Area and Power Consumption Estimations at System Level
with SystemQ 2.0

Soéren Sonntag
Infineon Technologies
Intellectual Property Reuse
Munich, Germany
soeren.sonntag@infineon.com

ABSTRACT

Systems-on-Chip (SoC) integrate a complete electronic sys-
tem in a single integrated circuit. SoCs typically comprise
processors, hardware accelerators, memories, and on-chip in-
terconnects. These increasingly complex systems must fulfill
many requirements, such as high data throughput, low la-
tency, small area, as well as low power consumption and
dissipation.

In this paper we show how to evaluate an SoC at Elec-
tronic System Level (ESL). We use our performance evalu-
ation framework System(Q 2.0 not only to analyze common
performance metrics, e. g. throughput, latency, and resource
utilization, but also to perform area and power estimations
at system level. The foundation of our estimations is a
large amount of data from synthesized and physically im-
plemented hardware components. From that we build a set
of formulas to be integrated into SystemQ.

In a case study we show the area and power consump-
tion estimations of a complex SoC interconnect. We re-
veal how the area and power data are gathered and inte-
grated into SystemQ. Based on real test cases we compare
the transistor-level data with the system-level results from
SystemQ. It will be shown that the error for the area esti-
mations is up to 6.3 % for single components. The complete
system is tested with two standard-cell libraries, whereas the
error is 17.0% and 28.1 %, respectively. The power estima-
tion error is 11.5 % at component level.

Categoriesand Subject Descriptors

B.8.2 [Integrated Circuits]: Design Aids— Placement and
routing, Simulation; 1.6.4 [Simulation and Modeling]:
Model Validation and Analysis

General Terms

Design, Algorithms, Performance

Permis#on to make digital or hard copiesof all or part of this work for
pernal or classoom use is grantedwithout fee providedthat copiesare
not madeor distributedfor profit or commercialadvantage andhat copies
bearthis notice andhefull citation onthefirst page.To copy otherwig, to
republis, to pog onserversor to redidributeto lists, requiresprior specific
permis$on and/orafee.

S MUTools 2009March 2-6, Romeltaly

Copyright2009I1CST 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

Wenjian Wang
Infineon Technologies
Intellectual Property Reuse
Munich, Germany
wenjian.wang@infineon.com

Keywords

Area and Power Estimation, Synthesis, Electronic System
Level, Modeling, SystemQ

1. INTRODUCTION

System-on-Chip (SoC) has become a common design tech-
nique in the integrated circuits industry. SoC offers many
advantages in terms of cost and performance efficiency. SoCs
are increasingly complex systems that are highly integrated
comprising processors, hardware accelerators, memories, and
on-chip interconnects. Several performance requirements
must be fulfilled. In addition, tight area and power con-
sumption constraints have to be met.

Area is an important factor which directly affects the cost
of a chip. Especially for large volumes, constant develop-
ment expenses become negligible compared to the manufac-
turing costs. The smaller the die size the more dies can be
placed on a single wafer which in turn lowers the cost per
die. Smaller dies also increase the yield (percentage of good
dies) and reduce packaging costs.

As the circuit speed and integration density continue to
rise, power consumption becomes another critical topic in
SoC design. Especially for portable devices, lower power
consumption means higher energy efficiency, longer battery
life, and fewer cooling requirements. The self-heating of IC
devices can also lead to malfunctions and therefore requires
prevention through additional cooling efforts, such as power-
consuming fans and weight-adding heat sinks. Lower power
consumption has also become very desirable from an envi-
ronmental point of view.

The power consumption of a circuit is also dependent on
the amount of activity performed by the device. This makes
predicting the power even more complicated and an even
greater challenge for design development, compared to area
estimations.

In the typical design process of SoCs, the description of
circuit behavior starts from the system level and goes through
lower abstraction levels with the assistance of Electronic De-
sign Automation (EDA) tools. The higher the abstraction
level, the more difficult it is to estimate the area and power
consumption of a system accurately.

With the rapid increase of design complexity in SoCs, a
sound estimation of area and power consumption at the very
beginning phase of SoC design is helpful and important to
properly plan the whole design, to avoid unnecessary itera-
tions, and further to reduce the cost. The later a problem
is found the more effort is required to correct it.

