
Improving lagrangian methods. Toward an agent-particle 

based method  
Jean Marie Dembele 

Laboratoire Modélisation et Applications Thématiques 

University Cheikh Anta Diop - IRD/UR GEODES 

BP 1386. Dakar/Sénégal 
(221) 77 645 45 75 

dembele@ird.sn 

Christophe Cambier 
Université Paris 6, Laboratoire du Lip6.  

BP 1386. Dakar/Sénégal 

cambier@ird.sn 

 

 

ABSTRACT 

An agent-based modeling procedure is proposed in this paper in 

order to improve particles methods (like Smooth Particle 

Hydrodynamics, Vortex methods...) in the context of modeling 

and simulating physical or social systems described by partial 

differential equations. The procedure suggests, for avoiding some 

of the lagrangian methods limitations, to replace the classical 

particle with an autonomous process – an agent-particle: AP – 

able to implement skills like vicinity perception, capacity of 

evaluating mutual contribution, testing complex behaviors… A 

complete description of concepts and tools that the AP-based 

method might use for limiting the combinatory complexity is first 

given; sending messages for symmetric contributions, quad-

Lattices for neighbors searching, ray tracing and kd-tree-domains 

for handling obstacles… In a second part, a continuous 

convection-diffusion problem
 
and a discrete animals aggregation 

are simulated to show what the AP-based method can bring to 

classical resolution schemes. 

Categories and Subject Descriptors 

[I. Computing Methodologies]: I.6 SIMULATION AND 

MODELING: I.6.5 Model Development – Modeling 

methodologies. 

General Terms 

Algorithms, Performance, Experimentation, Theory.  

Keywords 

Particle methods, dynamical systems, partial differential equations 

(PDE), agent-based modeling. 

1. INTRODUCTION 
Simulations of physical systems described by partial differential 

equations are more and more using particle methods [10]. Indeed, 

mesh-based methods like finite element or finite difference are not 

well suited in the simulation of complex phenomena occurring on 

irregular geometries (impact/penetration, explosion, fluid-
structure interactions, sediments transport, erosion...). 

Lagrangian methods are then more promising in the study of such 

phenomena. However, they still have some conceptual limitations 

especially with complex boundary conditions or functions 
approximations.  

Since parallel CPU computing or GPGPU
1
 programming [14] – 

performing a way to handle very large numbers of threads – are 

widely applied now in agent-based modeling, we naturally 

suggested in [7] to build from the lagrangian particle an agent-

particle (AP) with vicinity perception and capacity of evaluation 

of their mutual contribution (for functions approximations). In the 

same physical context, other previous works dealing with such a 

paradigm can be cited; simulating shallow water with “water-ball-

agents” [16] or building “vortex-agents” in a turbulent flow with 

emerging coherent structures [5]. Lagrangian methods should 

therefore, in some cases, define their elementary particle as an 

autonomous process in order to avoid the aforementioned 

conceptual limitations and to be able to implement more skills 

with particles; aggregating [16], changing level of description [5], 
exploring more or less complex scenarios…  

The purpose of this present paper is to provide a more complete 

description of what an agent-particle-based method should be and 

should use (section 2) and to illustrate the new method with well-

known systems usually described by partial differential equations 

(section 3). After giving the conceptual basis (the SPH formalism) 

of our AP, a focus is made on the reduction of the combinatory 

complexity; particle methods requiring an important number of 

elements for good approximations, a great effort must be 

completed on reducing complexity. A quad-Lattice structure is 

consequently defined, providing to the AP a faster way to find its 

neighbors. In the same spirit and for handling complex boundary 

conditions or obstacles collisions an adaptation of ray tracing with 
the use of kd-tree is proposed.  

Two cases are afterward debated. A first one implying continuous 

diffusion-based processes and the second one dealing with 

discrete systems. In both of them, the AP is autonomous in its 

dynamics computing; neither using random walk, nor Laplancian 

approximation by quadrature, but diffusion velocity that shows 

good results. This allows exploring more easily some dynamics 
like animals aggregation. 

