Simulation of Scale-Free Networks

Gabriele D’Angelo
Department of Computer Science,
University of Bologna
Mura Anteo Zamboni 7, 40127
Bologna, Italy

gdangelo@cs.unibo.it

ABSTRACT

In this paper, we present a new simulation tool for scale-free
networks composed of a high number of nodes. The tool,
based on discrete-event simulation, enables the definition of
scale-free networks composed of heterogeneous nodes and
complex application-level protocols. To satisfy the perfor-
mance and scalability requirements, the simulator supports
both sequential (i.e. monolithic) and parallel/distributed (i.e.
PADS) approaches. Furthermore, appropriate mechanisms
for the communication overhead-reduction are implemented.
To demonstrate the efficiency of the tool, we experiment
with gossip protocols on top of scale-free networks gener-
ated by our simulator. Results of the simulations demon-
strate the feasibility of our approach. The proposed tool is
able to generate and manage large scale-free networks com-
posed of thousands of nodes interacting following real-world
dissemination protocols.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWO-
RKS]: Distributed Systems— Distributed applications

General Terms

Algorithms, Experimentation, Performance

Keywords

Simulation, Scale-Free Networks, Parallel and Distributed
Simulation, Performance Evaluation

1. INTRODUCTION

The fact that most real (bio/techno)-logical networks ex-
hibit complex connectivity patterns is a well-known and
widely accepted phenomenon [4, 33]. Whatever the role of
nodes in the network under consideration (e.g. human be-
ing, computer, Web page), when described through graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIMUTools °09, Rome, Italy

Copyright 2009 ICST 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

Stefano Ferretti
Department of Computer Science,
University of Bologna
Mura Anteo Zamboni 7, 40127
Bologna, ltaly

sferrett@cs.unibo.it

these complex networks share the distinctive feature of pos-
sessing nodes which tend to link each other following a de-
gree distribution (i.e. number of neighbors) that can be well
approximated by a power law distribution. Based on this,
these networks are often referred to as scale-free networks.
Edges in the graph can represent, for instance, sexual con-
tacts among humans, connections among routers in the In-
ternet, hypertextual links in Web pages, sensors connected
in some ad-hoc manner. In any of these cases, hub nodes
are present which possess high numbers of links with other
nodes in the net, quite above the average node degree. The
peculiar characteristics of these networks now drive more
and more scientists to study their behavior. For instance,
many mathematicians and physicists try to find analytical
tools to represent them in the most accurate way [4, 33]. Bi-
ologists, sociologists and (again) physicists try to empirically
demonstrate that more and more real nets possess scale-free
features [27, 30].

As a matter of fact, a main problem is the lack of a pow-
erful tool able to support the simulation of these nets. Real
scale-free networks are usually composed of a huge amount
of nodes. Thus, while mathematicians tend to prove their
theorems in the limit of infinity (i.e. n — oo, n being the
number of nodes in the network), commonly used simulation
tools only allow to create relatively small scale-free networks
[21, 41]. Under the simulation viewpoint, the modelling of
large scale-free networks implementing complex communica-
tion protocols is a challenging task. The amount of memory
necessary to model such networks is often huge such as the
communication requirements among the nodes. The pres-
ence of hub nodes in a scale-free network, and in general the
heterogeneity of nodes, is a key issue to be considered when
designing simulators. In particular, imbalances in the com-
putation and communication load can lead to very unsat-
isfactory results in case of parallel or distributed execution
architectures.

We aim to offer a better characterization of the prob-
lem and to propose new methods to solve this scalability
limitation. To demonstrate the validity of our approach,
we present PaScaS (Parallel and distributed Scale-free Net-
work Simulator), a novel simulator able to represent large
scale-free networks, and manage them in a responsive way.
The simulator provides a simple and fast method to build
scale-free networks and to model information sharing and
application protocols above them. It is worth noting that,
following this approach, it is possible to define the charac-
teristics of each single simulated node (e.g. CPU, memory,
bandwidth and so on), modelling its local resources and pro-

tocols. This aspect results very interesting in the simulation
of real world scenarios. PaScaS is built on top of a simula-
tion middleware (see Section 3.1) that provides support for
the implementation of both sequential (i.e. monolithic) and
parallel/distributed simulations.

In this work, we have at least two goals: i) propose a
new tool for the efficient simulation of scale free networks,
ii) investigate simulation approaches based on parallel and
distributed execution architectures. In our opinion, follow-
ing the latter approach, it should be possible to model very
large networks and, in some cases, to speed up the simula-
tion execution. Our aim is to provide a tool that promotes
a new way to work with scale-free networks, allowing the
network modelers to focus on dissemination protocols with-
out facing the simulation details. Moreover, the scalability
of the proposed tool should be able to permit the evaluation
of the proposed protocols in more realistic environments.

To put evidence of our claim, we study how gossip proto-
cols behave on top of scale-free networks. It is well-known
that gossip schemes can easily spread information through
networks [26]. We thus run three gossip algorithms on top of
the scale-free networks we simulate through our tool. Out-
comes of this study will be twofold. Firstly, we demonstrate
that the simulator is able to easily manage networks of or-
der of 10" nodes in a reasonable execution time (from 185
up to 3302 seconds, depending on the simulated gossip pro-
tocol). Secondly, in future works we will be able to evaluate
the effectiveness of gossip protocols on top of scale-free net-
works. It is worth noting that, the proposed simulator is not
specific to scale free networks, its components can be (and
have been) used for the simulation of “generic” networks and
scenarios. Focusing on the methods that have been imple-
mented to enhance the simulator scalability, these are not
specific to scale free networks, but scale-free networks, due
to their characteristics, represent a new and very interesting
testbed.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the main principles at the basis of scale-free
networks. Section 3 presents PaScaS, the Parallel and dis-
tributed Scale-free network Simulator. Section 4 describes
the gossip algorithms we run on top on the generated net-
works. In Section 5 we report on an extensive simulation we
performed to assess the performances of PaScaS, in presence
of different execution environments and tunings of the sim-
ulator. Finally, in Section 6 we provide some final remarks.

