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ABSTRACT

We describe a modeling framework to study the spread of malware

over realistic wireless networks. We develop (i) methods for gener-

ating synthetic, yet realistic wireless networks using activity-based

models of urban population mobility, and (ii) an interaction-based

simulation framework to study the dynamics of worm propagation

over wireless networks. We use the prototype framework to study

how Bluetooth worms spread over realistic wireless networks. This

required developing an abstract model of the Bluetooth worm and

its within-host behavior.

As an illustration of the applicability of our framework, and the

utility of activity-based models, we compare the dynamics of Blue-

tooth worm epidemics over realistic wireless networks and net-

works generated using random waypoint mobility models. We show

that realistic wireless networks exhibit very different structural prop-

erties. Importantly, these differences have significant qualitative ef-

fect on spatial as well as temporal dynamics of worm propagation.

Our results also demonstrate the importance of early detection to

control the epidemic.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: Model Development—Model-

ing methodologies; I.6.8 [Simulation and Modeling]: Types of

Simulation—Discrete event; K.6.5 [Management of Computing

and Information Systems]: Security and Protection—Invasive soft-

ware (e.g., viruses, worms, Trojan horses)
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1. INTRODUCTION
The ever increasing ubiquity of smart digital devices has ampli-

fied the opportunities for malware attacks. Cabir [9] and CommWar-

rior [14] are recent proof-of-concept worms that affected cell phones

and PDAs. Though current generation worms do not cause sig-

nificant harm, increased incidents presents an alarming trend with

potential implications in misuse of privacy and identity informa-

tion of victims and impact to the critical network infrastructure. It

is observed that once a certain technology reaches critical mass

it becomes a target for attacks, and with projected smart phone

ownership trends—20.9 million units shipped to North America

in 2007 [11]—the problem is bound to cause significant impact.

As a result, researchers have begun developing methods and tools

to understand the potential impact of malware attack on wireless

networks composed of handheld devices.

Currently, analytical models and worm simulations are used to

predict the worm spread across wireless networks. Analytical mod-

els based on earlier work in mathematical epidemiology provide a

natural way to study large systems and have a number of desir-

able features, such as, closed form expressions for important epi-

demic quantities, e.g. total number of infected devices. But these

models make a number of crucial assumptions, e.g. complete mix-

ing [18, 21], which do not hold in the real world. Detailed simu-

lations that build on well-known network simulators such as NS-

2 [1] or Qualnet [16] provide a natural alternative. These simu-

lators allow for a quick and easy implementation and evaluation

of the the worm, and have been used in a number of recent stud-

ies. Researchers can create different network topologies and ob-

serve the growth of an infection with these simulators [19, 21, 18].

Some of these studies use random networks with random mobil-

ity models. Although these studies provide significant understand-

ing of the spread, they have two important shortcomings. Firstly,

existing tools that conduct a detailed simulation of the protocols

do not scale even to small networks, let alone large ones. For ex-

ample, simulations we conducted to study the spread of Bluetooth

worms using NS2 with 500 digital devices in a given location took

2 days to complete. Further, the size of the data sets we are inter-

ested in evaluating cannot be handled by such network simulation

tools. Secondly, wireless networks formed by smart phones and

mobile devices carried by individuals have very different structural

properties than the networks formed by random waypoint (RWP)

movement models considered in the past. Together, these short-

comings imply that current tools and techniques are not adequate

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5652 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5652 



for studying the potential malware-epidemics over realistic wire-

less networks.

1.1 Summary of Results
In this paper, we present EpiNet: an end-to-end framework for

simulating the spread of malware over wireless networks. EpiNet

can be used to undertake comprehensive studies related to malware

propagation in present and future generation wireless networks.

Scalability is an important design consideration. EpiNet can be

used for both planning and response phase of a malware epidemic.

As an illustration of the utility of the framework, we simulate the

spread of Bluetooth worm over fairly large synthetic, yet realistic

networks. The case study is chosen to show how the shortcomings

of NS-2 based simulations can be overcome using EpiNet. The

synthetic network is derived using a number of innovative modeling

techniques, using detailed location and individual data in a US city.

To the best of our knowledge, this is the first time detailed activity-

based models have been used to study the spreading of malware

over wireless networks.

We show that synthetic networks generated from realistic data

exhibit features absent in, and significantly different from, net-

works generated using RWP movement models. We then compare

the spatial and temporal dynamics of worm propagation over re-

alistic networks described above and random-waypoint generated

models. The results, not surprisingly, show that the dynamics are

qualitatively different over these networks. Importantly, those dif-

ferences highlight the need for early detection for controlling a mal-

ware epidemic. Specifically, we observed that most of the infec-

tions happen during the first hour of contact with infected device,

indicating that coming in contact with the device at inception time

can have significant impact in the eventual growth of the infection.

This can also potentially impact the way these infections are iden-

tified.

Although, we study the spread of Bluetooth worms over a net-

work of devices and use the worm protocol from [19], the frame-

work can be applied to other complicated worm protocols. Since

the simulation framework uses an abstracted Bluetooth wormmodel

we are able to obtain orders of magnitude speed-up in compari-

son with a detailed simulator like NS-2. For the same setting (as

with NS-2) EpiNet achieves the results in 14 minutes without par-

allelization. With parallelization, EpiNet can be used on much

larger networks and can help evaluate entire regions in a particu-

lar city. We are working on scaling this to entire cities. Simulations

of such large scale, city wide networks help in gaining insight into

the spread characteristics, and devise intelligent schemes to prevent

a widespread digital epidemic.