                                                                    

1
 General Purpose Graphics Processor Units 

 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee.  

SIMUTools 2009, Rome, Italy. 

Copyright 2009 ICST, ISBN 978-963-9799-45-5. 

 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



2. THE AP-BASED MODEL GUIDELINES 
A particle means in this paper a virtual mobile entity with its own 

attributes and identity in a whole dynamical system. Its type and 

size are related to the field of study and scale of description.  

In this way, it can represent an electron, an atom, a molecule… a 

granule, a drop, or more specifically a relevant volume of matter 

that can be taken elementary in a discretization of a physical 

continuous dynamical system. In discrete systems, a particle 

might also represent a star, a planet, a galaxy… for higher scales, 

or an individual for social phenomena like populations dynamics 

or moving flocks of fishes or birds. A particle system is then a 

collection of interacting particles (by attraction, repulsion, 

attenuation, random forces…), which are submitted to the 

resulting dynamic.  

The agent-particle that we want it to simulate the behavior of the 

previously defined particles requires the use of a formal concept; 

we will use to that end the particle method SPH (Smoothed 

Particle Hdrodynamics). 

2.1 Build the AP from SPH particle 
Originally defined for astrophysics problems like evolution of 

proto-stars and galaxies [9], SPH (Smoothed Particle 

Hydrodynamics) is a lagrangian numerical method widely used 

now, specially in fluids dynamics. It had been well specified in 

[12] and improved many times [10].  

SPH uses particles positions x as quadrature points in order to 

approximate any field function f (density, pressure, viscosity…).  

< f (x) >= f (y)W (x " y,h)dy
#

$                     2.1 �
f i >" f j .

m j

# j

W (x i $ x j ,h)
j=1

N

%                      2.2  

("f )i =
1

#i

m j

$ j

# j ( f j % f i)" iW (x i % x j ,h)
j=1

N

&            2.3 

!, W, h, fi, mi, !i are respectively the domain, the smoothing 

kernel, the core radius, the field function value at the particle i, the 

mass of the particle i, and its density."i a scalar field used for 

making the gradient vanished when the scalar field is constant. 

 

Figure 1. Influence zone of a particle and the kernel cubic B-

Spline function and derivatives 

For each particle, the contribution of the others is proportional to 

the distance between them and the smoothing kernel is chosen in a 

way to ignore particles over a core radius distance and to have 

continuous derivatives.  

This allows rewriting (with 2.3 for example) governing PDE of 

motions in a set of ODE for numerical time integration by 

predictor-corrector, leap-frog or Verlet schemes.  

2.2 The general AP procedure 
Our AP is more than a “virtual mobile entity with its own 

attributes” (positions, mass, velocity…). He becomes an 

autonomous process able to implement other behaviors 

(independently to the physical dynamics) during the system 
evolution. Here is a general way an AP should behave: 

- find its neighbors (section 2.4) 

- compute their contributions and send messages (section 
2.3) 

- calculate its dynamic (with diffusion velocity for 
example in section 3.1) 

- look for obstacles (section 2.5) and move accordingly  

- implement other skills, (varying neighbors perception; 

section 3.2, aggregation, changing scale of 
description…) 

This gives an idea of the AP procedure. Of course according to 

the problem, the new skills will change the resulting interactions 

(for example an aggregated structure will have a different 
influence on a single particle) and the AP procedure. 

2.3 Send messages for symmetric contribution  
Looking at equation 2.2, one can notice the symmetric 

contribution between particles assuming that their motions are 

synchronous
2
. An AP should then, once having calculated the 

contribution from another AP, send him the information and 

keeping him from computing again the same routine. This can 

improve the computation time if the sending message mechanism 

is well scheduled and the structure chosen for storing information 

received from other AP is efficient (i/o time access for lists may 

be different form one platform to another).  

Sending messages will be very helpful when computing many 

contributions at a time (velocity, energy, density, pressure…) or 

when searching neighbors. 