2. SCALE-FREE NETWORKS

In this section we review the main principles at the basis
of scale-free networks.

2.1 Background

Scale-free networks are gaining more and more attention
in the research communities of computer science, physics,
mathematics and biology. The reason is that these networks
are quite good to model several types of real networks [4, 33].
Examples are the Web [4, 11], Internet [17], evolving net-
works in biology [27], citation graphs [35], social networks,
sensor networks and so on [30].

Scale free networks are characterized by the fact that their
nodes have a degree k (i.e., number of neighbor nodes at-
tached to them) which is distributed according to a power
law distribution, i.e., if p; is the probability that a node has
a degree equal to k, then py ~ k™, for some constant .

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

(Sometimes, a cutoff is introduced to force that no node may
have a degree higher than a given threshold value kmay.) It
has been empirically calculated that usually in real networks
2<a<3.

Basically, the structure of such kind of networks is charac-
terized by a notable (i.e., non negligible) presence of nodes,
usually referred as hubs, which have a number of edges quite
higher than the average degree in the network. Moreover,
as in others kinds of networks, a major fraction of the set
of nodes is connected (usually of the order of ©(n), if n
is the number of nodes in the network). Such main set of
connected vertices is usually termed the giant component.
Interestingly, it has been mathematically proven that when
2 < a < 3, the diameter of the network d ~ Inln n, smaller
even than small world networks, which remains almost con-
stant while the network is growing [13]. It has been shown
that these networks are quite resilient to random node faults,
since the presence of hubs guarantees that the network re-
mains connected. Indeed, the majority of nodes are those
with small degree; thus, it is more likely that these ones
will fail, while the probability that all hubs are eliminated
is almost negligible. On the other hand, studies have shown
that if one selects only hubs as the faulty nodes, the net-
work rapidly becomes not connected, with several isolated
graphs. This means that scale-free networks are not tolerant
to targeted attacks to nodes with higher degrees [1, 11, 33].
This is an important result, for instance, to study and pre-
vent security attacks in computer networks such as denial of
service.

2.2 Building Scale-Free Nets

A practical method to build a scale-free network was in-
troduced by Barabdsi and Albert in [3] and works as fol-
lows. The scheme proceeds in discrete time steps. It starts
with a default number of nodes ny in the network. At each
time step, a new node is added to the network, with initial
degree m. For each edge of the new node, a neighbor is
selected and a link between the two nodes is created. The
neighbor node is selected with a probability proportional to
the degree of that vertex, i.e. the higher the degree of a
node the more likely it will be selected as a neighbor of the
newly added node. This approach is often referred to as
preferential attachment, and perfectly models the rich get
richer phenomenon, arising when the amount an entity gets
in time, goes up with the amount it already has [33]. Indeed,
the preferential attachment is responsible for the generation
of a power law node degree distribution. As a consequence
of this scheme to generate a scale-free network, the average
degree of a given node (k) ~ 2m, for large networks. Indeed,
due to the fact that each new node is added at each time
step, with new m links, at time ¢t the network has mny + ¢
nodes, with mt links. ny can be considered as a negligible
term for large nets (or large times), hence confirming this
claim, i.e. (k) ~ 2m (each link counts for two node edges).

2.3 Notation

We model the network being built and simulated as a set
of distributed nodes. The topology of the network is defined
as a graph G = (I, L), where II = {ns, ng,...} |l = n,
is the set of nodes,! and L denotes the set of edges among
nodes in the network. Two nodes n;, n; are neighbors if an

Hereinafter we will use the term node to refer to the vertex
in the network being simulated, trying to avoid any confu-

edge lij € L exists connecting the two nodes in G. The set
of neighbors of n; is denoted with II;.

3. A SCALE-FREE NET SIMULATOR

The simulation of networks is a very wide field of research
that, in the last years has produced many valuable results.
Almost all aspects of networking have been deeply investi-
gated, and many general and specific tools have been pro-
posed [37, 24, 36].

Despite this extensive effort, there are few works in the
literature on specific simulators of scale-free networks. For
instance, [28] shows how to build a scale-free network to
simulate air transportation networks. Focus is given on the
scheme to build the network, rather than the need to have
an effective simulation tool itself. Instead, [15] proposes a
model to simulate scale-free networks; they start from a sim-
ulator running on a single-CPU, and compare it with a dis-
tributed environment with parallel clustered processors.

PaScaS (Parallel and distributed Scale-free Network Sim-
ulator) is a new tool specifically designed for the modelling
of scale-free networks. Our goal is to provide a scalable
and easy-to-use simulator that can be used to design new
application-level protocols and to evaluate the performance
of existing. Each PaScaS simulation starts with the building
of a scale-free network of a given size. In the current version,
to build the scale-free network, PaScaS runs the algorithm
proposed by Barabdsi and Albert in [3]. We plan to add a
more comprehensive set of building methods in the following
releases. After completing the network topology, each node
interacts with the others depending on its local character-
istics and the implemented network protocol. It is worth
noting that, in this way, it is possible to test environments
that are very heterogeneous in terms of node characteristics
and behaviors. For example it would be possible to evalu-
ate the performance of gossip protocols that are defined in
a different way if running on a leaf network node or a hub.

PaScaS can be used to implement both sequential and
parallel/distributed simulations, depending on the scalabil-
ity and performance requirements. The core of the simula-
tor is the Advanced RTI System (ARTIS) middleware (Sec-
tion 3.1). Focusing on Parallel And Distributed Simulation
(PADS), the performance of the simulator can be enhanced
thanks to the GATA framework 3.2, that provides function-
alities to reduce the communication overhead in parallel and
distributed simulation.

3.1 The Advanced RTI System (ARTIS)

The Advanced RTI System (ARTIS) is a middleware specif-
ically designed for parallel and distributed simulation, but
that can be used also to build efficient monolithic simula-
tions [2]. Its design, partially inspired by the High Level
Architecture (HLA, IEEE 1516) [23], is specifically tailored
to handle with high degree of model scalability and execu-
tion architectures composed of large execution clusters.

