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ABSTRACT

The notion of logical processes (LPs) is a widely used model-
ing paradigm in parallel and distributed discrete-event simu-
lation (PDES). Nevertheless the comparison among different
simulation algorithms for LP models still remains difficult:
there are too many combinations of algorithms to be ex-
plored, often simulation systems only provide a small subset
of available algorithms, and many m&s frameworks blur the
boundary between model logic and simulation algorithm,
which hampers extensibility and comparability. We present
an environment for the experimental analysis of simulation
algorithms for logical processes. It separates between model
and simulator, is extensible, and facilitates a fair compari-
son of algorithms. We illustrate the functioning of the envi-
ronment by presenting experimental results for well-known
simulation algorithms and a benchmark model.

Categories and Subject Descriptors

I.6.7 [Simulation Support Systems]: Environments; I.6.8
[Types of Simulation]: Discrete-event,parallel,distributed;
D.2.8 [Metrics]: Performance measures
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Parallel and Distributed Simulation, Discrete-Event Simu-
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1. INTRODUCTION
Many algorithms have been proposed in modeling and

simulation (m&s) during the last decades, but most of them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009 Rome, Italy
Copyright 2009 ICST ISBN 978-963-9799-45-5.

have merely been realized in the m&s systems created around
them [8]. In addition, many simulation systems do not sep-
arate clearly between model and simulator. This leads to
a questionable mixture, which cannot guarantee that the
model is a valid representation of the system under study,
or that the simulation algorithm works correctly for different
models. From the view of the “Experimental Algorithmics”
community [7], this makes a fair comparison of them diffi-
cult or even impossible. A thorough and reliable evaluation
of the existing solutions is therefore highly demanded, at
best in an open environment which allows others to repro-
duce the obtained results. This should also help to over-
come the various pitfalls one encounters when analyzing al-
gorithms empirically (e.g., cf. [6, 4]). One of the paradigms
to model discrete event-based systems is the logical process

(LP) paradigm.

2. AN EXTENSIBLE FRAMEWORK FOR LP

SIMULATION ALGORITHMS
The term of logical process (LP) was introduced as a met-

aphor for the physical processes a system consists of [2].
LPs are the core units of execution in most parallel discrete-
event simulations. How these events are transferred and
how processes are triggered to execute them depends on the
synchronization protocol (the simulation algorithm). As we
separate model and simulator, the simulation algorithms, re-
alizing the different synchronization schemes, are“exchange-
able entities”. In addition, there is a large variety of aux-
iliary algorithms that can be combined with the simulation
algorithms, e.g., event queues, partitioning methods, or al-
gorithms for load balancing.

Figure 1 outlines some central entities in the experimental
analysis environment. The set of LPs that defines a model
is represented by IScenario. As James II [5] requires a
processor to allow stopping, pausing, and resuming a sim-
ulation, the PDES simulators consist of two components:
a protocol simulator, which implements all operations de-
manded by James II, and the actual simulators for LPs,
which get notified by the protocol simulator when they shall
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Figure 1: The framework of the experimentation environment: Based on the James II core (grey), we devel-
oped separate classes and interfaces for models (horizontal lines) and backbone classes for PDES algorithms
(diagonal lines). As an example, the central classes for Time Warp are outlined (dots).

stop or resume. Many central entities are expressed by Java
interfaces (see Figure 1) and thus do not provide any logic.
This allows to replace almost every aspect of this environ-
ment with alternatives.

3. EXPERIMENTAL ANALYSIS
Each algorithm that shall be analyzed experimentally de-

mands careful realization and thorough validation with“good”
problem instances (models) [6]. Fortunately, there are sev-
eral well-known benchmark models that we can use for a first
analysis of PDES algorithm performance. One of those, the
PHOLD model [3], consists of an arbitrary number of LPs,
each of which sends an event to a neighbor when an event
is received. The simulation runs have been executed on a
Windows XP 64 workstation with two 2.5 GHz QuadCore
Xeon Processors and 8 GB of RAM (Java Scimark 2.0 [1]
result of 765.3 points, James II v 0.6 and Sun’s JRE 1.6.07
for 64-bit Win). The PDES algorithms were only tested on
this multi-core machine, using a single virtual machine - in-
stead of executing them on a set of hosts that communicate
over a network connection.

Hence, communication costs are low in comparison to clas-
sical PDES experiments and multiple hosts. This moves the
focus of the experiments towards the question of how large
the protocol-induced overhead in relation to the speed-up by
using multiple cores really is – a use case that might become
more and more important, as the number of cores per CPU
is likely to increase over the next years. Several PHOLD
topologies were tested: full denotes a complete LP graph,
i.e., each LP has all other LPs as neighbors, grid is a two-
dimensional toroidal grid, and in ring all LPs form a ring, so
that each LP has only two neighbors (tightly, medium, and
sparsely connected models). We chose PHOLD model size m
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Figure 2: Performance of synchronization schemes
on different PHOLD topologies.

from {4, 16, 36, 64, 100, 144, 196}. The number of concurrent
PHOLD events was set to 1

2
m. While the execution times

of the barrier synchronization protocol are almost identical
for all three topologies (Fig. 2), the performance of null
message synchronization clearly depends on the intercon-
nectedness of the LPs. In case of a fully connected graph,
its performance suffers from the overhead of sending null
messages to all neighbors.

4. CONCLUSIONS
We introduced an environment for the development and

experimental analysis of algorithms for the LP paradigm.
Future research will be to develop and evaluate further sim-
ulation algorithms, and the interplay with partitioning and
load balancing schemes shall be explored carefully. For the
framework to grow into a research resource for distributed
simulation algorithms, potential evaluation schemes, and
performance data alike, we invite other people to join us:
to repeat our findings, to add new algorithms, and to eval-
uate these algorithms (http://www.jamesii.org/).
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