2.4 Quad-Lattices for neighbors searching 
2.4.1 The Quad-Lattice (QL) structure 
Particles methods are N-Body problems and require quadratic 

complexity with some operations that need to be computed at each 

time step. For example, in a neighborhood query, the particle has 

to compare its position to the position of all others to determine 

the particles in its core radius.  

A way to reduce such a high combinatory procedure is to build a 

spatial indexation of elements. If particles were immobile, a 

simple Delaunay triangulation or an spatial adaptable splitting 

procedure like Quadtree or Octree [2] or Kd-tree [3] could have fit 

to the problem. In our case, particles are very mobile and require 

not a tree but a lattice indexation.  

An appropriate method is the Bin-Lattice one [15]. A rapid 

overview of the principle is to split the domain into regular cells 

                                                                    

2
 In a synchronous mode, all particles calculate their future states 
with the same distribution in particles positions.  

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



(or cubes in 3D) containing particles. A particle then belongs at 

one cell and a cell can contain several particles and should 

maintain a list of them. In the neighborhood query, all cells 

beyond the neighborhood distance are ignored and only those in 

the query range will be considered. In some particle methods [8], 

a particular case of Bin-Lattice is taken by given to the cell a 

length equal to the core-radius.  

The particle will look for its neighbors in its cell and in the 8 

surrounding ones, North: N, South: S…North East: N-E, South 

West: S-W…(Figure 2-left). In order to reduce again the number 

of interacting elements in the neighbors searching, we decide to 

divide cells into four (4) sub-domains (00, 01, 10, 11) and call the 

resulting structure a Quad-Lattice (Figure 2-right).  

According the position of an aP in a sub-domain, It may consider 

a contiguous cell entirely or not (Table 1).  

 
Figure 2. left: domain segmentation into cells of length h. 

right: reduction of the research area with QL 

Table 1. The AP sub-domain position and its corresponding 

looking neighbors’ areas in contiguous QL  

! N-QL! S-QL! E-QL! W-QL!

00! ALL! (00, 01)! (00, 10)! ALL!

01! ALL! (00, 01)! ALL! (01, 11)!

10! (10, 11)! ALL! (00, 10)! ALL!

11! (10, 11)! ALL! ALL! (01, 11)!

! NW-QL! NE-QL! SW-QL! SE-QL!

00! ALL! (00, 10)! (00, 01)! 00!

01! (01, 11)! ALL! 01! (00, 01)!

10! (10, 11)! 10! ALL! (00, 10)!

11! 11! (10, 11)! (01, 11)! ALL!

2.4.2 The combinatory complexity comparison 
Let us call by A1 the algorithm with cells and A2 the one with 

QL, LpN the list of potential neighbors, Li the list of AP of a cell i 

and Lik the list of AP of a sub-domain k of a cell i. 

 

A1: 

If none of AP of same cell have already found LpN then 

    Begin 

       Ask for Lj from contiguous cells;          

       Append to the list Li of my own cell: LpN !Li U (ULj); 

       Send LpN to AP of same cell; (*symmetry*) 

     End 

Find the list of neighbors LNi from LpN; 

 

 

 

 

A2: 

If none of AP of same sub-domain have already found LpN then 

    Begin 

       Ask for Ljk from contiguous cells; (*use Table 1*)         

       Append to the list Li of my own cell: LpN !Li U (ULjk ); 

       Send LpN to AP of same sub-domain; (*symmetry*) 

     End 

Find the list of neighbors LNi from LpN; 

Let us now call by anpc the average number of AP/cell. The 

algorithmic complexity of A1 for all the N agent-particles is 

approximately 9.anpc.N and the A2 complexity is approximately 

25.anpql.N (anpql = anpc/4 denotes here the average number of 

AP/sub-domain). The ratio of A2 complexity to A1’s one is 0.694 

(or 1.44 of A1 to A2). Indeed, QL cuts the area of research by 

30.6% (Figure 2-left).  

Table 2. Combinatory complexity according to the number of 

sub-domains/cell (Nsub) 

Nsub! Research area! Combinatory complexity!