The middleware has been used as a testbed for the design
and development of new features such as: simulation cloning
and concurrent replication, communication marshalling, and
the study of specifically tailored data structures for the man-
agement of simulation events. Some new features have been

sion with the logical processes where the distributed simu-
lation actually runs.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

introduced to improve scalability and simulator performance,
and a simplified set of Application Programming Interfaces
(APIs) has been provided to facilitate the development of
PADS. As well known, synchronization is a main issue in
PADS, therefore the simulation middleware has to provide
time management services to the simulation components
composing the distributed simulation. For the sake of gen-
erality, ARTIS supports both conservative (Chandy-Misra-
Bryant, time-stepped) [32, 18] and optimistic (Time Warp)
[25] synchronization algorithms. The current version of PaS-
caS follows a synchronization scheme based on time-steps.
The middleware is freely available for research purposes and
can be downloaded from [2].

3.2 Generic Adaptive Interaction Architecture
(GAIA)

One of the main bottlenecks of parallel and distributed
simulation is the communication cost due to interactions
among simulated entities. In a monolithic (sequential) sim-
ulator, the simulated entities easily interact accessing the
memory allocated from the simulator software. In a paral-
lel or distributed environment composed of many execution
units, this low-cost approach is not possible; the alternatives
are: shared-memory when available (e.g. multi-processors)
or LAN / Internet -based communication in the other cases.
Due to this factor, the communication cost results as one of
the main factors affecting the performance of parallel and
distributed simulation. It follows that the reduction of the
communication cost and the load balancing are main fields
of PADS research. Focusing on the partitioning of simula-
tion models, many different approaches have been proposed
to maintain a global shared-state in distributed simulation,
while dynamically filtering the event- and state-information
to reduce the communication overhead. Some examples are
static partitioning schemes [16], spheres of influence [31],
simulation domains [40], data distribution management [23],
dynamically adaptive partitionions [29] and hierarchical fed-
erations [12]. Despite many works have addressed the prob-
lem of load-balancing in parallel simulation environments
[39, 14, 9, 20, 38], only a few have examined the problem
of simulation model partitioning considering both communi-
cation cost and load-balancing requirements in parallel dis-
tributed simulation environments. For example, in [34] is
proposed a dynamic partitioning algorithm for optimistic
distributed simulation. In our vision, the reduction of the
communication cost and the aspects of load-balancing in the
parallel or distributed architecture can be seen as different
aspects of the same problem and therefore a joint approach
is necessary [19].

The Generic Adaptive Interaction Architecture (GAIA)
[8] is a migration based framework that uses the services
provided by the ARTIS middleware. Following the GAIA
paradigm, each entity in the simulation can be migrated
within the execution architecture, with the aim to cluster
(migrate) the highly interacting entities in the same execu-
tion units, and therefore reduce the communication over-
head (see Section 3.2.1). This version of GAIA is a very
simplified form of the mechanism presented in [19]. In brief,
the proposed mechanism continuously audits the communi-
cation pattern of each simulated entity, and determines if
a better allocation is possible. In the past we have demon-
strated that this approach leads to valuable results in the
simulation of wireless devices and cooperative multi-agent

systems. In this work, we demonstrate that it can be ex-
tended also to deeply different scenarios such as scale-free
networks. It is worth noting that, the mechanism could be
further adapted and tuned to this scenario, conversely we are
interested to verify if a very simple form of the mechanism
is able to provide an advantage with respect to traditional
approaches (e.g. without any form of entity migration) to
parallel and distributed simulation.

Under the development viewpoint, the framework pro-
vides to the simulation developer an easy-to-use entity based
paradigm for the definition of models. Following this ap-
proach, the level of abstraction provided to the developer
is relatively high. In this sense, the ARTIS middleware is
completely transparent to the developer. GAIA provides to
the simulation model the communication services and the
support for entity migration.

3.2.1 The Clustering Mechanism

Following the GAIA approach, a simulation can be de-
composed in a set of interacting Simulated Model Entities
(SME), in which each SME models the evolution of a part
of the system and interacts with other SMEs following a
message-based approach. Given the not negligible cost of
communication in parallel and distributed execution envi-
ronments, one goal of the mechanism is to cluster the highly
interacting SMEs in the same execution unit. In this way,
it could be possible to reduce the communication cost.

Due to the highly dynamic and unpredictable nature of
the models of interest, we propose to adaptively reallocate
(i.e. migrate) the SMEs over the available execution units.
This can be implemented auditing the communication pat-
tern of each SME during the simulation execution and eval-
uating if reallocations are necessary. In practical terms, the
migration can be implemented as data structures transfer
(i.e. the internal state of SMEs) but it is worth noting that
the cost the migrations is not negligible and has to be care-
fully considered. In GAIA, these aspects are implemented
using two main heuristics: i) the “base heuristic” and ii) the
“group heuristic”, that are evaluated at runtime.

The base heuristic analyzes the communication pattern
of each SME and determines if it should be migrated from
the current execution unit to another. To reduce the over-
head of the mechanism, at the end of each synchronization
phase, only the SMEs that have sent at least one interaction
are taken in account. If a SME has much of its interactions
delivered outside the “local” execution unit then it is a candi-
date for migration, and the destination is the execution unit
that receives the larger percentage of outbound interactions.
To avoid unnecessary migrations, this is actually done only
if the chosen destination receives more messages than the lo-
cal execution unit. This general scheme is refined and tuned
using specifically defined parameters that determine aspects
such as: the size of imbalance needed to trigger a migra-
tion and the amount of time between two migrations of the
same SME. Furthermore, to introduce a weighting method, a
sliding-windows scheme is introduced in the mechanism. In
detail, the interactions have a different weight that depends
on its aging and payload size. This is necessary because the
heuristic needs to have up-to-date data as input, elsewere its
performance would be severely degraded. For example, in-
teractions that are too old should not be included in the data
set: they are related to a simulated model state that could
be very different from the current one. At the same time, fo-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

cusing only on the interactions delivered in the current state,
drastically reduces the possibility to perform trend analysis
and could lead to underreaction or overreaction in the adap-
tive mechanism. Finally, interactions with different payload
size should be treated differently: in fact a correction factor
that is proportional to the size (with respect to the average)
is applied.