There have been many attempts on area and power con-

sumption modeling at different abstraction levels, such as
wiring space estimation as well as register-transfer level area
and power estimation (cf. Section 5). These models are use-
ful for estimating the area and power of specific circuit struc-
tures, or they can be adopted by EDA tools to predict the
area and power of a complete system. However, attempts to
model the area and power directly at electronic system level
are still rare.

In this paper we show how to integrate area and power
consumption estimations in our Electronic System Level
(ESL) performance evaluation framework SystemQ [9]. Our
recently released version 2.0 allows the designer to early es-
timate area and power consumption at system level in con-
junction with performance evaluation. Interdependencies
between area and throughput or latency and power con-
sumption can be easily examined even in the concept phase
of the design process. Although we target at a low error for
the estimations with respect to the physical implementation
arough estimation that reflects the parameter changes of the
design is a major improvement for system engineers’ work
today.

Typically, the focus of related work is on regular structures
like memories or non-configurable components like a simple
processor. However, in our case study we present area and
power consumption estimations for a complex multiproces-
sor SoC crossbar interconnect which is highly configurable
regarding the number of master and slave interfaces as well
as the various performance metrics.

The rest of this paper is organized as follows. In the next
section we briefly introduce our ESL performance evaluation
framework System() while focusing on the new features of
the recently released version 2.0, namely area and power
consumption estimations at system level. A case study of
evaluating a multiprocessor SoC interconnect system using
our approach is shown in Section 3. The results are discussed
in Section 4. Related work is illustrated in Section 5. We
conclude our paper in Section 6.

2. SYSTEMQ 20

System(is an Electronic System Level platform architec-
ture evaluation framework [9]. It is based on queuing theory
and implemented in SystemC [7]. SystemQ is targeted at
modeling and evaluation of systems in data-flow oriented
domains, such as network processing and System-on-Chip
interconnect systems. Our modeling approach allows us to
express scheduling decisions and workload dependent behav-
ior since this is made explicit by the queuing model seman-
tics.

2.1 Overview

Queuing theory has been used in operations research for
more than 50 years. Its main focus is on stochastic analy-
sis of system behavior. Queuing systems basically consist of
queues and servers. A queue is a waiting room where re-
quests are stored until a server becomes available to process
one of the requests. The processing takes a specific amount
of time after which the request leaves the queuing system.
By analyzing queuing systems, several conclusions can be
drawn, including the residence time of requests in the sys-
tem, the average queue length, and the server utilization.

Queues store requests according to their queuing disci-
pline, e. g. First Come First Served (FCFS), Processor Shar-
ing (PS), and fixed priority. Thus, queues are used for ex-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

Queue Server

— |1l

(O—
(O—

Figure 1: Simple queuing network consisting of
seven queuing systems.

plicit scheduling of requests. Queues neither modify requests
nor consume simulation time. However, requests spend a
certain amount of simulation time in the queue if other re-
quests are getting serviced at the time of arrival.

Servers consume an amount of time, called service time,
while processing requests sequentially. In systems that use
distinct request classes, servers can also alter the class of
requests while processing them. Furthermore, servers may
create or delete requests but do not store them since the
latter is a distinct feature of queues.

For more realistic models queuing networks are built out
of several queuing systems as shown in Figure 1. We use
large networks with hundreds of queuing systems. By using
simulation we can trace single requests through the system.
This enables a detailed end-to-end delay analysis depending
on the request class and the utilization of the system.

In order to stimulate wide acceptance among platform de-
signers, the System(framework is based on SystemC. Ex-
isting code bases for algorithms in C and C++ can be reused
in the simulation models. System(therefore supports a sys-
tematic path of refinement steps starting from plain perfor-
mance models down to Transaction Level Modeling (TLM)
and Register Transfer Level (RTL) exploiting SystemC'’s re-
finement methodology.

System(@ has been successfully employed in more than ten
recent SoC projects. The framework is available on various
platforms like Linux, Solaris, Windows, and Cygwin.

