
Extending NCTUns simulator to support Mobile Networks
Juliano V. Quaglio, Tetsu Gunji, Celso M. Hirata

Instituto Tecnológico de Aeronáutica
Praça Marechal Eduardo Gomes 50

12228-900 Sao Paulo, Brazil

juliano.quaglio@gmail.com, tgunji@uol.com.br, hirata@ita.br

ABSTRACT
NCTUns is a Linux based network simulator/emulator which has
a great deal of features such as the possibility to execute real
world applications without modifications, and provision to model
a wide range of network devices using real TCP/IP network stack.
However NCTUns only supports simulation/emulation of mobile
hosts instead of mobile networks. Hence, using the conventional
NCTUns, it is not possible to model more elaborated scenarios,
including C4I2SR systems which have mobile networks, for
example, aircrafts with internal embedded networks
communicating with external networks (terrestrial control center).
Motivated by this restriction, we propose and describe an
extension of NCTUns in order to allow the modeling and
emulation of systems which require two instances of NCTUns.
The extension allows the emulation of C4I2SR systems scenarios
with video stream and composed of mobile networks using
distributed computers. The approach permits improving the
confidence on the modeling.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications.

General Terms
Algorithms, Design, Experimentation, Verification.

Keywords
C4I2SR, NCTUns, emulation, mobile networks.

1. INTRODUCTION AND MOTIVATION
C4I2SR (acronym for Command, Control, Communications,
Computers, Intelligence, Information, Surveillance and
Reconnaissance) systems are defined by NATO (North Atlantic
Treaty Organization) as integrated systems of projected doctrines,
procedures, organizational structures, personal, equipments,
installations and communications to support the commander in
chief in the command and control of operations and military
activities [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIMUTools 2009, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

C4I2SR systems have functionalities that allow the operators to
get effectiveness on their operations, reducing material and
personal necessary to do the tasks, raising the probability of
success in the missions under their coordination.

A C4I2SR system is composed of several types of processing
nodes:

x Platforms – airborne (including ISR), terrestrial and
maritime;

x Sensors – air transported radars, terrestrial radars, optical and
multi-spectral sensors, electromagnetic sensors; and

x Terrestrial control centers.

One of the innovative technologies that needs to be developed in
this context, is the integrated transmission of video/images
(generated by video cameras, infrared and SAR radar – Synthetic
Aperture Radar), voice (generated by the voice communication
system of the aircraft) and messages (with geo-tagged data, status
and commands), using tactical broadband data link such as TCDL
 [2](Tactical Common Data Link) between the ISR aircrafts
(airborne platform) and the terrestrial control centers.

One of the main difficulties of building a C4I2SR system is its
complexity and its wide range of equipments. Hence, the cost of
developing such system is also very high.

In order to design and test, avoiding unnecessary resources,
simulation and emulation studies of the networks involved are
recommended. Such studies are an economical way to estimate
the traffic, the system behavior and the feasibility of the topology
proposed to overcome some type of constraints such as
bandwidth, propagation delay or BER (bit error rate) among
others.

Considering all the subsystems of C4I2SR systems, the most
interesting one for a simulation/emulation study is the C4I2SR
subsystem scenario consisting of a terrestrial control center and an
aircraft embedded network. The study may help to test both the
influence of the airborne segment in the communications and the
feasibility of different protocols used by military data links.

Simulation and emulation differ in the following. Network
simulation works by building a complete model of the network in
software. The downside of simulation is that it must be possible to
simulate all components in order to produce results. A complex
simulation model is difficult to verify, and its validity may be
called into question. On the other hand, network emulation is a
technique whereby some functions of a network or

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 1 - NCTUns architecture [6].

application are reproduced in real time using software. The
software presents the same interfaces to other system components
that the emulated components themselves would present. Network
emulation requires significant software and hardware resources in
order to generate results, due to its real time nature [3].

Hence, to use real network components during the tests and to test
real audio and video communications, the use of emulation
instead of simulation would be more appropriate and trustable.
Such emulation could be made by using a software network
simulator/emulator, such as NCTUns (National Chiao Tung
University network simulator) [4].

The emulation of the C4I2SR subsystem includes the internal
(inside the aircraft) and the external networks (terrestrial and
communication between the terrestrial hosts with the aircraft).