1(Cell,p=0)! 1 or 100%! 9.anpc.N!

4(QL, p=1)! 0.694! 25.(anpc/4).N!

16(4
2
, p=2)! 0.5625! 81.(anpc/16).N!

4
p
 (p"0)!

2* 4
p 2 �

1

3* 4
p 2

" 

# 
$ 

% 

& 
' 

2

!

(2*4
p/2

+1)
2
.(anpc/4

p
).N!

 

The combinatory complexity actually decreases with the 

subdivision (Table 2). The complexity ratio between any level of 

subdivisions and the first classical cell corresponds to the 

percentage of research area of the subdivision area. Therefore, we 

could think about keeping the recursive process of cells 

subdivision to minimize the research area.  

Nevertheless, even by reducing the combinatory complexity, it is 

not evident that the ensuing structure will be better than the 

classical one (the simple cell). In fact, splitting a domain requires 

four times the number of AP lists of the same domain. The 

question is: does reducing the combinatory complexity save 

enough time computing comparing to the time spent by lists
3
 

management? 

2.4.3 The time computing comparison 
The experiment that we drive here in Netlogo

TM
 proposes to show 

the time computing differences between A1 and A2. Considering 

a domain ]-a,a[
2
 of R

2
 (a=1/2) and a random initial distribution of 

agents-particle. We want to execute the two algorithms on the 

same data and record their time computing. Particles will 

determine their neighbor lists using both A1 and A2, move 

randomly and repeat the same operation many times.  

The displacements of particles will make the results independent 

from their spatial distribution and several time steps should 

minimize the noise from the operating system. We can also, in 

addition to these two precautions, take an increasing number of 

particles (10
3
, 2.10

3
 then 8.10

3
 and 16.10

3
).  

                                                                    

3
 Notice that the number of lists increases in an exponential way 

while the combinatory complexity rapidly decreases and tends 
to a finite limit.  

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



The results (Figure 3-a & 3-b) show a common linear factor
4
 

between A1 and A2 time computing that we found to be 1.251. 

Less than what was predicted by combinatory complexity (1.44). 

As expected, this is normal and is due to AP lists management. 

Comparing now the QL and a deeper level of subdivision, for 

example p = 2, will give a ratio of 1.23. This is too close to 1 

(keep in mind that AP lists management reduces this ratio in time 

computing).  

Since we are at the first steps of the AP-based model construction, 

we will retain the QL that seems to be at a right intersection 

between the time computing improvement and the use of 

supplement structures. 

a - time computing for A1 and A2 with 10
3
 and 2.10

3 
AP 

 

b - time computing for A1 and A2 with 8.10
3
 and 16.10

3 
AP 

 

Figure 3. Time computing comparison between A1 & A2 

2.4.4 Updating core-radius 
SPH needs a minimum number of neighbors in order to obtain 

good approximation (in a 2D it requires 25 to 30 particles in a 

uniform distribution). So, when building the QL (or even the 

classic Bin-Lattice), the size must be chosen to be the maximum 

core-radius possible during the entire dynamic to make A1 and A2 
still adequate.   

2.5 Agents Kd-tree-domain (AK) for obstacles 
In a natural environment often heterogeneous, AP should be able 

to deal with obstacles (or different objects type) that may appear, 

                                                                    

4
 This factor doesn’t depend on spatial repartition or number of 
time steps or number of AP. 

be in motion or even disappear, and disturb the normal behavior 

of the system. To manage the effect of an obstacle, the AP has to 

calculate the intersection between its trajectory and the frontal 

plans of the obstacles and determine its behavior according to 

that. It is then necessary to endow the AP of a certain perception 

of the environment in order to evaluate that intersection and its 
resulting behavior only if it is really interacting with the obstacles.  

This can be done either by maintaining a global topologic map in 

each AP (individual perception) or by using external sensors 

indexing structures. The second solution, cheaper than the first 

one redundant, is used here. In view of the fact that the 

intersection problem is well studied in algorithmic geometry, 

robotic field, images rendering, video games, virtual reality… see 

[11] for an overview, we propose here to use some of their 
concepts and tools… 

2.5.1 The ray tracing for collision detection 
The ray tracing [17] allows the reconstruction of a scene by taking 

the opposite direction of the light (i.e. from the observer to the 

scene), in order to generate pixels representing the received 
picture by the observer.  