The results of the basic heuristic are analyzed and mod-
ified by the group heuristic. In this case, the goal is to
evaluate groups of SMEs instead of single entities. In fact,
single SMEs that are not candidate could be migrated due
to the migration of all SMEs that are interacting with them.
In these terms, the group heuristic tries to achieve a higher
level of abstraction with respect to the base one. First of all,
the implementation of the group heuristic tries to find the
groups of interacting SMEs. For each group that is found,
the heuristic analysis the communication pattern of each
SME that is in the group. In this way, it determines if other
SMEs (that are local to the execution unit) should be mi-
grated, aiming to maintain the clustering of the whole group
in the same execution unit.

The clustering mechanism described above is constrained
by the computational load-balancing requirements of the
parallel or distributed execution architecture. In other words,
the clustering of SMEs has to be done taking care of the
load of each execution unit. It is obvious that an uncon-
strained clustering mechanism would cluster all the SMEs
in the same execution unit, that is the worst case for load
balancing. Complex load-balancing schemes have been pro-
posed and implemented in GAIA [19], while in the actual
version of PaScaS a quite simple mechanism, that maintains
a constant number of SMEs in each execution unit [5], has
been used with the aim to reduce at the bare minimum the
overhead introduced by the mechanism.

It is worth noting that, the approach introduced above
is not specific to scale free networks and in the past it has
been applied to many other models (e.g. wireless networks)
with interesting results. In these terms, for the reasons de-
scribed in the first part of this paper, the scale free networks
represent a new challenging environment to verify its appli-
cability. As only an overall description of the mechanism
has been given, due to space limitations, more details can
be found in (8, 5, 6] and [19].

3.3 PaScaS

The core of PaScaS is a simulation model implemented
using the APIs provided by GAIA, for performance reasons
this version of PaScaS is written in C language. The model
implements the main features of the scale free network sim-
ulator such as the building algorithms, the behavior and
the characteristics of each node and the gossiping protocols.
The set up of the simulated scenarios, and the tuning of the
runtime parameters of the simulator, is obtained via config-
uration files and environment variables. A set of scripts is
provided to facilitate and automatize the execution of par-
allel and distributed runs. This approach has been chosen
to facilitate the set up of unattended batch executions. The
results of the runs are collected in logging files, tuned to
the adequate level of detail that has been chosen by the
simulation modeler. Other scripts are available to collect
and analyze the requested data and results. Furthermore,
as said in Section 1, a main aspect of PaScaS is the pos-
sibility to build heterogeneous scenarios, that is models in

which each simulated model has specific characteristics or
configurations with respect to other nodes. For example,
different gossiping protocols (i.e. hubs vs. leaf nodes) and
simulated hardware characteristics (es. available memory).
This aspect is made available to the end user properly defin-
ing the configuration files. The simulator has demonstrated
to be very simple and easy to use, but to further improve its
usability, we are currently developing a graphical user inter-
face that can be used for the configuration, automatically
generating the configuration files, setting the environment
variables and launching the batch scripts.

PaScaS is freely available for educational and research
purposes and is going to be part of ARTIS version 2 that is
to be released shortly [2].

4. GOSSIPING PROTOCOLS

In this section, we describe the protocols we consider to
gossip messages on scale-free networks, as an example of use
of our simulator.

According to our model, all nodes are able to generate
a new message to be disseminated in the network. When
the generation procedure is invoked at a given node, a sin-
gle message may be created with a certain probability, as
described in Algorithm 1. The generation of a message sim-
ulates the occurrence of a new event produced at a given
node that must be propagated. If the message is created,
then it is gossiped through the net, using a GOSSIP() proce-
dure (line 6 of the algorithm). The message is also inserted
in a cache (line 5).

Algorithm 1 Generation of a Message

: function GENERATE()
t{ < GENERATIONTHRESHOLD()
if RANDOM() < t then
msg < CREATEMESSAGE()
CACHE(msg)
GOSSIP(msg)
end if

Algorithm 2 Reception of a Message

: function RECEIVE(msg)

if (NOTCACHED(msg) A msg.ttl > 0) then
CACHE(msg)
msg.ttl «— msg.ttl — 1
GOssIP(msg)

end if

Upon reception of a given message (see Algorithm 2), the
receiving node forwards the message to its neighbors using
the gossiping protocol by calling the Gossip() function (line
5 in the algorithm). This is accomplished only if the mes-
sage is not already in the node’s cache. The idea is that if
the message is in cache, it has already been gossiped; hence,
the node has nothing to do with the message msg (line 2).
Conversely, msg is gossiped and cached (line 3 of Algorithm
2). Needless to say, due to the possible memory constraints
of a node, the cache is limited in size (cache.size). Think
for instance, at the simulation of some kind of scale-free,
ad-hoc networks [10, 21]. Hence, upon insertion of a mes-
sage in the cache, a control is performed on the cache; if it
is full, an old message is removed. We do not provide here

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

the complete description of the CACHE() procedure; we sim-
ply implemented an aging policy to free memory in cache.
Moreover, in order to avoid that old messages are indefi-
nitely propagated among nodes, due to the limited size of
the cache which cannot contain the complete list of messages
forwarded in the past, a time-to-live parameter is inserted
within each message (i.e. msg.ttl in the algorithm), which is
progressively decreased (line 4) until it reaches a 0 value; in
this case the message is not forwarded (see the second part
of the condition in line 2).

We consider three different algorithms which implement
the cossIP() procedure. These are shown in Algorithms 3,
4 and 5. All algorithms require the definition and initializa-
tion of a parameter at each node, defined through the INI-
TIALIZATION() procedure reported at the beginning of these
algorithms.