1.2 Paper Outline
The outline of the paper is as follows: Related work in malware

studies is reported in Section 2. Section 3 outlines the details of

activity-based mobility model and how wireless networks are built

from this model. This section also differentiates the structural mea-

sures of the graphs seen using activity-based and the RWP models.

The simulation framework and the EpiNet simulator are discussed

in Section 4 and Section 5, respectively. Details regarding the ex-

periments, results and analysis are shared in Section 6 and the con-

clusions are provided in Section 7.

2. RELATED WORK
The study of computer worms in general and Internet worms

in particular is not new. Kephart, Chess and White of IBM con-

ducted a study of viral infections in computers using epidemiolog-

ical models in [12, 13]. Some extremely virulent Internet worms

like Code Red have been studied using port scans and computer

logs in [22]. [15] models the spread of epidemics using probabilis-

tic queues for considering non-homogeneous connectivity distribu-

tions that arise in mobile environments. Here the network is mod-

eled as multiple queues emulating the skewed connectivity levels.

Recently, an analytical model of the Bluetooth protocol has been

built in [20] and used to study the spread of Bluetooth worms. [19]

attempts to study the nature, characteristics and spreading dynam-

ics of such worms through simulations. Small scale NS-2 simula-

tions were performed on a random network and effect of several pa-

rameters on worm spreading was observed. [21] studies the effects

of different mobility models such as Random Waypoint, Random

walk, Random direction, and Random landmark on the spreading

characteristics of the Bluetooth worm. Some earlier studies have

used realistic data. On a smaller scale, [18] uses a realistic social

setting obtained from traces gathered by Bluetooth enabled mo-

bile phones to study worms. The authors in [10] build an event

driven simulator for studying malware in mobile devices that are

non proximity-based and require human intervention. Such mal-

ware, use address books of cell phones to build social networks

and spread through VoIP and MMS applications.

Although, such studies provide valuable insight into the spread-

ing characteristics and dynamics, they fail to capture the dynam-

ics of the human population using, interacting and communicat-

ing with these devices. Further, random networks lack the struc-

tural variability observed in realistic human networks. For exam-

ple, locations have specific occupancy patterns that impact device

network creation, thus, affecting the worm spread. Furthermore,

from a service provider’s policy standpoint, random networks do

not yield a clear understanding of the impact of such worms in

actual device (or social) networks. Thus, we seek to address this

problem by considering the use of mobility models based on hu-

man activity.

3. ACTIVITY-BASED MOBILITY
Similar to human epidemiology studies considering human net-

works, we study malware propagation in digital devices by con-

structing human influenced wireless networks. The Bluetooth worm,

being proximity-based, fits in well with the human epidemiology

model, where, devices in range (≈ 10 m for a Class II Bluetooth

device) are susceptible. We build human contact networks with the

Simdemics modeling framework [7, 8] originally built to study the

spread of human epidemics and use them to generate device net-

works. Simdemics uses an individual-based model and maintains

an individual’s attributes, behaviors and activities. Simdemics con-

sists of several steps as outlined below. Step 1: Create synthetic

urban population by integrating a variety of databases from com-

mercial and public sources into a common architecture for data ex-

change that preserves the confidentiality of the original data sets,

and yet produces realistic attributes and demographics for the syn-

thetic individuals. A census of our synthetic population yields re-

sults that are statistically indistinguishable from the original census

data, if they are both aggregated to the block group level [4, 17].

Step 2: Use activity-based models for creating human contact net-

works. A set of activity templates for individuals in the households

are determined, based on US census and survey data on activity

and time-use surveys [6]. These activity templates describe the

sort of activities each household member performs and the time

of day they are performed. Step 3: Assign detailed route plans

to individuals based on the locations where they perform activities

and the road network that connects these locations. Step 4: Con-

struct detailed movement patterns using a cellular automata based

micro-simulation for individuals over the transportation infrastruc-
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ture. We do not use steps 3 and 4 for this work.

Thus, essentially the above four steps generate—via a combina-

tion of simulation and data fusion techniques—demographic infor-

mation for each (synthetic) person and location, and a minute-by-

minute schedule of each person’s activities and the locations where

these activities take place. The next step is to generate wireless net-

works from this raw activity data for simulating the worm spread.

We first show how we generate the wireless network using activity

information (in Section 3.1) and then discuss the structural mea-

sures of the graphs created from this modeling and contrast them

with graphs obtained from RWP (in Section 3.2).

3.1 Building Wireless Networks
For simulating the worm spread in a device network, we con-

struct a device network from the raw activity data for each person

in the synthetic population. In this section, we describe how we

construct this network using sublocation modeling within each lo-

cation. Since wireless links are proximity based and depend on

the physical range of the wireless technology, in this paper, we

only consider such links. Since we assume Bluetooth, we use the

Bluetooth range of 10 m (Class II Bluetooth device). We also

do not model effects of noise and fading in indoor environments

which effectively decrease the information transmission rates and

link availability. We understand that Bluetooth worms can spread

through links created based on social contacts (contacts in the ad-

dress books) through the MMS and SMS applications where phys-

ical proximity is not a requirement. We consider this for a future

evaluation.

As outlined in Section 3, the synthetic population is configured

with activities during the day, involving going to work, shop, school

or others for each person in the population. We use these activi-

ties to determine the mobility patterns of devices carried by people.