Given a direction, the ray is thrown toward the scene containing 

many primitives to figure out the first intersection point with the 

primitives or objects. Others rays (reflected, refracted…) involved 

in the color of that intersection point are also taken into account in 
the synthesis of the corresponding pixel (Figure 4). 

 

Figure 4. Ray tracing, the extern ray (pink) and intern 

(reflected, refracted, normal,…) rays of a scene 

The image rendering can therefore be divided into 5 steps: the ray 

setup, the spatial subdivision for indexing the scene primitives, 

the ray-primitive intersection [1], the determination of light or 

shadow sources on the intersecting point and finally the picture 

generation. If we make an analogy between our AP and the 

observer – assuming that the thrown ray corresponds to the AP 

displacement vector in a time step – we will only use the three 

first steps of the image rendering. In fact, the AP doesn’t need a 
complete image of the obstacle but just the first intersection point.  

2.5.2 Kd-tree and heuristics for indexing obstacles 

 
Figure 5. Adaptable subdivision and its kd-tree. 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



For the spatial subdivision, kd-trees [3] are used to localize the 

objects of the scene, limiting the number of comparisons between 

the ray and primitives. They split the domain into two sub-

domains with horizontal or vertical plan depending on the tree 

deepness (see Figure 5). Partitioning the domain into two equal 

parts may not be efficient.  

To optimize the tree construction, a cost heuristic is used in ray 

tracing: the Surface Area Heuristic (SAH) [17]. This method 
minimizes the cost for a domain (Equation 2.4): 

C(D) �K t � P Dg D
�

]
C(Dg ) +P

Dd D
�

]
C(Dg )               2.4  

where P[S|D] = SA(S) /SA(D) is the probability for the ray to cut the 

sub-domain S given that it had already cut the domain D. SA gives 

the surface area, Kt the known cost for cutting a domain. 

Instead of finding all generated trees and selecting the one 

minimizing the cost, SAH proposes to suppose at each time step 

that the sub-domains are leafs. To minimize the cost of our kd-tree 

is equivalent to maximize the size of empty sub-domains 

reducing, by the way, the number of AP interacting with 

obstacles. We also need a way to stop the subdivision; otherwise 

the deepness of the tree will be related to the size of the obstacle. 

A threshold surface percentage of sub-domain comparing to the 

obstacle’s one can be set. 

2.5.3 Kd-tree-domains, what for? 
Moving objects need to update (or even rebuild) the kd-tree. To 

avoid as possible the reconstruction of the tree, we propose to 

build, in addition, some objects kd-tree-domains indexing 

subdomains (bounded with plans limits), and keeping the 

information on its family: brother, father and grandfather… the 

contiguous kd-tree-domains. 

 

Figure 6. Kd-tree-domains built iteratively and maximizing 

the empty sub-domains. 

 

When the object indexed is moving, the plans limits of the 

contiguous kd-tree-domain are only updated, not the kd-tree. For 

example, when obstacle 3 is moving (Figure 5), the tree is not 

updated unless one kd-tree-domain disappears. The kd-tree-

domains will have two principal rules: indexing the obstacles and 

giving to the AP the way to behave with the primitives (after ray-

primitive intersection: repulsing, sticking, bouncing, 

disappearing…). 

3. CASE STUDY: DIFFUSION 
Diffusion described by equation 3.1 is one of the basic transport 

processes in physical and even natural systems. It can be solved 

easily with mesh-based methods (finite element, finite difference). 

The derivatives are in that case discretized on time and space and 

a stability condition, involving the time step, the mesh elements 

size and the diffusion coefficient D, is needed to ensure the 
convergence of the used scheme.  