4.1 Gossip #1: Fixed Probability of Dissemi-
nation

According to the first gossip protocol, Algorithm 3, the
node (say m;) randomly selects those edges through which
the message msg must be propagated [21, 41]. Specifically,
all n;’s neighbors (i.e. II;) are considered and a threshold
value v < 1 is maintained, which determines the probability
that msg is gossiped to the neighbor (when v = 1 we obtain a
flooding algorithm). At each step the message is propagated
from n; to v|II;| other nodes. (In a scale-free network, on
average a given node will propagate the message to v (k) ~
2vm nodes.) Hubs will send a higher number of messages
to their neighbors, with respect to others. This is in perfect
accordance with the nature of scale free networks, since each
node contributes to disseminate the message in accordance
with its degree. This also means that the work (in terms
of computation and communication) performed at hubs is
higher than at other nodes.

Algorithm 3 Gossip: Fixed Prob. of Dissemination (at n;)

: function INITIALIZATION()
v < CHOOSEPROBABILITY ()

: function GOsSIP(msg)
: for all n; €II; do
if RANDOM() < v then
SEND(msg,n;)
end if
end for

©PTDG W

4.2 Gossip #2: Fixed Fanout

We contrast the gossip scheme above against another ap-
proach, reported in Algorithm 4. According to it, a message
is sent to a fixed number of nodes (i.e. a fixed fanout is
exploited), selected at random among the n;’s neighbors,
II; [21]. This means that the higher the degree of n;, the
more unlikely a n;’s neighbor will receive a gossip message at
each step. (When fanout = 1, the scheme resembles a search
scheme where at each step a single neighbor is randomly con-
tacted). In this case, a constant fanout is chosen and shared
among all nodes in the network, during the INITIALIZATION()
procedure. When a message msg is to be gossiped, n; selects
a number of neighbors equal to the fanout. A list of nodes
(toSend in the algorithm) is filled up by iteratively selecting
a node among the neighbors not already in the list (see lines

8-12).2 If the number of neighbors is lower than the selected
fanout, the message is sent to all the n;’s neighbors, see lines
5-6).

Algorithm 4 Gossip: Fixed Fanout (at n;)

: function INITIALIZATION()
fanout < RETRIEVESHAREDFANOUT()

: function GOSSIP(msg)
: if fanout >|I1;| then
toSend «— II;
else
toSend «
for i =1 to fanout do
10: select n; € II; N toSend, © # j
11: toSend «— toSend U n;
12: end for
13: end if
14: for all n; € toSend do
15: SEND(msg,n;)
16: end for

LCRAPIT W

4.3 Gossip #3: Probabilistic Broadcast

The third distribution protocol we consider is a proba-
bilistic broadcast scheme (see in Algorithm 5). Once the
GossIP() procedure is called, if the message has been locally
generated at the node and msg still needs to be spread to the
network (we assume this check is performed in FIRSTTRANS-
MISSION(), line 5), msg is sent to all node’s neighbors (lines
6-8). Conversely, if msg has been received from someone
else, the node decides with a certain probability p, (defined
at the beginning of the protocol) to forward msg (line 5). In
the positive case, the message is sent to all node’s neighbors.

Algorithm 5 Probabilistic Broadcast

: function INITIALIZATION()
Py < PROBABILITY BROADCAST()

: function Gossip(msg)
: if (RANDOM() < pp V FIRSTTRANSMISSION()) then
for all n; € II; do
SEND(msg,n;)
end for
end if

Such algorithm can be exploited to simulate message prop-
agation in MANETS, VANETS, or sensor networks, where
the transmission of a message corresponds to a broadcast of
a message, received by all nodes into the wireless network
coverage of the message sender. In this case, no overlay is
exploited and all receiving nodes process msg. Then, they
decide to retransmit it with a certain probability, in order
to limit the flooding of the message and avoid congestion of
the wireless network.

S. EXPERIMENTAL EVALUATION

In this section it will be investigated the performace of
PaScaS in different configurations and scenarios. We will
start considering the monolithic version of the simulator.

ZtoSend represents the complement of the set toSend.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

Then, these results will be compared to a parallel version
of PaScaS running on a set of execution units. Finally, in
the last part of this section we will consider the effect of the
proposed adaptive mechanism (Section 3.2) on the perfor-
mances of a parallel simulation execution.

Considering the scalability of the proposed tool, it is worth
noting that, due to their nature, scale-free networks have
some characteristics that should be carefully taken in ac-
count. In detail, doubling the number of nodes compos-
ing a scale-free network, more than doubles the number of
links in the network. When implementing gossip protocols
or in general dissemination protocols, this aspect becomes of
fundamental importance. For example, doubling the num-
ber of nodes in a simulated model, will at least double the
amount of computation required to manage the nodes, but
the growth in the amount of communication required by
the dissemination protocol will be much higher. In terms
of simulation, this translates to models with an increasing
communication requirements with respect to computation
needs. In the case of parallel and distributed simulation,
that is highly affected by the amount of communication in
the simulated model, this aspect can lead to severe limita-
tions in scalability.

5.1 Sequential Execution

The experimental evaluation starts with the scalability
evaluation of PaScaS in a sequential (monolithic) configura-
tion and comparing the results when running the different
gossip protocols introduced in Section 4.

Table 1: Model parameters and simulation scenario

Parameter Value
Number of nodes 3000, 6000, 9000, 12000
m 2

Exponential distribution
Mean=>50 timesteps
cache.size 10
msg.ttl 6 (fixed prob. & fanout)
4 (conditional broadcast)
Prob. of dissemination (v) 0.5 (i.e. 50%)
Fanout value 5
Prob. of broadcast py 0.5 (i.e. 50%)
Simulated time 1000 timesteps
(after network building)

Message generation

Table 1 reports the main simulation parameters and con-
figuration values used in the performance evaluation. The
results shown in Figure 1 are obtained running the mono-
lithic simulator on a dual processor execution unit equipped
with single-core Intel Xeon “Gallatin” CPU 2.80 GHz Hyper-
Threading [22] processors (L2-Cache: 512 Kb, L3-Cache:
1024 Kb, Front Side Bus: 533 MT/s) and with 2 GB of
RAM. In this case, the monolithic simulator is able to use
only a single processor.