The main problem that arises using NCTuns is the simulation of
two networks, since the aircraft network (mobile network [5])
moves with respect to the terrestrial network but the internal
aircraft’s network elements are static positioned with respect to
each other.

In this paper, we present an implementation of an emulated
solution to test video (preferably MPEG-4 [7]) and audio
transmission between an aircraft embedded network (mobile
network) and a terrestrial control center, using two instances of
the NCTUns network simulator/emulator, running on two
different computers. The modification also allows distributing the

workload of emulation networks, making it possible to split a
simulation case among several nodes, each one running an
instance of NCTUns.

The rest of the paper is organized as follows. Section 2 describes
the architecture used to achieve the proposed goal. Section 0
presents a case study to demonstrate the applicability and the
feasibility of the architecture. Section 4 describes some
performance and validation tests. Finally, Section 5 presents the
conclusions, comments and future work.

2. ARCHITECTURE
The choice to use NCTUns has been made considering a
comparison study of network simulators [3]. The main
characteristics of the simulator that deserve to be mentioned are
 [6]:

x Open source code;

x Availability of a highly integrated GUI (Graphical User
Interface);

x The possibility of execute real world applications without
modification;

x The kernel re-entering method to use some real world
protocol stack on the simulation/emulation, such as TCP/IP;
and

x Its discrete-event based simulation engine.

Socket layer

TCP/IP
Protocol stack

Kernel timer
interface

Added or modified

system calls

Tunnel interface
tun1 ~ tun4095

Tunnel interface
(t0e0) Timer

queue

Simulation engine

Module-based platform

Link Link Link Link

PHY PHY PHY PHY

802.3 802.3 802.3 802.3

FIFO FIFO FIFO FIFO

ARP Switch ARP

Interface

Interface

System calls

Script interpreter
(simulation case interpreter)

Scheduler

Module
manager

N
C

T
U

ns A
P

I

C
om

m
and dispatcher

Event Timer Event
packet

Event

execution

Mbinder

Host 1 Host 2

Switch

Event queue

Traffic
generator

Kernel level

User level

C
oordinator

G
U

I
C

om
m

and console

IPC

Kernel timeout
event

Check tunnel event

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 2 - Data exchange between two hosts [6].

The availability of the source code was a crucial point to make a
smooth integration, since the version of the simulator/emulator
without the proposed extension does not meet the requirements of
emulating an external and an internal network subsystem.

The NCTUns network simulator is an open-source
simulator/emulator implemented mainly using C++. It is designed
to run on Fedora Linux. The version used in this study, NCTUns
5.0, runs on Fedora 9. The only proprietary part of the simulator
is its GUI. Despite of the fact that the GUI is not open to change,
it was possible to create a successful solution.

In the next subsections we present some considerations, the
general NCTUns architecture, and the extensions necessary to
achieve the proposed goal.

2.1 Considerations
The NCTUns network simulator is composed of several different
modules as illustrated in Figure 1.

The simulation engine is a user-level program and has complex
functions. It functions like a small operating system. Through a
defined API (application programming interface), it provides
useful and basic simulation services for protocol modules. The
services include virtual clock maintenance, timer management,
event scheduling, variable registration, script interpreter, and IPC
(Inter-Process Communication) interface. The simulation engine
also manages all of the tools and daemons that are used in a
simulation case and decides when to start the programs, when to
finish them, and when to run them. Figure 1 shows an architecture
diagram of NCTUns.

For this paper, however, the most relevant parts of NCTUns are
the virtual tunnel interfaces and the kernel modifications.

A detailed view of the mechanism of data exchange between two
hosts is presented in Figure 2. It shows the flow path that a packet
takes when it is exchanged between two traffic generators via the
module-based platform. When the packet is read by the
simulation engine from tunnel interface 1 (tun1), the packet
follows the trace of Figure 2 and then the simulation engine
inserts it into tunnel interface 2 (tun2). Finally, the kernel sends it
to the traffic generator.

NCTUns can act in simulation or emulation mode. To change
between the two modes, it is necessary to modify the speed
setting. In the simulation settings menu, it is possible to choose
between two speed modes: “As fast as possible” or “As fast as the
real-world clock”. Emulation cases work using the speed set to
“As fast as real-world clock”.

To add support for the simultaneous emulation of an internal and
an external network, basically, we must tunnel the packet coming
from one network to another using the interfaces on the two
networks to act as interfaces of a router. In this way, only one
interface of that new “router” is visible in each emulation case.