Nevertheless, diffusion in natural or physical systems is often 

nonlinear and may also introduce other phenomena making the 

numerical resolution nontrivial. It is the case with convection-
diffusion, reaction-diffusion…  

So, if we want the AP to implement others skills in a diffusion-

based process, we need to make him autonomous in the Laplacian 
approximation by using diffusion velocity. 

3.1 The diffusion velocity of the AP 
Given a scalar field u in a domain ! # R

d
 its (*linear) diffusion is 

governed by the following PDE: 

"u

"t
+#.($D#u) =

* "u

"t
$D%u = 0

u = f  on "&,  u(x,t = 0) = u
0
(x)

' 

( 
) 

* ) 
                       3.1

 

The problem with diffusion in Lagrangian methods is the 

discretization of the Laplacian. in fact, its approximation with 

quadrature points is very sensitive to the positions of particles: 

"The particle adaptation comes at the expense of the regularity of 

the particle distribution as particles move in order to adapt to the 

gradients of the flow field" [4]. We prefer therefore to calculate 
the velocity diffusion [6] of each particle.  

For that we can rewrite Equation 3.1 in a purely transport equation 

with advective velocity A (Equation 3.2). Each particle can now 

find its velocity buy using the neighborhood information (the 

gradient is determined from equation 2.3 that involves the 

smoothed kernel derivative).   

"u

"t
+
�

.(Au) = 0 where A = $D

�
u

u
                    3.2  

In the convection-diffusion problem for example (Equation 3.3): 

"u

"t
+#.(Vu) +#.($D#u) = 0

u = f  on "%,  u(x,t = 0) = u
0
(x)

& 

' 
( 

) ( 
                       3.3

  

the dynamic of the AP is now due to two velocity vectors. The AP 

procedure is as follow: adapt the core radius, find the neighbors, 

compute the contributions and send message, calculate both the 

diffusion and fluid velocities and move, proceed to aggregation or 

structures detection [7] 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



a – initial condition: 2.5.10
3
 AP                      b – diffusion; after 200 steps                           c – convection-diffusion; after 200 steps 

 

1 – initial condition: density field                   2 – diffusion; after 200 steps                          3 – convection-diffusion; after 200 steps 

 
Figure 7. Comparisons between finite element (1, 2 and 3: FreeFem++

TM
) and the AP-based model (a, b and c: Netlogo

TM
) on a 

density simple diffusion (2 & b) and a low Peclet number convection diffusion: “rotating hill” (3 & c). D = 10
-3

, V = (y,-x)
T
. The 

results from Netlogo are imported in FreeFem++ which prints isovalues. 

From the same initial condition (Figure 7-a, 7-1) we made a 

simulation with an agent-based platform (Netlogo) and with finite 

element method (using FreeFem++). Figure 7 depicted the results 

from both platforms and shows good results for the AP-based 
model.  

Now that the diffusion is managed as a vector velocity, the AP 

can implement the obstacles perception described in section 2.4. 

The following simulation (Figure 8) treats this case with the 

obstacles indexed on figure 6.  

 
Figure 8. The resulting dynamics in presence of obstacles.  

We just show here squares as obstacles but the most important is 

not the shape (we can just use the existing algorithms for 

polygons) but the way to let AP figure out if they are interacting 

with obstacles; when an AP wants to know if it will be in collision 

with an obstacle, it has to communicate its displacement vector to 

the top node of the tree, this one will tell him in which Kd-tree-

domain to search, and so on until finding a empty Kd-tree-domain 
or one with obstacle.  

Our Kd-tree-domains are well suited in the case where obstacles 
(or any foreign disturbing elements) are not moving a lot. 

3.2 Application to a discrete system: 

exploring animals aggregation with AP 
Let us now apply our model in a discrete system context. 

Assuming now that the AP are able to diffuse precisely, we can 

build on that, other behaviors in order to simulate for example 

animals aggregation.  

Here is a description of the problem: given a population of 

animals (density: u) diffusing (diffusivity D) and producing at a 

rate $ a signal (density: s). They are also sensitive at a rate % to 

the total signal gradient and are advected (at a velocity V) 

following it. The produced signal is also diffusing (diffusivity DS) 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



and evaporating at a rate &. This problem can be written in a 

continuous form with partial differential equations (Example 

equations 3.4).  