Figure 1 shows the rather good scalability of PaScaS: net-
works composed of up to 12000 nodes can be simulated with
an acceptable execution time. It is quite evident that the im-
plemented gossip protocols have different behaviors and re-
quirements. The implementation of fixed probability (Gos-
sip #1) requires the computation of many random numbers
(i.e. one for each neighbor of a given node). This costly op-
eration is necessary, for each message, to determine which

neighbors should receive the message. Focusing on the im-
plementation of the conditional broadcast (Gossip #3), the
amount of computation required by the algorithm is more
limited but, in this case, the execution time is mainly af-
fected by communication. Due to its nature, the conditional
broadcast, produces a very large amount of messages to be
disseminated in the simulated network. Finally, the fixed
fanout (Gossip #2), shows the best performances. This is
due its very limited requirements, both in terms of computa-
tion and communication. In this case, the computation re-
quirements are very low because the dissemination protocol
selects the destination nodes using an heuristic mechanism
that is based on the extraction of a single random number.

Execution Times

3500

3000 -

2500

2000 /
1500 /
1000

500 -

sec

3000 6000 9000 12000
nodes

=-Fixed Probability -=Fixed Fanout Conditional Broadcast

Figure 1: Execution Times. For Fixed Probability
and Fixed Fanout ttl = 6; for Conditional Broadcast
ttl = 4

5.2 Parallel Execution

In parallel and distributed simulation, the representation
and evolution of the simulation model is obtained through
the coordinated execution of a set of components (referred
as Logical Processes, LPs). Each LP, manages the evolu-
tion of a part of the simulated model entities (e.g. network
nodes), and is usually allocated on a different CPU. To ob-
tain a correct execution of the simulation, the set of LPs have
to be synchronized. This aspect has the effect to increase
the communication requirements of the parallel /distributed
execution with respect to the monolithic approach. Fur-
thermore, as introduced in Section 3.2, the communication
cost is strictly related to the execution platform (e.g. pro-
cess memory vs. shared memory vs. Internet). For these
reasons, the performance of a parallel/distributed simulator
can be seen as a trade-off between the gain obtained thanks
to the parallelization of computation (i.e. additional compu-
tational power) and the cost of communication introduced
by the parallel/distributed environment.

In PaScaS, the allocation of simulated nodes among the
LPs is randomized, that is for each node a random allocation
LP is chosen. It is not possible to perform any “optimized”
a priori allocation of nodes given that the scale-free net-
work, in this phase, is still not built. It will be generated by
a partially randomized building process. Furthermore, the
implemented dissemination protocols show not predictable
communication behaviors and patterns. Due to these rea-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

Fixed Probability

800000

700000 —
S 600000 ||
b
& 500000 || -
[
& 400000 | —
2 300000 || —
g
© 200000 | | I
100000 | | —
o I
3000 6000 9000 12000
nodes
OLP=1 mLP=2 OLP=4
Figure 2: Fixed Probability
Fixed Fanout
700000
600000
g so0000 || — [
@
£ 400000 | | - -
2
5l
= 300000 || -
c
g
Z 200000 +—| S
100000
o I

3000 6000 9000 12000
nodes

OLP=1®LP=20LP=4

Figure 3: Fixed Fanout

sons, any form of static pre-allocation of nodes among LPs
would become suboptimal in a few timesteps and would not
lead to any performance gain.

Figures 2, 3 and 4 report the performance of PaScaS in a
parallel simulation environment composed of an increasing
number of LPs (i.e. 1, 2 and 4) and implementing the previ-
ously described gossip protocols. In this case, the measure
of performance used to evaluate the simulator is the event
rate, that is the total number of events processed per sec-
ond. For better readability, we have summarized the results
in Table 2. The Table reports the variation of the event
rate when the simulations were run on a single LP (that is
monolithic execution) and in parallel (LP = 4). In all cases,
the performance obtained from a parallel execution with 2
LPs is lower with respect to a monolithic run. Therefore,
the amount of parallelization provided by two CPUs is not
enough to balance the communication overhead introduced
by the parallel execution. Increasing the number of LPs
(LP = 4), it is possible to achieve better performance and to
almost match the results of the monolithic execution. This
result, in a dual processor execution unit, it is not surprising
and further confirms the results reported in [7]. In brief, the
Hyper-Threading technology [22] makes each single physical

Conditional Broadcast

900000

800000
700000 | |
600000 | |
500000 | |
400000 |

300000 | |

event rate (#/sec)

200000

100000 | |

o |

3000 6000 9000
nodes

12000

BLP=18LP=2 OLP=4
Figure 4: Conditional Broadcast

processor appearing as two logical processors® at the user’s
level. The most clear effect is that, in this case, the best
performances are obtained when the number of LPs, in the
simulation, is equal to the number of logical processors in
the execution architecture.

Table 2: Performance gap (%) between LP =1 and
LP = 4; Gossip #1: Fixed Probability; Gossip #2:
Fixed Fanout; Gossip #3: Conditional Broadcast

Nodes | Gossip #1 | Gossip #2 | Gossip #3
3000 3.46 -12.22 -9.1
6000 0.19 -4.49 -6.23
9000 -5.35 -0.63 -3.36
12000 -9.07 -0.25 -2.42

negative impact on performances. Our goal is to demon-
strate that, an adaptive mechanism that reallocates simu-
lated entities, can lead to a speed-up of parallel simulations.
As described in Section 3.2, the GAIA framework analyzes
step-by-step the communication pattern of each simulated
entity (i.e. network nodes) and re-allocates them clustering
the highly interacting ones in the same LP. In this way, it is
possible to reduce the communication overhead due to the
parallel nature of the simulation execution architecture.
Figures 5, 6 and 7 report the performance of PaScaS
in an adaptive parallel simulation environment in differ-
ent configurations (i.e. 1, 4 and 4 GAIA on) and imple-
menting the previously described gossip protocols. In all
cases, the adaptive approach leads to a performance increase
with respect to a non-adaptive parallel (i.e. LP = 4) and
monolithic (i.e. LP = 1) execution. In detail, in Table 3
are reported the performance gap between LP = 1 and
LP = 4 GAIA on. In general the effect of the adaptive
mechanism on performance is positive, with peaks higher
than 30%. The best results are obtained for Gossip #1 and
#3 which are the protocols with the higher amount of com-
munication, that is where the adaptive mechanism is able to
obtain a performance increase. Further increasing the num-
ber of simulated nodes, leads to a small decrease in perfor-
mances, this is due again to the balance between communi-
cation and computation. When the communication require-
ments of the parallel architecture overwhelm the computa-
tion load, the adaptive mechanism is unable to compensate
the loss. In this case, the gain obtained by the adaptive
mechanism can only slowdown the decrease of performance.