In the next subsection we present the modification of the
architecture as well as the changes to the files on the simulation
cases.

2.2 Detailed design
When executing a simulation/emulation case, the NCTUns
software generates some files that are used to pass information to
its modules/processes, such as the simulation engine and the
modified kernel.

As far as this study is concerned, the most important files are the
ones that describe the routes added to the routing table and the IP

Socket layer

TCP/IP
Protocol stack

Traffic
generator

Kernel
User

Socket layer

TCP/IP
Protocol stack

Tunnel interface
(tun2)

Tunnel interface
(tun1)

Traffic
generator

Module-based platform

Link Link Link Link

PHY PHY PHY PHY

802.3 802.3 802.3 802.3

FIFO FIFO FIFO FIFO

ARP
Switch

ARP

Interface Interface

Host Host

Switch

Simulation engine

Simulation engine
reads packets from
tunnel interface 1

Simulation engine
writes packets into
tunnel interface 2

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 3 - Scheme of the translations needed to work with more than one instance of NCTUns.

addresses of real hosts and its corresponding simulated hosts in
NCTUns.

The bases of the planned modifications are the already
implemented features for using two classes of real equipments:
hosts and routers.

These features uses the concept of divert sockets [8]. The divert
sockets enable IP packet interception and injection on end
systems as well as on routers. Packets are intercepted on an IP
layer and can be made available for user processes outside the
kernel via a modified version of raw sockets. The most used
implementation of divert sockets [8] [9] [10] rely on the IP firewall
mechanism for packet filtering, but NCTUns has its own
implementation.

In the version 5.0 of NCTUns, the packets are intercepted by a
module in the kernel and are not forwarded to user-space. The
module itself handles the situation based on a configuration file
present in each emulation case, doing the network address
translations.

For example, suppose an emulated host with IP address 1.0.1.1 in
the emulation and the real IP address 10.10.10.55. In this case, the
kernel module changes the destination address of every packet
sent to the emulated node from 1.0.1.1 to 10.10.10.55. It also
changes the incoming IP address of every packet that the real host
is sending to emulated hosts from 10.10.10.55 to 1.0.1.1. The
changes allow the real host to communicate with virtual
hosts/equipments of the emulation sending and receiving packets
without any changes in the application running on that host. To
simulate the router, some special conversions between real
network interfaces IP and emulated ones are needed, but the
setting remains the same.

Therefore, in order to make the desired emulation case work, it is
necessary to add a new class of equipment to this kernel module,
allowing the virtual interfaces in each NCTUns instance to act
like a “virtual router”. It means that we must change the source

code from the kernel module that is responsible for the address
translations in NCTUns.

At the same time, the modification of the routing information file
of the emulation case is required. This kind of file is
automatically generated by the GUI of NCTUns. Considering that
the GUI source code is not available, we cannot change the
behavior of system to reflect the needed modification in the
routing file. Hence, we must directly modify that file. In the
internal network we must add the routing path from the internal
hosts towards “virtual router” interfaces. The routes from external
network’s hosts to internal network’s ones, passing through the
“virtual router” interface must be added as well.

It should be noted that the NCTUns uses an internal
representation of IP address in the form of “S1.S2.D1.D2”. In this
scheme, S1 is the source subnet ID, S2 is the host number on
source subnet, D1 is the destination subnet ID and D2 is the host
number on destination subnet. For example: if the source IP
address of the packet is 1.0.1.1 and the destination is 1.0.2.2, the
S.S.D.D address is 1.1.2.2. This scheme is used to avoid conflicts
when adding routes to the routing table [6], since the routing
tables for all nodes inside the emulation are added to a unique
kernel routing table.

It is very important to understand this scheme to modify the
routing file correctly.

This scheme was also used in the communications between the
real hosts, to preserve the emulated source IP and emulated
destination IP. Figure 3 shows an example of communication
between two different hosts running NCTUns. In the example, the
translation using the “S1.S2.D1.D2” IP scheme is made when the
kernel module on host #1 changes the destination IP of the packet
from 1.2.2.2 to 10.10.10.32. In order to preserve the original
source and destination IP addresses, the source IP address of the
packet is also modified from 1.2.1.1 to 1.1.2.2. Then, it is possible
to know that emulated host 1.0.1.1 is sending the packet to
emulated host 1.0.2.2.