"u

"t
#D$u +%.(Vu) = 0

V = &%s

"s

"t
#D

s
$s+'u #(s = 0

) 

* 

+ 
+ 

, 

+ 
+ 

                       3.4

 

Nevertheless, we are not going to resolve numerically PDEs that 

are realistic for “large, dense aggregates with no sharp 

discontinuities” [13]. 

In our discrete model, the AP will have a vicinity perception that 

allows him to evaluate the signal concentration field and the AP 

density also. If the signal is created only on domain patches were 

there is an AP, it will create an attractive force (gathering the AP), 

and the diffusion is equivalent to a repulsive force (keeping a 

minimum distance between them).  

While the AP are diffusing with velocity, the signal is diffusing 

using forward Euler since it is a simple diffusion process. In one 

time step, AP behaves as follow: adapt the core radius, produce 

the signal on the patch field, diffuse and follow the signal gradient 

(advection step).  

a – after 100 steps (D=10
-1

)       a (bis) – signal field 

   
1 – after 100 steps (D=10

-2
)       1 (bis) – signal field 

   
b – after 300 steps (D=10

-1
)         b (bis) – signal field 

   

2 – after 300 steps (D=10
-2

)        2 – (signal field) 

   
Figure 9. Simulations with a random initial condition: 2.5.10

3
 

AP, $=0.3, &=0.1, %=0.1, Ds=0.2 

The simulation shows after few steps the emergence of more or 

less stable groups. For higher AP diffusivity (Figure 9-a&b), we 

can notice less emerging groups then lower diffusivity (Figure 9-

1&2). In fact, when diffusing more rapidly they are getting far 

away emerging groups.  

The AP based model can help in this context of discrete systems 

to explore some scenarios in the simulations more easily than 

using PDE based models. The AP trajectories can also be 

followed showing how groups occur (for migration flows).  

Another thing to test is the behavior of the system if the 

perception of AP is more than a threshold in any case (even if the 

number of necessary neighbor is obtained). This should allow the 

AP to know more about a further group or another AP and create 

more rapidly stable groups (Figure 10).  

Some strategies can also be defined, as joining a closer (or 

further), an older (or younger) group (obtained by clustering or 

aggregating particles using a distance density criteria) than the 

highest attractive gradient one. 

a – after 100 steps                       b – after 300 steps 

   
c – after 475 steps                        d – after 700 steps 

   
Figure 10. Same simulations with a fixed minimum threshold 

(hmin = 0.06) 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 



4. CONCLUSION 
We presented in this paper the first conceptual steps of an AP 

method (i.e. the use of messages for symmetric contribution, the 

new quad-lattice structure for neighbors searching and the kd-tree-

domains for managing obstacles), which contribute to reduce the 

combinatory complexity that is an important issue in N-Body 

problem. We also furnished the ability to handle more complex 

behaviors with diffusion-based process, either on continuous 
systems or discrete ones.  

Rather than resolving governing law-based equations with 

classical numerical schemes, the AP method tries if possible, to 

follow natural interactions rules in the studied system
 

(the 

diffusion velocity, in our case, looks like the effect of a “natural 

pressure” from the closer neighbors trying to spread out uniformly 
in the environment).  

The method seems promising in the simulation of more and more 

complex systems. In fact, its formulation gives the opportunity to 

increment the particle skills, from basic transport processes, 

according to the needs of simulation and/or the knowledge of the 

simulation domain expert. In the animals’ aggregation for 

example, the given model helps to find the parametric values 

allowing gathering or dispersion of individuals. Others scenarios 

may after that help to easily discover others dynamics and learn 
about the social studied systems. 