Table 3: Performance gap (%) between LP =1 and
LP = 4 GAIA on; Gossip #1: Fixed Probability;
Gossip #2: Fixed Fanout; Gossip #3: Conditional
Broadcast

The results obtained through parallel execution are quite
unsatisfactory, only in two cases there is a very limited gain.
In all other cases the parallel version of the simulator is
slower than monolithic. It is a clear demonstration that,
in this case, the communication overhead among LPs intro-
duced by the parallel execution not balances the gain given
by the load parallelization. In detail, increasing the num-
ber of simulated nodes, the fixed probability dissemination
(Gossip #1) shows a performance worsening of parallel with
respect to monolithic (see Table 2). In this case, increasing
the number of nodes, makes communication overwhelming
computation, and therefore a slowdown of parallel execu-
tion with respect to monolithic. In the other cases (i.e. fixed
fanout and conditional broadcast, Gossip #2 and #3, re-
spectively), the ratio between computation and communica-
tion is highly unbalanced. In both cases, the communication
requirements introduced by the simulation of a new node, is
less with respect to its computational needs. This explains
the better performances obtained by the parallel execution
when increasing the number of nodes.

5.3 Adaptive Parallel Execution

As seen in the previous section, the communication over-
head due to the parallel execution of the simulator has a very

3The logical processors should not be confused with logical
processes (LPs).

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

Nodes | Gossip #1 | Gossip #2 | Gossip #3
3000 34.18 -1.33 19.75
6000 38.63 6.87 23.37
9000 30.97 11.07 24.59
12000 26.47 9.65 22.56
Fixed Probability
1000000
900000 [-
— 800000 —
§ 700000
£ 600000
£ 500000 [[
= 400000 [E— [
2 300000 e S
(0]
200000 [[
100000
0
3000 6000 9000 12000
nodes
BILP=1 ®LP=4 OLP=4GAlAon

Figure 5: Fixed Probability with GAIA

Fixed Fanout

660000

640000

620000

600000

580000

560000

event rate (#/sec)

540000 | |

520000 | |

500000 —
3000 6000 9000 12000
nodes

mlP=1 ®LP=4 OLP=4GAIAon
Figure 6: Fixed Fanout with GAIA

Conditional Broadcast
1200000

1000000

800000 ’—| /_\
600000
400000
200000
0

3000 6000 9000 12000
nodes

event rate (#/sec)

@LP=1 mLP=4 OLP=4 GAIAon

Figure 7: Conditional Broadcast with GAIA

Finally, we have tested the scalability of the proposed
mechanism increasing the number of processors, and con-
sequently of LPs. The results shown in Table 4 are obtained
running the parallel simulator on a quad processor execution
unit equipped with single-core Intel Xeon MP “Foster MP”
CPU 1.50 GHz Hyper-Threading processors (L2-Cache: 256
Kb, L3-Cache: 1024 Kb, Front Side Bus: 400 MT/s) and
with 2 GB of RAM.

Table 4: Performance gap (%) between LP = 8 and
LP =8 GAIA on; Gossip #1: Fixed Probability

Nodes | Gossip #1
8000 38.18
16000 45.37

The results show a very significant gain; in presence of an
increasing number of LPs the adaptive mechanism is able to
effectively reduce the communication overhead of the par-
allel execution. This behavior can be explained considering
the probability that two simulated entities are allocated in
the same LP. This probability decreases while increasing the
number of LPs that compose the simulation. For this rea-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

son, a simulation composed by many LP has the effect to
enhance the performance that can be obtained by the adap-
tive clustering mechanism.

6. CONCLUSIONS AND FUTURE WORK

‘We presented a novel scale-free network simulator, named
PaScaS. The tool is able to create and manage complex net-
works with scale-free characteristics. The scalability of the
tool permits the simulation of networks composed by a high
number of nodes. PaScaS allows the implementation of both
monolithic and parallel /distributed simulations. The results
demonstrate that non-adaptive parallel simulations achieve
unsatisfactory results due to the nature of scale-free net-
works and the overhead introduced by the parallel execution
architecture. Conversely, the implementation of a mecha-
nism based on adaptive migration of simulated entities, can
lead to a valuable increase in performances, extending the
scalability of the proposed tool.

As a future work, we plan to extend and tune our tool
to many other specific execution architectures such as dis-
tributed environments and multi-core processors. In partic-
ular, we plan to design and implement more sophisticated
heuristics for the adaptive re-allocation mechanism. On the
other hand, we plan to extend our scale-free network model
with more features and to focus on the performance eval-
uation of gossip protocols, to assess their effectiveness on
dissemination information over large scale-free networks.

7. ACKNOWLEDGMENTS

The authors wish to thank Filippo Giunchedi for his con-
tributions to the PaScaS simulator, and the anonymous re-
viewers for their very useful comments.

8. REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabdsi. Error and
attack tolerance of complex networks. Nature, 406,
July 2000.

[2] ARTIS: Advanced RTI System Homepage.
http://pads.cs.unibo.it, 2009.

[3] A.-L. Barabési and R. Albert. Emergence of scaling in
random networks. Science, 286, 1999.

[4] A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free
characteristics of random networks: the topology of
the world-wide web. Physica A: Statistical Mechanics
and its Applications, 281(1-4), Jun 2000.

[5] L. Bononi, M. Bracuto, G. D’Angelo, and
L. Donatiello. A new adaptive middleware for parallel
and distributed simulation of dynamically interacting
systems. In DS-RT ’04: Proc. of the 8th IEEE
International Symposium on Distributed Simulation
and Real-Time Applications. IEEE, 2004.