Host #2 running NCTUns
Real IP: 10.10.10.32

Host #1 running NCTUns
Real IP: 10.10.10.31

NCTUns’s representation: NCTUns’s representation:

Kernel emulation module

Host IP 1.0.1.2
Forward to Æ 1.0.2.2
Through node 1.0.2.1

Host IP 1.0.1.1
Send to Æ 1.0.2.2

Through node 1.0.1.2

Receive packet:
Source IP: 1.2.1.1

Destination IP: 1.2.2.2

Change to:
Source IP: 1.1.2.2

Destination IP: 10.10.10.32

Kernel emulation module

 Host IP 1.0.2.2
Receive packet from

1.0.1.1

Host IP 1.0.2.1
Send to Æ 1.0.2.2

Receive packet:
Source IP: 1.1.2.2

Destination IP: 10.10.10.32

Change to:
Source IP: 2.1.1.1

Destination IP: 2.1.2.2

Act like router interfaces

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 4 - Case study, showing the internal aircraft n etwork, the external network and the real hosts.

Upon receiving the packet, the kernel module in host #2 uses the
source IP address in the “S1.S2.D1.D2” format and the IP address
from its “virtual router” interface to reconstruct the emulated
source and emulated destination IP address.

In the next section we present a case study to test the
modifications.

3. CASE STUDY
3.1 Considerations
The aim of the case study is to successfully stream a video from a
real host passing through two real computers running NCTUns
(emulating two different and connected networks) and reach
another real host which receives the video stream with the proper
delay and BER added by the instances of NCTUns.

For this purpose, we designed two different networks, pictured in
Figure 4. In this figure, two modifications were made: in the
internal aircraft network, the node #4 does not exist in the real

emulation case on NCTUns and, in the external network, the node
#4 is an “802.11(b) mobile node (infrastructure mode)” node,
only its icon was changed in order to represent an aircraft. The
two modifications were made to make it easier to understand.

To stream the video, we used the software VLC. VLC media
player (initially VideoLAN Client) is a highly portable
multimedia player (runs on top of Linux, Windows and Mac OS
X among other operating systems) for various audio and video
formats (like MPEG, DivX/Xvid, and Ogg) as well as DVDs,
VCDs, and various streaming protocols. In recent years its use has
also increased as a server to stream live and on demand video in
several formats through various private networks and Internet
 [11].

3.2 Creating and running the case
The scenario created represents a surveillance aircraft with a
video camera fly ing over the Brazilian states of Mato Grosso do

Host #1

Real IP: 10.10.10.1

Emulation IP: 1.0.1.1
Use VLC to stream

video to IP 1.0.3.2

Host #2 running NCTUns

Real IP: 10.10.10.2
Internal aircraft network

Host #4

Real IP: 10.10.10.4

Emulation IP: 1.0.3.2
Use VLC to watch

streamed video.

1.0.1.2
1.0.1.1

1.0.2.1

Host #3 running NCTUns

Real IP: 10.10.10.3

External network

1.0.2.1

1.0.2.2 1.0.3.1

1.0.3.2

1.0.5.2

1.0.4.1

1.0.6.1

1.0.4.2

1.0.5.1

1

5

28

7

6

3

4

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 5 - Configuration of VLC server (top) and VLC client (bottom) to execute the case study.

Figure 6 - Screenshots of both NCTUns instances. The left side shows the internal network representation and the right side shows
the external network.

Sul and Sao Paulo. There is one terrestrial antenna in the
southwest and another in the center of Sao Paulo state. The
aircraft streams real-time data to the terrestrial antennas which are
connected with a terrestrial control center in the Rio de Janeiro
city through a terrestrial infrastructure.

In the specific case shown in Figure 4, the aircraft is fly ing over
the state of Mato Grosso do Sul and detects a forest burn,
transmitting its real-time video to the control center at first
through the antenna in the left of the Figure 4. When the aircraft
is out of the range of that antenna, the transmission occurs using
the other one.

In the next paragraphs the modifications needed to execute this
case are shown.

The VLC server runs on host #1 (real IP address is 10.10.10.1 and
emulation IP address is 1.0.1.1) and the client runs on host #4
(real IP address is 10.10.10.4 and emulation IP address is 1.0.3.2).
Both instances of VLC run on top of Windows XP.