The arrival times and durations at activity locations provide the set

of the people that potentially come in contact at that location. We

call such arrivals at locations for performing an activity visits. The

visits are generated externally and provided to the simulator during

simulation. The visit files contain the following information: per-

son identification number, location identification, arrival time and

duration of the activity. For the construction of wireless networks

we go through a sublocation modeling process to encode the sublo-

cation information in this visit so that the simulator can construct

the wireless network at runtime.

In this paper, we make some assumptions while generating the

wireless network: (1) We do not consider the growth of the infec-

tion during transit between activities, i.e., we ignore Step 3 and

Step 4 outlined in Section 3, but use the arrival time at a new lo-

cation after departing from the previous location. We account for

the time spent in transit by modeling activities in special locations

where the person (or device) is isolated, with no interactions with

other devices. (2) We round arrival and departure time instances

to 5 minutes (300 s). Though this alters the arrival and departure

times of the activity data, it does not cause a significant variation in

the overall activity statistics, but can offer some speedup. (3) We

are not considering mobility of devices within locations at this time.

The activity-based mobility provides a set of devices in a location

and the times when the devices arrive and depart. For constructing

a wireless network from this input, we model sublocations for con-

structing a coarse grained network and then tune it according to the

type of device during simulation to obtain the actual fine grained

network, used to propagate the infection.

3.1.1 Modeling Sublocations

We define Sublocations as an area within a location where de-
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Figure 1: Device network created through sublocation modeling.

Solid (green) lines indicate devices in range and dashed (red) lines

indicate out of range devices.

vices interact. We use sublocation modeling to build a device con-

tact network within a location. Unlike social contacts of people

where physical proximity has no bearing, device network is formed

by devices in range. Sublocation modeling only creates a coarse

grained device network, i.e., all devices belonging to a subloca-

tion are connected to each other, irrespective of the actual physical

distance. Some of these devices may be out of range when con-

sidering a particular communication protocol. For instance, Blue-

tooth devices have a range of 10 m, where as IEEE 802.11 devices

may have a range of 500 m. At runtime, the simulator obtains a

fine grained device network based on distance. We want to isolate

the technology specific aspects from the sublocation modeling and

consider them at simulation time. For example, one can also model

other signal propagation effects or link availability at runtime. The

sublocation modeling is performed outside the simulator as it al-

lows flexibility to use different models for creating sublocations.

The results of the sublocation allocation is encoded into the visit

information of each person. The special locations are also encoded

in the visit file with a single sublocation.

The sublocation modeling follows these steps: Step 1: Assign a

size to a location. Using the building occupancy, we assign an area

to each location. Since we do not have data for this, we are making

up sizes on our own. In the experiments we vary this size to deter-

mine its effect on the spread. Step 2: Assign random positions to

the devices and determine sublocations. We assume a certain block

size corresponding to the wireless range of the devices. Using this

block size, we divide the location into grids of equal size. With

the position for each device, we determine the sublocation assign-

ment for that device. Step 3: Form wireless networks based on

sublocation modeling. Since wireless networks are formed based

on distance, devices belonging to neighboring sublocations may be

in range. So, we model logical sublocaitons to include devices

belonging to neighboring grids. This sublocation assignment is

a coarse grained network and can include devices that are not in

range. A fine grained network where links are established based on

distance is created at runtime by EpiNet.

Figure 1 shows a location with some blocks (squares with dashed

lines) and devices (circles with letters) distributed among the blocks.

The solid (green) line indicates the existence of a link based on dis-

tance and the dashed (red) line indicates the devices in the logical

sublocation but, out of range. ‘Sublocation 5’ marked in the Figure

1 indicates the sublocation for block 5 and includes all the neigh-

boring blocks (1, 2, 3, 4, 6, 7, 8 and 9) and the devices present in

each of the blocks (d, a, b, e and f ). Of these devices a network is
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Figure 2: Graph Characteristics obtained from activity-based mobility models. (a): Arrival and departure rates of people (and devices) at

a location induced by activity-based mobility models from 8 AM to 12 Noon at every 300 seconds; (b): Comparison of degree distribution

between activity-based (top) and RWP models (bottom) at different time snap shots during the 8 hour duration of simulation; (c): Clustering

co-efficient distributions for activity-based (top) and RWP (bottom).

formed only between devices a, c and d. The Sublocation 7 consists
of devices b and c with no links being formed. Similarly, Subloca-

tion 2 consisting of devices a, c, d and f forms a link between a
and c. Figure 1 shows the devices belonging to the Sublocations 2

and 7 and the device network being formed at these sublocations.

In this section, we have looked at the procedure for creating wire-

less networks using the proposed sublocation modeling. Next, we

need to analyze the structure of these networks and compare them

with the structures created when RWP model is used for mobility.

3.2 Graph Characteristics
In this section, we will differentiate the graph structure of the

activity-based information and the RWP model used in most wire-

less network studies. Figure 2 shows the graph metrics derived

from the activity-based mobility models we use for the experiments

and some differences between RWP model. Figure 2a shows the

arrival and departure rates for a 4 hour duration from 8 AM to 12

Noon, at a location when activity-based mobility model is used.