2.2 New Featuresof SystemQ 2.0

Apart from the rich queuing system library, the SystemQ
framework includes modular and extensible means for gen-
erating realistic traffic, analyzing patterns of received traffic,
and tracing individual requests through the modeled system.
Our new version 2.0 offers three new features that will be
explained in the following sections.

2.2.1 Parameter Files

Parameters can be used to configure the simulation model
during the model elaboration phase to increase flexibility.
System(offers a parameter file support where text based
parameter files are read before the simulation starts. Based
on these parameters, modules can be configured without re-
compilation. Parameters also allow efficient design space
exploration using predefined or even automatically gener-
ated parameter files. One single compiled SystemC binary
file can be used with dozens or hundreds of parameter files
to explore a large design space.

The parameters are placed in a human-readable parame-

::Report_Interval 125 ms
Queuel::Capacity 256

Queuel: :Area 1937.50 um2
Serverl::Bitrate 800 Mbps
Serverl::Response_Time 32 ns
Serverl::Area 847.63 um2

Figure 2: Parameter file for a simple queuing sys-
tem.

ter file. The syntax of the file is

<scope>: :<parameter> <value> [<unit>]
where scope determines the scope of the parameter similar
to the C++ operator of the same name. parameter denotes
the name of the parameter, which is a user-defined alphanu-
meric string. The value and unit parts depend on the type
of parameters as explained next.

How are the parameters in the parameter file linked to
the simulation model? In fact, each module in the System@
model can add new parameters by calling the add_parameter
function. This function allows the designer to link a param-
eter to a C++ class variable. Parameters may be of any
basic C++ type, e.g. bool, double, and uint32. However,
more fancy parameters are supported, such as time, bitrate,
area, and power. These parameters are converted to C++
or SystemC, e. g. sc_time, types.

How does a parameter file look like? Imagine a SystemQ
model consisting of a simple queuing system including one
queue, called Queuel, and one server, called Serverl. The
queue has a capacity of 256 requests, its area is 1937.50 um2.
The server has a bitrate of 800 Mbps, a minimum response
time of 32 ns, and an area of 847.63 um?. Both modules
display some statistical reports every 125 ms. The corre-
sponding parameter file is listed in Figure 2.

As shown in the figure common parameters have a global
scope and do not need to be defined for each particular mod-
ule. This keeps parameter files clear and small.

System(@ 2.0 also includes a parameter file caching mecha-
nism. Every module can potentially have its own parameter
file, but for large models with several hundreds of modules
parameters are grouped in a small number of files. At the
end of the design elaboration phase the following eight steps
take place for each module in the design:

1. Open parameter file,

. Remove comments,

. Resolve includes and macros,

. Split lines into tokens,

. Check validity of values and units,

. Find matching parameters for particular module,
. Check parameter ranges,

. Apply parameters to internal C++ variables.

The first five steps are independent of the module. Hence
the results of step 5 are cached and if another module is
using the same parameter file the preprocessed file can be
reused. This significantly speeds up the simulation espe-
cially for larger designs.

0~ O Uk W N

2.2.2 AreaEstimations

Area estimations are important for system engineers since
the performance of the system interdepends on the area, i.e.
the higher the clock speed the larger the design for a given
technology. Other factors affecting the area are FIFO sizes,
the bitwidths of the data and control paths, as well as the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

Overall width
A

r N
Control width (CW) Data width (DW)
7 A ‘(A Al

FIFO depth (FD)

Figure 3: Influence of HDL generics on FIFO area.

technology the model will be implemented in later on.

Our approach is based on a detailed investigation of the
SoC components. We use the Magma tool chain for both
synthesis and physical implementation. Each component at
Register-Transfer Level is highly configurable, having 10-25
HDL generics (hardware parameters). During component
instantiation the generics are set and cannot be changed
later on. HDL generics may influence the area of the com-
ponent requiring us to synthesize and physically implement
the component with different generics settings. As depicted
in Figure 3 the area of the FIFO depends on the control
width (CW), the data width (DW), and the FIFO depth
(FD). The larger CW, DW, and FD the more area the com-
ponent consumes. However, if the FIFO depth is only 1,
there might be a performance bottleneck since the FIFO is
toggling between empty and full.