One instance of NCTUns is running on host #2 (with real IP
address of 10.10.10.2) and represents the internal aircraft
network. This internal network is composed by an emulated host,
a switch, a QoS DiffServ router [12] [13] and the representation
of the communication antenna.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

The other NCTUns instance represents the external network, and
is running on host #3 (with real IP address of 10.10.10.3). This
network is composed by an emulated host, a switch, a router, two
QoS DiffServ routers, two access points and the surveillance
aircraft.

While changing the connection from one antenna to the other , in
order to keep the same IP address, thus not loosing the
connection, the aircraft network uses mobile IP [5] [14] concept.

To allow the traffic from host #1 to reach networks with IP
addresses such as 1.0.X.X, we must add a route in this host,
directing the traffic going to 1.0.X.X to go first to IP address
10.10.10.2, which is running an instance of NCTUns.

In the same way, we must add a route on host #4 to direct the
traffic from this host to go to the emulation of the external
network, which IP address is 10.10.10.3.

We also must change the routing files from the two emulation
cases. In NCTUns, after we change the operating mode to “Run
simulation”, the emulation files are generated in folder
“CASE_NAME.sim” . There, we must pick the files named
“CASE_NAME.emu” and “CASE_NAME.srt-l”. The first file
handles the emulation network address translations and the other
file contains the routes to add to the kernel routing table.

In the “.emu” file, we must add the information for the kernel
module to translate correctly the addresses in the communication
of the two NCTUns instances. In host #2, initially, the file should
contain the following lines:

#nctuns external routing table file
host 10.10.10.1 1.0.1.1

After those lines, we must add the lines which describe the
“virtual router”. For each pair of hosts in the external and internal
network, there must be two lines, one of describing the translation
of outgoing packets and the other about incoming packets.

Regarding the route file, we must direct the traffic going from one
network to the other. An example, considering node #1 from
internal aircraft network (1.0.1.1) sending packets to node #1 of
the external network (1.0.3.2):

route add -net 1.1.3.0/24 gw 1.1.1.2

Note that the gateway address is used according to the
“S1.S2.D1.D2” scheme, meaning that the host 1.0.1.1 is sending
packets to the gateway (router) address 1.0.1.2.

To run the emulation we must first start the two instances of
NCTUns and then choose the appropriate settings to VLC server
and client.

The configuration on the two instances of VLC is shown in Figure
5, while Figure 6 shows screenshots of the two NCTUns
instances.

It is worth mentioning that the “.emu” and “.srt-l” files must be
changed every time we change NCTUns’s operating mode to
“Run simulation”.

In this work, the airborne communication used was the 802.11 (b)
protocol already implemented in NCTUns. This had to be made
because NCTUns does not provide tactical communication

modules yet. In order to correctly emulate C4I2SR networks, a
tactical data link protocol, such as TCDL, must be added to the
NCTUns.

The case study results proved that the emulation is consistent with
what we were expecting. The video streamed between the two
hosts suffered from delay and BER added in the emulated
networks, and the result was visible within the video stream on
the receiving node.

It was also possible to see the influence of mobile IP in
communications, observing the mobile node disconnection from
one access point and reconnection to the other access point. This
resulted in a few seconds without video in the receiving node.

4. VALIDATION AND PERFORMANCE
TESTS
In order to perform additional verification of the accuracy and the
performance of the modifications, we conducted other tests that
are described in this section.

The equipment used in the tests is: one notebook with Intel Core 2
Duo T5550 (1,83 GHz) processor and 2 Gb of RAM (tests with
one or two NCTUns instances) and a desktop with Intel Pentium
Dual CPU E2180 (2,00 GHz) processor and 3 Gb of RAM (tests
with two NCTUns instances). When the test involved two
NCTUns instances, the computers were connected using an
Ethernet cable (100 Mbps).

The first test was made to obtain the delay caused by the
simulation due to the modifications in the NCTUns’ kernel
module. For this purpose, we created the case shown in Figure 7.

