elements ofReusble Object-Qented Sofware,
Addison Wesley (2000).

[13] IEEE 1516, Standard for Modelip and Sirnlation (M&S)
High Level ArchitecturdHLA) — Framework and Rules.

[14] GF. Riley, M.H. Ammar, RM. Fujimoto, A. Pak, K.
Peumalla, andD. Xu, “A federaed approach to disbuted
network sinulation”, ACM Transaction on Modelingand
Computer 8nulation TOMACS) Vol. 14 N. 2, April 2004.

[15] E.H. Rage, R.L. Moos and S.P.Griffin, “Web-Basd
Simulation in Simlava ugg Remde Method Invocaion”,
Proceedingsof the 1997 Winter Simulation Confeence
Atlanta, GA, pp 48-474, December 1997

[16] B.P. Ziegler,G. Ball, H. Cho, JS. Lee, and H. Sarjotgan,
“Implementation of the DBE/S Formalisn over the
HLA/RTI: Problems and Solutions”Proceealings of the
1999 Simudtion Interoperbility Workshop @W99)

[17] O. Dalle, ‘The OSA Project: an Exaple of Compnent
Based Sdtware Engineering Techniques Applied to
Simulation”, The 2007 Summe Comptier Simulation
Conference§CSC’07)San Diego, US, July 15-18, 2007.

[18] A.M. Uhrmache and B. Schattenberg,Agents in Disrete
Event Simulation,” European $#nulation Symposim
(ESS98)1998, pp. 129 - 136

[19] M. Lees, B. Logan, G.K.Theodoropoulos Distributed
simulation of agent-based systemsvith HLA, ACM
Transaction on Modeling and Computer Simulation
(TOMACS) vol. 17, n. 3 2007.

[20] F. Bellifemine, G. Caire,and D. Greenwood, “Develam
Multi-A gent Systens with JADE”, Wiley (2007).

[21] Richard E. Nance, ‘The time and stée relatiorships in
simulation modeling” Communicatias of theACM, vol. 24,
n. 4, April 1981, pp. 173-179.

[22] D. Gianniand A. D’Ambrogo, “A Languageto Enable
Distributed Simulaion of Extended Queeing Networks,
Jourral of Computer Vol. 2, N. 4, July 2007, Academ
Publisher, pp. 76 — 86.

[23] . Sommerville, Software Enhgineering, ¥ ed., Addisn
Wesley(2007).

[24] D. Gianni, “Bringing Discrete Event $mulation Into Multi
Agent System$, 10th Internatiod Conferenceon Compute
Modelling and Simuldion, Euro$M/UKSIM, Cambridge,
April, 2008.

[25] X Stream project hore page, htt/xstreamcodehausrg/.