In order to obtain significant results a vast number of
synthesis runs has to be performed for each module: For
all generics combinations, several frequencies, and differ-
ent standard-cell libraries. In our work we analyzed six li-
braries with different properties in threshold voltage, cell
size (tracks) and technology optimizations within the same
technology node. For each component we have performed at
least 220 synthesis runs. This seems to be a high effort but
we have found out that synthesis results vary dramatically
for some generics. Since the SoC modules are often reusable,
the syntheses need to be performed only once for each type
of module.

Later on the synthesis results are examined, grouped, and
a set of formulas is generated, as shown in the following
equation, that will be used in the System(@ framework.

Aestimated = Abase * Pgenerics “ Prip - Pfreqv

where Pgenerics, Plibs Pfreq > 1. The concept of the base
area is the foundation of the area formula. The base area
is used as a reference under a base setting (generics, library,
frequency). By comparing with the base area, which is usu-
ally selected to be the smallest area, we know how much
the setting of a factor (generics, library parameters, or fre-
quency) changes the area. The parameters Pyeperics, Plibs
and Pyq are calculated by comparing the area under current
settings with the base area, and therefore are greater than
or equal to 1. Pyenerics actually represents all the generics.
For n generics, Pyeperics can be rewritten as

Pgenerics:Pg1'P92""'Pg

The effect of any single factor on area also depends on the
current settings of other factors. Therefore, the parameters
usually vary under different test cases. In most cases the
numbers are within certain range, and the mean value of the
parameters can be taken. The calculation of the parameters

::Technology 40nm_Low_Power
: :Frequency 333 MHz
FIFO::Data_Width 128
FIFO::Control_Width 48
FIFQ::FIFO_Depth 16
FIFO::Base_Area 1193.7 um2

Figure 4: Parameter file for the FIFO example.

will be explained in more detail in Section 3.1. If the settings
(generics, library, and frequency) under estimation are the
same as the settings of the base area, then the parameters
of these settings are set to one. If not, the corresponding
parameters Pgenerics, Plib, and Ppreq are inserted to model
the change in the area.

How can the system engineer choose the generics and li-
brary properties? This is naturally done by using the param-
eters in the SystemQ parameter file. For the FIFO example
above an appropriate parameter file is shown in Figure 4.

Each queue and server module in the design is equipped
with a calculate_area() function that resolves the parame-
ters from the parameter file and applies their values to the
set of area formulas. At the end of the simulation various
statistics are printed among which the area values is shown.
The designer can choose to display the area of basic queuing
system components, i.e. queues and servers, queuing sys-
tems, sub-systems, or the complete design. For gathering all
area data from the queuing systems we use a centralized ap-
proach. At the end of the simulation a get_area() function in
the toplevel module recursively gathers the area information
from its submodules by executing their get_area() functions.
All area calculations are done at the end of the simulation
which does not cause any overhead during the simulation.

2.2.3 Power Consumption Estimations

As the circuit speed and integration density continue to
rise, power consumption becomes another critical topic in
SoC design. Especially for portable devices, lower power
consumption means higher energy efficiency, longer battery
life, and less cooling requirements. Additionally, lower power
consumption has also become very desirable from an envi-
ronmental point of view.

Therefore, low power design is another target which engi-
neers and IC companies have as a top priority. The power
consumption of a circuit is also dependent on the amount of
activities performed by the device. This makes predicting
the power even more complicated and an even greater chal-
lenge for design development, compared to area estimation.

For our power estimation feature in System(we used
the synthesis results from our area investigations. We work
at the transistor level where transistors have already been
mapped to the appropriate technology, all components are
placed and routed, and the clock tree is also inserted. At
this detailed level we stimulate our modules with a large
number of patterns to analyze the power consumption for
each pattern.

The effort for the power investigation is much higher than
for the area investigation since every design point for the
area corresponds to many test cases for the power investiga-
tion. For system level simulations a general but fast power
estimation approach is preferred. For a FIFO we consider
the different transaction types that can be stored into it,
e.g. single, burst8, and burstl6 transactions. The simula-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

tion for each particular transaction type is repeated several
times. The average value is then taken to eliminate errors
in measurement.