First, using one NCTUns instance only, we executed the
command “ping 1.0.1.1” on host #2 to obtain the round trip
time between the two virtual hosts. Considering that there are ten
links between the simulated equipments, the round trip time is
calculated as the sum of the ten individual link’s delay two times,
since the request and reply messages need to go through ten links
each one. The expected delay for an individual link is calculated
as the delay configured in NCTUns for that link plus the packet
transmission time calculated using the link speed (10 Mbps) and
the packet size (84 bytes). Since the configured delay in each of
the ten links is 0,5ms, the total expected delay for the ping
command is:

20 * [(84 bytes / 10 Mbps) + 0,5 ms] = 11,3 ms

Running the case, the obtained results are:

Average 11,8 ms

Standard deviation 1,3 ms

Considering the average time, the difference of approximately 0,5
ms can be explained by the clock synchronization precision
within NCTUns (1ms) and the time consumed by other system-
related running processes.

The next step was to run the same case divided into two NCTUns
instances, as in Figure 7 (b) and (c), to check whether the delay
can be negligible or not. The NCTUns configuration is the same
as described above. Hence, the expected delays should

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Figure 7 (a), (b) and (c) - Screenshots of the test cases: first, the test in a single NCTUns instance; the same case distrib uted into

two instances.

Figure 8 (a), (b) and (c) - Cases used to test the performance enhancements.

Figure 9 (a), (b) and (c) - Cases used to test the performance enhancements.

be as close as possible to the value obtained in the first test to
indicate that the modifications are feasible enough.

Running the case, the values obtained are:

Average 12,8 ms

Standard deviation 4,2 ms

Analyzing the figures, we can observe that the average round
trip time was only 1 ms greater than using a single NCTUns
instance. We consider this as a good result, since 1 ms is also
the synchronization precision time between the simulation and
the real-time clocks in NCTUns. This difference allows the
modifications to be used with other real emulation cases without
loosing the correlation to the real world. We observe that the
standard deviation is greater than the value from the first test.
The difference can be caused by another system process using
the network between the two computers running NCTUns.

Disabling the processes should decrease the value, improving
the results.

We also built a second case test to verify the performance boost
when distributing a simulation case between two NCTUns
instances. We created the case shown in Figure 8 (a). In this
case, the nodes 1, 4 and 6 send data to nodes 2, 5 and 7 through
TCP connections, at the same time.

To analyze the performance of a simulated case, we compared
the total real-time used by NCTUns to the NCTUns’ internal
simulation time. To do this, we modified the clock
synchronization code to print the times and the time difference

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

Case 1 - Difference (Real - simulated time)
One NCTUns instance

-0,100

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0 50 100 150 200

Elapsed time (seconds)

D
if

fe
re

n
ce

 (
se

co
n

ds
)

Case 2 - Difference (Real - simulated time)
One NCTUns instance

-5,000

0,000

5,000

10,000

15,000

20,000

25,000

30,000

0 50 100 150 200

Elapsed time (seconds)

D
if

fe
re

nc
e

(se
co

n
ds

)

Figure 10 (a) and (b)– Performance analysis for one instance NCTUns emulation.

Case 1 - Difference (Real - simulated time)
Two NCTUns instances

-0,005

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0 50 100 150 200

Elapsed time (seconds)

D
if

fe
re

nc
e

(se
co

n
ds

)

Case 2 - Difference (Real - simulated time)
Two NCTUns instances

-0,01

0

0,01

0,02

0,03

0,04

0,05

0,06

0 50 100 150 200

Elapsed time (seconds)

D
if

fe
re

nc
e

(se
co

n
ds

)

Figure 11 (a) and (b) – Performance analysis for two instance NCTUns emulation.

into a file, making it possible to further explore the results. Here
we should explain that the synchronization code just tries to
“slow down” the NCTUns simulator when the case is running
faster than the real time. When the case is running slower, the
simulator does not do anything. Considering this, we can
conclude that, without our modification, it is difficult to use
NCTUns as an emulator with a case having a large number of
hosts or traffic generators, since the simulator would not be able
to synchronize the time correctly.

In this evaluation, we first executed the cases in Figure 8 (a) and
Figure 9 (a) using one NCTUns instance, obtaining the results in
Figure 10 (a) and (b). From the plots we can observe that the
simulator can handle the case 1 (a) synchronized with real time.
However, in case 2 (b), the single NCTUns instance cannot
simulate the network as fast as the real clock, increasing the
time difference as the simulation runs.