[6] L. Bononi, M. Bracuto, G. D’Angelo, and
L. Donatiello. Performance analysis of a parallel and
distributed simulation framework for large scale
wireless systems. In MSWiM °04: Proc. of the 7th
ACM international symposium on Modeling, analysis
and simulation of wireless and mobile systems. ACM,
2004.

[7] L. Bononi, M. Bracuto, G. D’Angelo, and
L. Donatiello. Exploring the effects of
Hyper-Threading on parallel simulation. In DS-RT 06:

Distributed Sitmulation and Real-Time Applications,
IEEE International Symposium on. IEEE, 2006.

[8] L. Bononi, G. D’Angelo, and L. Donatiello.
HLA-based adaptive distributed simulation of wireless
mobile systems. In Proc. 17th ACM/IEEE/SCS
Workshop on Parallel and Distributed Simulation.
IEEE Press, 2003.

[9] A. Boukerche and S. Das. Dynamic load balancing
strategies for conservative parallel simulations. In
PADS ’97: Proc. of the eleventh workshop on Parallel
and distributed simulation. IEEE, 1997.

[10] A. Brayner and R. Menezes. Balancing energy
consumption and memory usage in sensor data
processing. In SAC ’07: Proc. of the 2007 ACM
symposium on Applied computing, New York, NY,
USA, 2007. ACM.

[11] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer Networks,
33(1), June 2000.

[12] W. Cai, S. Turner, and B. Gan. Hierarchical
federations: an architecture for information hiding.
Parallel and Distributed Simulation, 2001.
Proceedings. 15th Workship on, 2001.

[13] R. Cohen, S. Havlin, and D. Ben-avraham. Structural
properties of scale-free networks. In In Handbook of
Graphs and Networks. Wiley, 2003.

[14] E. Deelman and B. Szymanski. Dynamic load
balancing in parallel discrete event simulation for
spatially explicit problems. SIGSIM Simul. Dig.,
28(1), 1998.

[15] R. Dobrescu, S. Taralunga, and S. Mocanu. Web
traffic simulation with scale-free network models. In
AIC’07: Proc. of the 7th Conference on 7th WSEAS
International Conference on Applied Informatics and
Communications. WSEAS, 2007.

[16] A. Fabbri and A. Boukerche. Partitioning parallel
simulation of wireless networks. In Proc. of Winter
Simulation Conference. IEEE Press, 2000.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the Internet topology.
SIGCOMM, Aug-Sept. 1999.

[18] R. Fujimoto. Parallel and Distributed Simulation
Systems. Wiley & Sons, 2000.

[19] G. D’Angelo and M. Bracuto. Distributed simulation
of large scale and detailed models. To appear,
International Journal of Simulation and Process
Modelling (IJSPM), 20009.

[20] B. Gan, Y. Low, S. Jain, S. Turner, W. Cai, W. Hsu,
and S. Huang. Load balancing for conservative
simulation on shared memory multiprocessor systems.
In PADS ’00: Proc. of the fourteenth workshop on
Parallel and distributed simulation. IEEE, 2000.

[21] B. Garbinato, D. Rochat, and M. Tomassini. Impact
of scale-free topologies on gossiping in ad hoc
networks. In NCA. IEEE Computer Society, 2007.

[22] Hyper-Threading Technology.
http://www.intel.com/technology/platform-
technology /hyper-threading/index.htm,

2009.
[23] IEEE 1516 Standard, Modeling and Simulation

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5672
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5672

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[40]

[41]

(M&S) High Level Architecture (HLA), 2000.

R. J. Short and L. Kleinrock. Mobile wireless network
system simulation. Wireless Networks, 1(4), 1995.

D. Jefferson. Virtual time. ACM Transactions
Program. Lang. Syst., 7(3), 1985.

M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Transaction Computer Systems, 23(3), 2005.

H. Jeong, S. Mason, A.-L. Barabdsi, and Z. Oltvai.
Lethality and centrality in protein networks. Nature,
411, 2001.

R. K. Kincaid and N. M. Alexandrov. Scale-free
networks: A discrete event simulation approach. In
International Conference on Computational Science
(1), 2005.

B. Kumova. Dynamically adaptive partition-based
data distribution management. In PADS ’05: Proc. of
the 19th Workshop on Principles of Advanced and
Distributed Simulation. IEEE, 2005.

F. Liljeros, C. Edling, L. Amaral, H. Stanley, and

Y. Aberg. The web of human sexual contacts. Nature,
411, 2001.

B. Logan and G. Theodoropoulos. The distributed
simulation of multi-agent systems. In Proc. of the
IEEE, 2001.

J. Misra. Distributed discrete event simulation. ACM
Computing Surveys, 18(1), 1986.

M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45, 2003.

P. Peschlow, T. Honecker, and P. Martini. A flexible
dynamic partitioning algorithm for optimistic
distributed simulation. In PADS ’07: Proc. of the 21st
International Workshop on Principles of Advanced
and Distributed Simulation. IEEE, 2007.

D. J. Price. Networks of scientific papers. Science,
149(3683), July 1965.

G. Riley and M. Ammar. Simulating large networks:
How big is big enough? In Proc. of First International
Conference on Grand Challenges for Modeling and
Stmulation, Jan 2002.

R.L. Bagrodia and R. Meyer. PARSEC: A parallel
simulation environment for complex system. [EEE
Computer, 31(10), 1998.

M. Shanaker, R. Padman, and W. Kelton. Efficient
distributed simulation through dynamic load
balancing. ITE Transactions, 33(3), 2001.

T. Som and R. Sargent. Model structure and load
balancing in optimistic parallel discrete event
simulation. In PADS °00: Proc. of the fourteenth
workshop on Parallel and distributed simulation.
IEEE, 2000.

B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and

K. Madnani. Genesis: a system for large-scale parallel
network simulation. In PADS ’02: Proc. of the
sizteenth workshop on Parallel and distributed
simulation. IEEE, 2002.

S. Verma and W. T. Ooi. Controlling gossip protocol
infection pattern using adaptive fanout. In /ICDCS
05: Proc. of the 25th IEEE International Conference
on Distributed Computing Systems. IEEE, 2005.