In addition to the transaction types, the generics, library,
and frequency are also varied in our large number of simu-
lation runs to observe their effects on power consumption.
Out of our investigations we derive a set of formulas for each
module and integrate it into our System() framework,

Eestimated,i = Ebase,i : Pgenerics,i . Plib,i : Pfreq,iy

where Pgenerics,i, Plib,is Pfreq,i = 1. Festimated,i a0d Epgse,i
are the estimated and base power consumption for transac-
tion 4, Pyenerics,i» Plib,i> and Pfreq ; are parameters of the
generics, library, and frequency effects on power. As these
effects vary according to different transactions, their param-
eters have to be calculated for each transaction respectively.

Analogue to the area estimations in SystemQ we imple-
ment a get_power() function that collects the power values
from all subcomponents. However, power is a dynamic ef-
fect and therefore more calculations have to be performed
which lead to a small run-time overhead. In some cases the
designer is not interested in a detailed power profile. In that
case, our power-calculation functions provide not only the
power, which is timeless, but also the energy (power - time)
measured in Ws.

Power estimations at system level bear several challenges.
We distinguish three types of power, namely leakage power,
idle power, and active power. Leakage power is a static
dissipation caused by non-ideal insulators. In presence of a
clock signal an additional idle power is consumed. Active
power is consumed when transactions are ongoing.

In SoC design clock-gating techniques are used to min-
imize idle power. At system level we do not use a clock
signal—and therefore cannot apply clock gating—since it
would slow down the simulation significantly. However, to
mimic clock gating we implement clock-on and clock-off
events that are notified when the clock is switched on and
off, respectively. Thus, we can track the presence of the
clock and are able to measure power even more precisely.

3. CASE STUDY

The system-level modeling of SoCs is usually conducted on
individual components. The interconnect system of a multi-
processor SoC is chosen as a case study. As the SoCs become
more and more complex, the interconnect system of SoCs
has evolved from bus structures to component-based sys-
tems, which are more advanced and perform complex func-
tions. Unlike the processor which is fixed once the design is
finished and the memory which has a regular structure, the
interconnect system varies significantly depending the struc-
ture of the SoC. In addition, the interconnect system of SoC
usually takes a considerable part of the area and power of the
system. Therefore, it is critical and challenging to estimate
area and power of the SoC’s interconnect. Furthermore, the
interconnect system can become a bottleneck of the system
performance. With a fast estimation at the system level, it
is possible to analyze the trade-offs among area, power and
performance quickly with System@.

Our area and power estimation modeling is performed on
the XBO07 crossbar [10] components. Compared with tra-
ditional bus structures, the XB07 crossbar can set up con-
current connections between different masters and slaves as
well as bridging different clock domains in SoCs. The XB07

l HW Accel. ‘

T T T T T
L] v L] v v

[Bridge] [Bridge] [Bridge] [Bridge] [Bridge]
I I 1 I]
DEMUX DEMUX DEMUX DEMUX DEMUX

[l
T
T
l .| L
MUX4 MUX4 MUX4 Crossbar
MUX4 MUX4 MUX4 MUX4
lSlze Convenerl l Size Convenerl
l Bridge l l Bridge l l Bridge l l Bridge l l Bridge l
i i i i i
l Memory ‘ l Memory ‘ l Memory ‘ l Memory ‘ lBusC\usler

Figure 5: Multiprocessor SoC interconnect system.

crossbar contains multiple sub-components such as multi-
plexers, de-multiplexers, size converters as well as various
bridges. Depending on the setting of the SoC, the type and
number of sub-components in a crossbar can be very differ-
ent. Therefore, area and power consumption of the crossbar
also vary significantly for different SoCs. First, we carried
out the area and power analysis on 12 particular crossbar
components. Then we performed the analysis on a complete
crossbar system from a real design case as shown in Figure 5.

3.1 Arealnvestigation

Each crossbar sub-component is parameterized with 10 to
25 HDL generics with different impacts on area. The size of
a crossbar also varies significantly corresponding to different
standard-cell libraries as well as the frequency of operation.
Therefore our investigation is performed on each crossbar
component to calculate its Pyenerics; Privs and Preq, and
the overall area of the crossbar is then calculated by sum-
ming up the area of the sub-components. Within the same
component, the library’s effect on area is similar under dif-
ferent generics settings. However, the frequency’s effect on
area shows a significant difference depending on the generics
setting.