Afterwards we divide the case into two different simulations to
be executed within two NCTUns instances, as in Figure 8 (b)
and (c) and Figure 9 (b) and (c). As one can see in Figure 11 (a)
and (b), the new approach is able to execute the cases 1 (a) and
2 (b) synchronized with real-time. This enables NCTUns to
execute more complex cases in emulation mode (thus using real
network equipment). Also, the emulation mode with two

NCTUns instances can be used to both execute large cases and
meet performance requirements of emulation of the cases.

5. CONCLUSIONS, COMMENTS AND
FUTURE WORK
In this paper we propose extensions to NCTUns network
simulator to allow the consistent emulation of C4I2SR systems.
The approach used to achieve such a goal can also benefit other
emulation cases, allowing large emulations to be divided into
smaller cases running on interconnected hosts, each one running
an instance of NCTUns.

Regarding C4I2SR systems, future work includes the
implementation of tactical data link protocols and aeronautical
channel modeling [15] within NCTUns module’s code to study
the influence of the airborne segment in the communications.

Another important study is to test and discover the best traffic
classifications and bandwidth allocations for different types of
streams (video or audio or data) within the C4I2SR system
scenario using the QoS DiffServ routers.

The availability of GUI source code also would be very
important to avoid the problems with manually changing the
files needed by NCTUns.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

The solution presented in this work provides a new approach to
network emulation, expanding the functionality and
applicability of the open-source NCTUns network
simulator/emulator, and creates the basis for emulate advanced
systems.

6. ACKNOWLEDGMENTS
Our thanks to NCTUns development and support team who
answered our questions and issues in the many forms.

7. REFERENCES
[1] DoD Dictionary of Military and Associated Terms/NATO

Only Terms;
http://www.dtic.mil/doctrine/jel/doddict/natoterm/c/00305.
html.

[2] “Tactical Common Data Link [TCDL]”;
http://www.globalsecurity.org/intell/systems/tcdl.htm

[3] Broady, A.; “Optimization and Extension of an
Infrastructure Supporting Global Software Engineering
Teams”; Thesis for MSc Software Engineering, August
2007.

[4] Wang, S. and Chou, C.; “Innovative Network Emulations
Using The NCTUns Tool”; Computer Networking and
Networks (Shannon, S., ed.), Nova Science Publishers,
chapter 7, pp. 159–189 (2006). http://nsl10.csie.nctu.edu.tw

[5] Solomon, J.D.; “Mobile IP The Internet Unplugged”;
Prentice Hall Series in Computer Networking and
Distributed Systems, 1998.

[6] Wang, S.Y.; Chou, C.L.; Lin, C.C. and Huang, C.H.; “The
Protocol Developer Manual for the NCTUns 5.0 Network
Simulator and Emulator”.

[7] Bennett, B., Dee, C. and Ngugen, M.H.; “Operational
concepts of MPEG-4 H.264 for tactical DoD applications”;
MILCOM 2005, October 17-20 Atlantic City, NJ,
Unclassified Proceedings.

[8] Kellerer, W., Steinbach, E., Eisert, P. and Girod, B.; “A
real-time Internet streaming media testbed”; Proc. Of
International Conference on Multimedia and Expo, ICME
2002, August 2002.

[9] Ihara, A., Murase, S. and Goto, K.; “IPv4/v6 Network
Emulator using Divert Socket”; Proc. of 18th International
Conference on Systems Engineering (ICSE2006),
Coventry, UK, pp. 159–166 (Sep. 2006).

[10] Bladine, I.; “Divert Sockets mini-HOWTO:”
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-
formats/pdf/Divert-Sockets-mini-HOWTO.pdf

[11] VideoLAN Wiki; http://wiki.videolan.org/VLC

[12] Blake, S; Black, D. ; Carlson, M; Davies, E; Wang Z. and
Weiss W.; “An Architecture for Differentiated Services”;
IETF RFC 2475, December 1998,
http://www.ietf.org/rfc/rfc2475.txt.

[13] Kumar, Vijay P.; Lakshman, T. V. and Stiliadis, Dimitrios;
“Beyond Best Effort: Router Architectures for the
Differentiated Services of Tomorrow’s Internet”; IEEE
Communications Magazine, May 1998.

[14] Perkins, C.; “IP Mobility Support for IPv4”; IETF RFC
3344, August 2002, http://www.ietf.org/rfc/rfc3344.txt.

[15] Haas, Erik; “Aeronautical Channel Modeling”; IEEE
Transactions on Vehicular Technology, v. 51, n. 2, March
2002.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5692
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5692