We plot the number of new arrivals and departures in steps of 300
s (we consider arrivals and departures at 300 s intervals). Note that
the arrival and departure rate vary in a manner that is not easily cap-

tured by simple stochastic processes, e.g., Poisson, making simula-

tions necessary for understanding their effect. The RWP mobility

model uses number of nodes, area of the location, minimum and

maximum speeds and pause times for generating mobility. Since

activity-based models do not provide a fixed number of devices in

a location, we use the average device occupancy in a location as the

total devices in the RWP model, i.e. the number of nodes in RWP

is the average occupancy value. So, we use RWP model to gener-

ate the mobility information for 28800 s (8 hours), with 0.5 m/s
and 1.5 m/s as minimum and maximum speeds and a pause time

of 300 s. We take snapshots of the graph every hour and compute

the graph metrics on them. The resulting degree distributions and

clustering coefficient distributions are shown in Figures 2b and 2c,

respectively. Note that the x-axis in Figure 2b is different for each

sub-plot. We see that for RWP nodes have highly varied degrees

and also has nodes with degree greater than 7 (the maximum de-

gree in case of activity-based models). It is well known that RWP

exhibits the property of high device density at the center of an area.

This higher degree is due to the clustering of the nodes at the center

(shown in Figure 6).

4. THE SIMULATION FRAMEWORK
Our aim in this work is to present a framework for performing

simulations containing millions of devices interacting in realistic

scenarios, to predict the spread of digital malware. In this paper, we

concentrate on Bluetooth worms that have recently affected smart

devices and use the worm protocol description in [19]. The same

techniques can be extended to other worm protocols by modeling

them appropriately and plugging the model into our framework.

Our approach requires the following: (1) a means for generating

and using realistic mobility patterns for people and/or devices, and,

(2) a high level model of the worm protocol. The mobility model

provides the environment in which the people interact and the de-

vices come in contact with other devices. We generate the mobility

information using activity-based models and conduct the simula-

tion of wireless epidemics on this network. Modeling the worm

abstractly improves scalability allowing us to study the system in

its entirety and observe the effect of various system level policies.

A set of initially infected nodes is assumed to start the infection

during simulation. At the end of the simulation we observe the

spread of the worm. Figure 3 shows the framework pictorially. We

provide details of the various aspects in detail in further sections.

4.1 Modeling the Bluetooth Worm
In this section we describe the design of the Bluetooth worm

model. We follow a top down approach: Firstly, we discuss the

worm protocol, i.e., the stages of an infected device during each in-

fection cycle. Secondly, we describe the design of the model based

on this protocol. Lastly, we discuss the calibration of the model

based on actual small scale simulation studies and then compare

results from packet level simulations and the model based simula-

tion studies. Table 1 defines some terms used in the worm protocol

description.

4.1.1 Worm Protocol

We briefly describe the worm protocol in [19] for completeness.

The Bluetooth worm follows four distinct steps during the infection

cycle — inquiry phase, page phase, infection phase and idle phase.

During the inquiry phase, the infected device obtains information

regarding the neighborhood. The inquiring (infected) device sends

inquiry requests and waits for responses from other devices. The

device continues to perform this till it receives N to
inq responses or the

request times out in T to
inq. The infected device maintains a neighbor
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Figure 3: The EpiNet Simulation Framework
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Terms Definition

N to
inq Maximum inquiry responses expected by the inquiring de-

vice during an inquiry process

Ninq Number of inquiry responses actually received by the in-

quiring device

T to
inq Inquiry timeout value (inquiring node receives 0 or Ninq

responses at the end of T to
inq)

Tinq Total time taken during for an inquiry process

T n
inq inquiry time for the nth inquiry request

Tinf Time taken for the infection

Tidle Idle time between infection cycles

Table 1: Bluetooth Protocol and Worm Parameters

list consisting of nodes that responded to the inquiry. Only devices

that are discoverable respond to this message. After Tinq (≤ T to
inq)

seconds, the infected device enters the infection phase, where it

processes Ninq neighbors, one at a time. This phase involves send-

ing a page request to each neighboring device and on obtaining a

page response, sending a message that verifies the condition of this

neighbor. The condition of the neighbor can be either susceptible,

not susceptible or infected. The infected node then sends the worm

packet and payload to a susceptible device. If the neighboring de-

vice is not susceptible or already infected, then this packet is sent.

These steps are repeated for each device in the neighbor list. The

entire process, starting with the inquiry, is repreated after idling for

Tidle.

Our modeling approach incorporates this worm protocol as a

probabilistic timed transition system (PTTS) called the worm man-

ifestation. The manifestation represents the various stages of the

worm protocol executed by an infected device. The timing of the

transitions and the probability of being in particular states of the

manifestation is obtained from simulation studies. In these charac-

terization experiments, we conduct exact simulation using packet

accurate small scale worm simulation with tools like NS-2 [1]. In

Section 4.1.2 we describe the PTTS model for the Bluetooth worm.

Further, in Section 6.1 we provide information regarding the vali-

dation of the model and compate it to actual simulation results.

4.1.2 Worm Model

The worm model is built to abstract the details of the Blue-

tooth protocol. Figure 4 shows the worm modeled as a PTTS.

Though [20] models the Bluetooth protocol analytically, several

modeling assumptions regarding homogeneous distribution of de-

vices and steady state conditions are not realistic for networks we

study in the paper, and relaxing these assumptions make modeling

them intractible. Thus, we take the simulation approach for study-

ing malware propagation.