To evaluate the generics effect of one component, gener-
ally the minimum and maximum value of each HDL generic
is selected to evaluate its impact on area. Then with each
setting, synthesis is performed on the RTL design, gates
are mapped to the corresponding standard-cell library, and
place and route is performed. Out of the large number of
combinations of generics, 10 to 20 runs are mostly needed
to investigate the generics effect on area for one component.
The effect of each generic is measured by the changed area in
percentage compared with the area under the smallest gener-
ics setting, which is the base area. Similarly, to evaluate the
library’s effect, the same generics settings are investigated
with different libraries. The library which corresponds to the
smallest area is chosen as the base library and the library
effect is measured by comparing the area with the one under
the base library setting. For the frequency effect, a range
of 50 MHz to 400 MHz is tested with a step size of 50 MHz.
To reduce the large number of analysis, the frequency in-
vestigation is performed on the largest and smallest generic

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

=)
9]
=
. ,
@ @7 T - —— Library4
o - —— Library3
< Library2
~ 4 Libraryl
—— Library5
Library6
-
T T T T T T T
50 100 150 200 250 300 350
Frequency (MHz)
Figure 6: Area increase when clock frequency

changes from 50 MHz to 400 MHz.

setting with all different libraries. Figure 6 shows the area
increase corresponding to different clock frequencies for the
MUX component with six different libraries. As the timing
constraints have to be met for valid synthesis, only limited
maximum frequencies can be reached for some libraries.

The area under different settings is compared with the
base area, and the area change resulting from specific fac-
tors is measured as a percentage number of the base area,
such as Pgenerics, Plib, and Ppreq in Section 2.2.2. The area
will be estimated according to the equation in Section 2.2.2.
Since the area of a component is determined together by sev-
eral factors including generics, library, and frequency, the
effect of a specific factor on area differs depending on the
current settings of the other factors. The most accurate so-
lution is to include all the investigation results into a look-up
table and interpolate the missing values, however, this ap-
proach requires significant effort to implement into System@
classes. A simplified approach is to take the mean values of
all obtained parameters when they are close to each other.
However, when the parameters show significant differences
for certain settings, the values should be assigned manually
according to the current settings. From the experimental
results, it is proven that this approach also provides high
accuracy.

The area estimation models are then implemented in an
area calculation function of each System(Q) crossbar class.
Parameters of HDL generics and library are also added in or-
der to determine the setting under estimation. The base area
of each component is also added as a parameter which can be
modified as needed. Pyenerics, Pliv, and Pfreq are taken from
the investigation results of each component and inserted into
the source code of the System(crossbar components. When
a crossbar is built from these sub-component classes, the
area of each sub-component can be calculated separately
according to its generics setting. Then a get_area() function
from the top level class is called to inquire the area of each
component in the crossbar and export the total crossbar area
by summing up the area of all components.

The accuracy of our area estimation model is tested by
comparing with the low-level area result under three dif-
ferent crossbar components, namely MUX, DEMUX, and
DECODER. The average error is 5.6 %, 6.3%, and 4.9 %,
respectively. The error distribution for the MUX is shown

Frequency

"SI

r T
-20 -10 0 10 20 30
Error (%)

Figure 7: Error of estimated values compared to
measured values.

in Figure 7. In addition, the whole crossbar system shown
in Figure 5 is built with SystemQ with specific settings. We
synthesize and physically implement the system with two
different voltage-threshold libraries. The estimation errors
are 17.0% and 28.1 %, respectively. The SystemQ estima-
tions are too pessimistic in both cases.

3.2 Power Investigation

For the power consumption estimation, all the factors af-
fecting the area also affect the power, including the HDL
generics, library, and frequency. But unlike the area, the
power estimation is a dynamic effect which also depends on
the activity of circuits. At the system level, the activity of
a crossbar can be classified into different transaction types
such as read command, write command, read data, and write
data. Even under the same settings, the power consumption
differs significantly for different transaction types. There-
fore, we need to evaluate the effects of generics, library,
frequency as well as transaction types on the power con-
sumption for each crossbar component.