This study can therefore be expanded to turbulent fluids described 

by carrying vorticity particles (Navier-Stokes velocity-vorticity 

equations) since there are following a convection diffusion 

process. However, more validation tests have to be done and 

effort made for functions approximations that remain a limitation 

for lagrangian method (especially vortex method). The AP skills 

can also assist on coherent structures detection. In other fluids 

flows, like shallow water or breaking waves, the obstacles 

perception can be applied once the integration schemes provided 
to the particles their displacement vector.  

Parallelizing the code, or building the corresponding architecture 

on GPU should help to run more significant simulation without 
using supercalculators.  

5. REFERENCES 
 

[1] Badouel D., 1990. An efficient ray-polygon intersection. 

Graphics gems, 390–393 

[2] Bandi, S., Thalmann, D., 1995. An adaptative spacial 

subdivision of the object space for fast collision detection of 

animated rigid bodies. In EUROGRAPHICS’95 Conference, 

Computer Graphics Forum, Volume 14(3), pages 259-270, 
Maastricht. 

[3] Bentley, J.L., Friedman, J.H., 1979.  Data structures for 
range searching. ACM Computing Surveys, 11(4): 398-409. 

[4] Bergdorf, M., Cottet, G.-H., Koumoutsakos, P., 2005 

Multilevel Adaptive Particle Methods for Convection-

Diffusion Equations, SIAM Multiscale Modeling and 
Simulation, 4, 328-357. 

[5] Bertelle, C., Olivier, D., Jay, V., Tranouez, P., Cardon, A., 

2000. A multi-agent system integrating vortex methods for 

fluid flow computation. In16th IMACS Congress 
Proceedings, Lausanne, Suisse. 

[6] Degond, P., Mustieles, F. J.,1990. A deterministic 

approximation of diffusion equations using particles, SIAM 
J. Sci. Stat. Comput. 11(2), 293. 

[7] Dembele, J.M., C. Cambier, 2008. Contribution to the 

modeling of complex systems described by partial 

differential equations: a 2D multi-agent model for 

convection-diffusion. InterJournal of Complex Systems, 

Article 2169. 

[8] Gesteira, M. G., Rogers, B. D., Dalrymple, R.A., Crespo, 

A.J.C., 2008. Narayanaswamy, M. User Guide for SPHysics 

Code. 

[9] Gingold, R.A. and Monaghan, J.J. 1977. Smoothed particle 

hydrodynamics: theory and application to non-spherical 
stars, Mon. Not. R. Astron. Soc. 181, 375-389. 

[10] Li, S. and Liu, W. K. 2002. Meshfree and Particle Methods 

and Their Applications. Applied Mechanics Review, vol. 55, 
pages 1-34, 2002 

[11] Meseure, P., Kheddar, A., Faure, F., 2003. Détection des 

collisions et calcul de la réponse. Action spécifique CNRS 
N° 90. 

[12] Monaghan, J. J. 1985. Particle methods for hydrodynamics. 

Comput. Phys. Rep. 3, 71–124.  

[13] Parrish, J. K., Edelstein-Keshet, 1999. Complexity, Pattern, 

and Evolutionary Trade-Offs in Animal Aggregation. 
Science. Vol. 284. no. 5411, pp. 99 – 101 

[14] Pharr, M., Fernando, R., 2004. GPU Gem 2: Programming 

Techniques for High-Performance Graphics and General-
Purpose Computation, Addison Wesley. 

[15] Reynolds,W.,2000. Interaction with Groups of Autonomous 

Characters. Game Developers Conference 2000, proceedings, 
pp 449-460 

[16] Servat, D., 2000. Modélisation de dynamiques de flux par 

agents. Application aux processus de ruissellement, 
infiltration et érosion. Thèse de Doctorat. Université Paris 6. 

[17] Slusallek, P., Shirley, P., Mark, B., Stoll, G., Wald I., 2005. 

Siggraph 2005 course 41 : Introduction to real time ray 
tracing. 

[18] Wald, I., Havran, V., 2006. On building fast kd-Trees for 

Ray Tracing, and on doing that in O(N log N). In 

Proceedings of the 2006 IEEE Symposium on Interactive 
Ray Tracing, pages 61–6

 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5658 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5658 