Here we ontline the worm model in detail. Initially, all nodes

are susceptible and remain susceptible until they become infected

through the simulation. When conducting the simulation study, we

consider some nodes as infected initially and force this transition

on these nodes. Once a node becomes infected, the node incubates

for a certain time denoted by Tinf. This is the time taken to actually

pass the infection to a new node and is lumped in the incubating

state. This time is obtained from the Tinf histogram. When incubat-

ing the node cannot infect any other susceptible nodes i.e., the node

is not infectious. Once the worm is infected, it begins executing

the worm protocol. The protocol begins with an idle state where it

waits for a certain idle time, Tidle, without spreading the infection.

Tidle is a worm specific parameter that can change based on the

worm characteristics and indicates the time between two infection

cycles. After this the worm starts the infection cycle by becoming

infected. In the model, the infected device does not spend any time

in the infected state and moves either to timeout with probability p
or to inquiry with probability (1 − p), where p is the probability

that the node’s inquiry terminates without receiving any response.

This incorporates the conditions when the inquiry terminates with

no responses or obtains at least one response. The probability p
is obtained from the Tinq histogram. Once in the timeout state the

worm spends T timeout
inq time and returns back to the infected state.

Since there are no neighbors discovered, the node has to perform

another inquiry after Tidle time. If the node picks the inquiry state,

after a Tinq time it shifts into the infectious state when the infectious

cycle begins. The time spent in these set of states depends a lot on

the Bluetooth protocol and its functioning. Therefore, the proba-

bility pt of choosing a certain cycle time t : t ∈ (1, n) is deduced
from the Tinf histogram. This is represented in the disease model

as bt branches with t states in each branch. In each state bi

t where

i ∈ (1, t), the probability of infecting at time i, pi

inf is derived from

the Tinf histogram. After the last state in branch bt the node moves

back into the idle state and the next infection cycle continues while

the node remains infected or the simulation is complete. Here, we

make an important assumption: we assume that the probability of

infecting a susceptible node at time t1, p
t1

inf is independent of pt2

inf at

the next instant t2. From our validation results in Section 6.1, we

find that this seems to work very well.
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5. THE EPINET SIMULATOR
We have designed and implemented EpiNet, a simulator for wire-

less epidemics studies. EpiNet is based on the human epidemic

simulator EpiSimdemics [3] with modifications to account for worm

time scales and formation of wireless networks. In this section,

we provide an overview of EpiNet simulator. EpiNet is a parallel

distributed discrete event simulator that models arrive and depart

events at the level of sublocations. When a device arrives at a loca-

tion l, based on the sublocation s allocated, the simulator generates

arrive and depart events at t and (t+∆t) respectively. The devices
also carry with them the disease model and each device’s health

state is updated through disease update events. The activity sched-

ule determines the time of arrival and departures at different loca-

tions and sublocations. All events are sorted according to a global

clock, ensuring that all the devices are added into the sublocation

(processing arrive events) before the infections are computed. The

infection is computed using infection probability p of the infected

device’s current disease state and a fine grained list of suscepti-

ble neighbors. The devices are removed from the sublocation (and

location) when the depart events are executed. These events are

repeated for every (∆t).

5.1 EpiNet Implementation
EpiNet has three computational components: devices, locations

and message brokers. Suppose we have N processing elements (or

PEs). The parallelizing strategy of EpiNet is: (1) partition devices

and locations into N groups, (2) for each PE implement a person

and location manager, PM and LM respectively, and (3) duplicate

message brokers into N groups. To optimize the computation and

communication effort during the simulation we perform load bal-

ancing on the number of devices on each PE by preprocessing the

visits.

Algorithm 1: The EpiNet Algorithm

for t← 0; t < T ; t← (t + ∆t) do
foreach i ∈ Pi do

//send visits to location PEs

computeVisits(i, t to t + ∆t);1

sendVisits(MBi);2

//process visit messages

Visits←MBi.RetrieveMessages();

synchronize();

foreach location lj ∈ Lj do

//create events and process them

makeEvents(Visits);3

computeInfection();4

sendOutcomes(MBi);5

MBi.RetrieveMessages();

synchronize();

//update health state

foreach i ∈ Pi do

updateState();6

Algorithm 1 shows EpiNet’s implementation. The following steps

are repeated every ∆t until the end of the simulation. The visit

files are processed and visits from t to ∆t for a device are com-

puted (Line 1) and communicated to the locations PEs (Line 2).

Before the further steps are taken, we have to synchronize the PEs

so that they have all the arrival information. At each location PE,

the message broker receives the visits and creates events for arrival

and departure of devices at sublocations inside the location (Line

3). The disease state events are also generated in this step based

on the traversal of the disease model. The events are ordered and

processed to compute the infections at each sublocation (Line 4).

The outcome of this procedure is a set of new infections. These

infections are communicated to the respective device PEs (Line 5)

and updated (Line 6) so that when they move to other locations the

latest disease state is carried along with them.

5.2 Optimizations
We perform several optimizations of the basic EpiNet imple-

mentation to make use of the assumptions we have made. Since

we round the arrivals and departures to 5 minutes (300 s), i.e., no
new arrivals or departures happen with that duration, we can safely

perform updates of the location PEs once every 5 minutes. This

reduces communication overhead involved in updating the PEs.

Since sublocation occupants do not change for this duration, we

can use the same events until a change occurs and new devices are

received. When the simulator propagates the infection, it computes

distance between nodes in the same sublocation. We cache these

distances to avoid re-calculating it every ∆t. All disease state re-

lated events are local to the location PE where the person (device)

is performing an activity. So, an update of the disease state is per-

formed on the person PE when a device gets infected and and

updated at every ∆t. Since special locations do not propagate the

infection, we neglect events for them.