To measure the power consumption a testbench is created
for each component. Then a low-level power analysis tool
(Talus Power Pro) is used to measure the power consump-
tion of the component netlist with input stimuli for different
transaction types. It is difficult to define the input vectors
for all possible situations which the circuit might encounter.
Even with all the possible input vectors defined, the num-
ber of the stimuli vectors will also be too large to perform
power consumption simulation. Therefore, we determine the
stimuli according to most general situations, which can set
borders of power consumption for most input stimuli.

As in the area investigation, the parameters of Pgenerics,
Piip, and Pyreq are taken to represent the effects of differ-
ent settings on the power consumption. These parameters
can be different depending on the transaction types. For ex-
ample, as shown in Figure 8, when different generics are
changed from the base generics setting, the power is in-
creased to different extent on transaction states of Trl to
Tr6. For the frequency effect, the major part of the power
consumption is dynamic power, which is linear dependent on
the current frequency. Therefore, the frequency effect in the
power estimation model is simplified to Pf,.cq which equals
to the ratio of current frequency and the base frequency un-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

Reference settings
Command FIFO full range
Write FIFO full range
Read FIFO full range

oEOm

Power (normalized)
6

Trl Tr2 Tr3 Tr4 Tr5 Tr6

Figure 8: Generics effects on power consumption of
different transactions (Tr).

Power (normalized)

T T
0.0 0.1 0.2 0.3 0.4
Simulation Time (us)

Figure 9: Power consumption of a sequence of mixed
transactions simulated by SystemQ.

der which the base power is obtained.

The power estimation model is then implemented into the
System() crossbar classes. But unlike the area estimation,
the power estimation is linked with the component activ-
ity. During the performance simulation, SystemQ identifies
the current transaction and assigns a power consumption
value depending on the transaction types and system set-
tings. Since it is difficult to obtain the activity of the whole
crossbar, the power consumption estimation model is tested
on the MUX component. The power consumption is calcu-
lated over a total of 100 clock cycles where a sequence of
mixed transaction types is issued, the System(@) simulation
result of the power consumption activity is shown in Fig-
ure 9. The average power consumption is then compared
with the result from the low-level power analysis with the
same settings and stimuli. The error of the System(Q model
is 11.5% pessimistic compared to the result given by the
power analysis tool.

4. DISCUSSION

The simple area and power estimation models implemented
in System(Q achieve relatively high accuracy compared to
previous high-level area and power estimation models. The

accuracy can still be further improved in several ways as
discussed later. With the new area and power estimation
features of SystemQ), system engineers can evaluate the sys-
tem performance in terms of trade-offs with area and power
consumption quickly to select the optimum system struc-
ture. However, these models are based on a large amount of
low-level synthesis results. The same analysis has to be per-
formed on any new module or new library, which requires a
lot of effort. Therefore, the analysis is preferably carried out
on re-usable IP modules, where the results can be included
by other systems as well.

4.1 Error Analysis

The estimation errors of 17.0% and 28.1 % obtained by
System(@ on a total of 25 sub-components are both pes-
simistic compared to the real on-chip area. This is due to
the fact that the hierarchical system is flattened by the syn-
thesis tool so that global optimizations can be applied. Sys-
tem(@ works on the hierarchical modules where only local
optimizations can be applied. The system area is calculated
by adding up the area of all sub-components. This leaves
a safety margin for the system area estimation. With the
global optimizations performed by the synthesis tool the real
design will achieve a better result.

Area and power consumption are complicated design re-
sults, which are affected by many inter-related factors in-
cluding HDL generics, library as well as frequency. It is
unrealistic to explore the whole design space by testing ev-
ery possible system setting. Our investigation is targeted
at finding the most significant factors for area and power
consumption and model their effects in simple formulas. To
ensure a high accuracy, it is necessary to evaluate not only
the effect from a single generic, but also the inter-dependent
effects of several generics. However, due to limited time and
resources, we could not investigate every possible combina-
tion. Instead, we emphasize on the significant generics for
the area or power and test their interdependencies with a
few synthesis runs. For those generics with a large range, a
finer granularity can be achieved by performing more runs.