6. EXPERIMENTS AND RESULTS
In this section, we describe the experiments we conducted us-

ing the EpiNet simulation framework and illustrate the use of the

simulator. Firstly, before using the Bluetooth worm model for the

study, we validate the model and evaluate its accuracy in Section

6.1. Here we compare the results from the model with detailed sim-

ulation studies on a small-scale network and use a single location

to evaluate the model. Once validated, we make comparisons with

RWP mobility models in Section 6.2 where the difference in out-

comes of the infection spread is studied. This shows why we need

to use activity-based mobility models. Next, we plug in the worm

model into the EpiNet framework and run the simulation studies

on large scale networks with more people and locations. We out-

line the experimental design, experiments we conducted and their

results and analysis in Section 6.3.

6.1 WormModel Validation
We validate the worm model discussed in Section 4.1.2 by com-

paring the results with detailed packet level simulation using NS-2.

For this comparison, we first calibrate the model from an exact sim-

ulation with specific parameters—inquiry time and infection time

distributions and inquiry timeout. We use the calibrated model for

validation. We implemented a Bluetooth worm model in NS-2 us-

ing the UCBT’s Bluetooth [2] implementation. Since packet level

protocol simulations are not scalable, we consider scenarios with

100–400 devices in a single location, with activities over a 4 hour

period during the day. Note that we use our activity-based mobility

model in NS-2 for the calibration and validation experiments. A

worm packet size of 20, 000 bytes and probe packet of 27 bytes

were used for the simulation studies as in [20].

For all our experiments in this paper, we make the following as-

sumptions with respect to the Bluetooth devices: (1) all devices are

discoverable, i.e., they respond to inquiry requests of others, (2) all

devices are connectable, i.e., any device can establish a connection

with any other device, and (3) all devices are similar and no device

heterogeneity is considered. All the assumptions can be relaxed and

we can easily make some devices not discoverable or connectable

or introduce device heterogeneity and conduct the study. All these

can be evaluated with the EpiNet framework without major modi-

fications. We will study these aspects in future.
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Figure 5: Infection CDF comparison with model and actual simulation studies. (a): Wemodel the worm’s infectious state with the probability

of infection determined with the histogram H2

inf with x bins of interval size 1 s in location Work2; (b): We alter the histogram H4

inf with
x

2
bins of interval size 2 s in location Work4; (c): Using H2

inf, H3

inf and H4

inf for Bluetooth model in location Work4 compared with exact

simulation.

Comparison Experiments: Figure 5a shows the comparison be-

tween the exact simulation and the Bluetooth worm model for a

location. We can see that the simulation using the Bluetooth model

tracks the infection CDF for the packet level simulation. The time

taken for the NS-2 simulations for this setting was 48 hours (2 days)

and for the simulation using the worm model with EpiNet, it was

10 minutes. There is a huge advantage in using the high level simu-

lation in terms of time and the accuracy is very good in comparison

with the detailed simulation. For this comparison, we have charac-

terized the models using the Tinf histogram for location l (H l

inf) with

1 s as the width of each interval (for example, any Tinf between 0
and 1.0 s is counted in bin 1, and so on).

Activity−based Mobility

RWP Mobility
 

 

0.01

0.02

0.03

0.04

0.05

9 AM 10 AM 11 AM

Figure 6: Density distribution snapshots at a location of activity-

based mobility model (top) and RWP (bottom).

We also wanted to evaluate the effect of changing some of the

histograms on the model and results. First, we wanted to observe

how the model performs if the number of sub-states are reduced

in the worm model’s infectious state. For this we construct H l

inf

with the interval doubled from 1.0 to 2.0 s (for example, while

adding Tinf to the bins, we add any Tinf value between 0 and 2.0
s into the first bin, and so on). This effectively halves the number

of sub-states. We observed how the infection propagates with a

change in the model parameters. From Figure 5b, we can see that

the model tracks the actual simulation and makes more discrete

steps but, follows the trend of the actual results. Second, since

we want to evaluate multiple locations simultaneously, we want

to use one set of characterizations for all locations. We evaluate

whether characterization in one location can be applied to another.

So, we compute H2

inf, H
3

inf and H4

inf using simulations of respective

locations 2, 3 and 4. We then use H2

inf and H3

inf in location 4 and

compare the results with the exact and the model with H4

inf. Figure

5c shows the comparison between them. We can see that there is

not much difference between the results from actual simulation and

the model.

6.2 Comparison with RWP
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Figure 7: Difference in infection growth between activity-based

and RWP models.

In this section, we compare RWP mobility models with activity-

based models. We make this comparison for smaller settings and

perform exact simulation using NS-2. Making comparisons be-

tween activity-based and RWP models is not straight-forward as

they depend on diverse parameters. Activity models are governed

by arrivals and departures from the location making instantaneous

occupancy vary with time, while RWP uses a constant number of

devices for the entire duration. In addiion, RWP uses minimum

and maximum speeds and maximum pause time for device mobil-

ity. So, we consider a single location and use the average instanta-

neous occupancy from 8 AM to 9 AM (109 devices) as the number

of nodes. The instantaneous occupancy of the location in the ac-

tivity model ranges from 91–147 and devices arrive (or depart) at

300 s intervals and the total occupancy of the location is 572. We

consider the same area for both the cases. For RWP, we consider

mobility with 0.5 m and 1.5 m as minimum and maximum speeds,

respectively, and evaluate two cases with 300 s and 600 s pause
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Figure 8: Results of Experiment I: (a): Infection growth with varying initial infection size. (b): Infection growth when density is doubled.

(c): New infections occurring over the previous hour.

times. Here we are interested in comparing how the models differ

when these parameters are configured. Figure 6 shows the den-

sity (devices/unit area) comparison at the location between activity

model (top) and RWP (bottom) at different times of the day. Note

that the actual number of devices in the activity models depend on

activities and this number increases (or decreases) when people en-

ter (or leave) the location. However, RWP model generates uneven

device densities with higher center densities [5].

We simulate the scenario for an hour and observe the number of

nodes that are infected by 9 AM. In case of the activity models, we

randomly select 1%, 5% and 10% of the location’s total occupancy

as the initial infection size, and consider a single randomly infected

device for RWP. Since there is no direct relationship between de-

vices in RWP and activity models, we cannot select the same de-

vice to be infected in both cases. We use NS-2 to simulate the RWP

model and EpiNet to simulate the activity-based model. We com-

pare the number of devices infected at the end of the hour. Figure 7

shows the infection growth (averaged over 5 seeds) comparison be-

tween Epinet (EpiNet 1%, EpiNet 5% and EpiNet 10%) and RWP

models (RWP-300s and RWP-600s). For the RWP model, the in-

fections surge initially and infect almost all of the devices present

in the location within the first hour. This can be attributed to the

higher degree of the RWP network as seen in Figure 2b (in page ).

However, the initial surge of infections quickly saturates for activ-

ity models. Note, that the initial infection size is different in both

cases. This effect of varying infection growth is mainly due to the

activities of people in the location. For example, a person carrying

an infected device may leave the location without interacting with

a lot of people or devices due to a wide variation in density of the

devices. Random models as shown in Figure 7 can predict a very

high level of growth of the infection when, in reality the growth

saturates.

In activity-based models, we can also consider the influence of

special activities (for example, football games, public transport sys-

tem, classrooms, etc.) where density of devices vary across loca-

tions and also influence the growth differently. Growth of a mal-

ware can be observed and studied both in temporal and spacial

terms when realistic mobility is considered.

6.3 Experiment Setup and Design
What are the parameters that impact the spread of the worm?

How does the worm’s idle time impact the spreading speed? Does

the time of initial infection affect the spread? Does the number of

initial infections matter to the spread? How do these parameters in-

1. Number of initial infections: 1%, 5%, 10%

2. Idle time (Tidle): 20 s, 10 s

3. Inception time of worm: 8 AM, 10 AM

4. Location density: We varied the density of locations from x to 2x

5. Simulator used: EpiNet framework

6. Simulation runs: 5 runs for any combination of input parameters

7. Simulation duration: 8 hours from 8 AM to 4 PM

8. Social network: Simdemics framework was used to generate the demo-

graphic and activities. We consider only locations in 60602 zipcode in

Chicago downtown area and neglect activities with duration less than

300 s

9. Population and location size: 20000 devices and 30000 locations

10. Computing resources: 4 CPUs of 1GHz Pentium III Linux cluster with

1 GB RAM

11. Average runtime: 45 hours

Figure 9: Experimental setting and parameters studied

teract? These are some of the questions we are going to answer by

a factorial experiment design using the simulation framework. The

parameters we are studying can be divided into worm parameters

(Tidle), network parameters (location density) and system parame-

ters (number of initial infections and inception time of the worm).

All these parameters, individually or collectively impact the spread

and we intend to bring these effects out from the simulation ex-

periments. For example, lower idle times between infection cycles

can increase the rate of spread locally provided the device density

in that location is high. The idle time can cause significant spatial

effect if the infected devices were to be mobile, thus triggering in-

fections at different locations. Figure 9 shows the parameters varied

in the experiments.

We select a region in Chicago downtown corresponding to the

zipcode 60602 and select the locations in this area (≈ 30000 loca-

tions). We select a population size of ≈ 20000 people and extract

their activities for an 8 hour duration, from 8 AM to 4 PM, at these

locations. The people in the ages in the range of 20–50 were se-

lected to carry digital devices. We assume that device penetration

is 100% and each device is identical and all the devices are sus-

ceptible. The arrival and departure times of the people’s activities

were rounded to 5 minutes. We encode the worm model in a dis-

ease manifestation file and provide it as input to the EpiNet. The

activity information is provided to the sublocation modeling pro-
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Figure 10: Results of Experiment II: (a): Infection growth with varying infection seed time (10 AM). (b): Infection growth with double the

density than with (a). Here we halved the total area of each location. (c): Plots the number of new infections occurring over the previous

hour. It is the difference between the infection at the beginning of the next hour and the current time.

gram to look at the activities and perform sublocation allocation

and load balancing on the number of devices in each PE. This

information is encoded into visit files. The experiments takes ≈ 2

days to complete (45 hours) for 8 hours of simulation time. Each

experiment was conducted for 5 seed values. Sections below out-

line the different experiments, the parameters studied, results and

their analysis.

6.3.1 Experiment I: Varying Initial Infection Size

In these experiments, we increase the number of the initially in-

fected devices from 1% to 10%. We conduct these experiments

with infection starting at 8 AM. We also vary the location sizes

(from x) to double the device densities (to 2x) and observe the

spread patterns. We expect the number of infections to be higher

and the speed to increase for higher initial infection size. When the

density is doubled, this increase is exaggerated further.

Results: Figure 8a shows the difference between the infection gro-

wth with change in initial infection size (averaged for the 5 seeds).

From this, we can see that the rate of infection is highest for 10%

initial infection. In fact, within the first few minutes of the outbreak

the rate of new infections is the highest. In all cases, 10% of the

new infections happen during the first hour of the outbreak. After

this, the infection rate falls and almost remains constant. Figure

8b shows the change in infection rate as density is doubled at each

location considered. Here we observe increased rates of new infec-

tions, 5× larger, within the first hour of infection. Figure 8c shows

the change in rate with respect to the time of day (averaged for 5

seeds). We can see that the rate change is highest for the case with

10% initial infection size. We can also observe that there are slight

increases as the day progresses, reducing to the lowest at 12 Noon

and again increasing towards mid afternoon and dropping at around

4 PM. These changes can be attributed to the movement of people

in and out of a location and change in the topology as a result of it.

Overall, the infection seems to spread to almost all the new arrivals

and then saturates (as there are no susceptible devices), until the

next wave of arrivals and infections.

6.3.2 Experiment II: Varying the worm seed time

Here, we consider 8 AM and 10 AM as the seed time of the

worm and observe the effect on the growth of the infection. For ex-

ample, in work locations people arrive at the location around 8 AM

with the number slightly growing till about midmorning, remain-

ing constant for about sometime till around noon and then starts

decreasing towards noon. Other location types such as restaurants

have a different pattern with the number of people in such loca-

tions increasing at times when people have lunch or dinner. Thus,

the seed time, based on the type of location and arrival patterns, can

have significant impact. This cannot be observed in other random

mobility models and also present an realistic estimate of the infec-

tion size. Here, we wanted to verify if we can say something with

change in seed time. Does the seed time impact the growth of the

worm? We consider seed time of 10 AM and observe the growth

rate of the infection.

Figure 10a shows the infection CDF. We can see that the infec-

tion starting at 10 AM has a negative impact on the growth in com-

parison with the seed at 8 AM (Figure 8a). The final infection size

at 4 PM for the seed time of 10 AM is 12% of total devices (a 20%
increase), while for a seed at 8 AM it is 20% (an increase of 100%).

This clearly shows that the seed time of the infection in a realistic

scenario can greatly impact the growth of infection in the devices.
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Figure 11: Results of Experiment III: Comparison of effect of re-

ducing idle time from 20 s to 10 s on the growth of the infection.

6.3.3 Experiment III: Varying the worm idle time

In this set of experiments, we change the worm’s idle time from

20 s to 10 s and observe the growth of the infection. Idle time of

the worm is the time spent by the worm in-between infection cycles

during which the infected device does not spread the infection. We

intend to determine if this is a factor in the growth of the infection.

Figure 11 shows the effect of reducing the idle time from 20 s
to 10 s for both the location density values. From this, it appears
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that the idle time has very slight impact on the actual growth, in

the cases we have considered. When location density is doubled,

the idle time results in 16 more infections than with the idle time

of 20 s This shows that the idle time of the worm does not make

a real impact on the overall number of infections. It will speed up

local infections slightly, not enough to impact in the larger setting.

This is because, in the setting we have evaluated, unlike in random

mobility models, the neighbor set does not change significantly.

It can happen that all neighboring nodes are already infected and

does not change the total number of infections. To evaluate idle

time’s effect, we may have to create special activity scenarios that

cause extremely high device densities—movie theaters or football

games—so that every inquiry process retuns new susceptible neigh-

bors.

7. CONCLUSION AND FUTUREWORK
We presented a EpiNet: new parallel simulation framework for

simulating spread of malware over realistic wireless networks. Ad-

ditional details of the simulation framework and methods for gen-

erating realistic wireless networks are omitted due to lack of space.

We demonstrate how the simulator can be configured with the ac-

tivity based mobility information and a disease model (or manifes-

tation) in the form of a probabilistic timed transition system. We

have validated and calibrated the model with a detailed small scale

simulation and is found to obtain the same results. We have used

the framework and conducted simulation involving 20, 000 nodes

distributed across a certain region in downtown Chicago.

The following broad conclusions are obtained: (1) The initial

size of the infection impacts in the growth, the higher the initial

infection size, the faster is the growth of infection. (2) The seed

time of the infection also makes a difference. Since we are looking

at activity-based models for user mobility and presence at partic-

ular locations, the seed time does impact the spread and the gro-

wth of infection. Earlier seed times (for example, 8 AM) cause

significantly more impact than the other seed time (10 AM) that

we considered. Though this cannot be generalized, it does emerge

that seed time is important to evaluate the potential growth of any

malware after an outbreak. (3) Nothing conclusive can be claimed

regarding the alteration of the idle times, and, in the set of exper-

iments we conducted, we do not find a significant impact on the

growth of the infection. In the setting of a large area and number

of devices considered, it does not seem to make a significant im-

pact to alter the growth. Larger idle times or smaller idle times do

not make sense in terms of the Bluetooth worm setting as it will

significantly slow down or cause higher power consumption on the

infected device, respectively.

We are currently working on (i) mechanisms for tracking and

detecting such worms, (ii) developing intervention strategies in the

event of an epidemic onset, and (iii) scaling the simulation so as to

be able to scale cities with 1 Million+ individuals.
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