Another source of error comes from the modeling of these
complicated effects. Especially for the HDL generics, the
inter-dependency shows a complex irregular pattern which
is difficult to model with simple additive or multiplicative
formulas. More forms of formulas can be developed to bet-
ter represent the complex generics’ effects. Furthermore,
the effect of one generic under different libraries can show
a significant difference. However, to reduce the influence of
the dependency on other factors, an average value has to be
taken, which can be imprecise in some cases.

For power consumption an average number is taken of the
upper and lower bound of the same transaction state but
different data. This could deviate from the data in a real
case. Also, at the system level many low-level configurations
are not available which results in certain inaccuracies for the
system-level estimation.

Last but not least, the synthesis tool increases the un-
certainty of the area and power evaluation process. In our
analysis, unexpected results were found out such as when
a generic is increased, the area is decreased. The possible
reason for this is that the optimization processes between
two runs may be different. But this effect is relatively small
and rare, and therefore always neglected.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

Table 1: Trade-off analysis on the data path width
of the crossbar for area, power, throughput, and la-
tency (normalized).

Data Area Power Throughput Latency
width Read Write

32 bit 1.00 1.00 1.00 1.00 1.00
64 bit 1.04 1.75 1.21 1.83 0.62

4.2 Trade-off Analysis

The SystemQ framework greatly shortened the analysis
time compared with low-level analysis. Usually for a small
component, the process from RTL to place and route needs
at least half an hour, for large designs the process may take
hours or even days. The calculation of area in SystemQ is
just performed once at the end of simulation, and the power
is calculated at every transaction state change during sim-
ulation. The calculation time is almost negligible. Once
a system is built in SystemQ, settings such as generics, li-
brary, and frequency can be modified in the parameter file
without re-compiling the system. Therefore, the system en-
gineer can compare the trade-offs between structures under
different settings, such as data path width or FIFO size.

An example is given below to compare the trade-offs of
performance, area and power consumption for different struc-
tures. A complete data path of the crossbar is built with
System(@Q. When we change the data path width from 32 bit
to 64 bit while keeping the other setting constant, the per-
formance index, the area and the power consumption change
correspondingly as shown in Table 1. Compared with a
32-bit data path, the 64-bit structure increases the system
throughput, lowers the latency of data, but at the same time
it also increases the area and power consumption as a trade-
off.

5. RELATED WORK

We find related work in two areas of research: 1) ESL
frameworks and 2) area and power analysis tools:

51 ESL Frameworks

Artemis [8] is a modeling and simulation environment for
embedded systems focusing on media processing. Artemis
is a simulation environment that is based on trace-driven
simulation. It is focused on coarse-grained operations that
reflect data-dependent behavior. The application models
are expressed using Kahn process networks (KPN). KPNs
fit well into the application domain of media processing and
therefore allow an efficient implementation of these applica-
tions. However, since KPNs are determinate, they cannot
express time-dependent behavior and prevent modeling of,
e. g. interrupts.

The MetroII framework [3] is based on the Metropolis [1]
framework from the same authors. Based on a meta model
specification language with formal semantics, the framework
supports different models of computation and abstraction
levels. The key property of Metroll is the separation of
functionality and architecture. The meta-model language
comprises four objects, namely processes, media, quantity
managers, and netlists. Processes and media are similar to
processes and channels of SystemC, respectively. Quantity
managers supervise the access to shared media. They also
assign physical quantities to events, e. g. time or power.

5.2 Areaand Power Analysis Tools

For area estimation, there have been mature algorithms to
predict the area from lower abstraction levels. PLEST [4] is
a program for estimating the area of standard-cell layouts. It
uses a simple probabilistic model for cell placement as well as
interconnections. Given various gate-level parameters such
as number of nets, total cell width and so on, PLEST is able
to estimate the possible shapes of layout blocks. The error
is tested to be below 10% for the PLEST program. More
techniques are developed later to explore the routability and
improve the accuracy of wiring space estimations.

An RT-level model is proposed to measure the area of
boolean functions in terms of gate counts in [6]. The area
model based on transforming the multi-output boolean func-
tions into an equivalent single-output function. The model
is tested on some benchmark circuits and an average abso-
lute error of about 20 % is achieved. However, this method
can only be applied on combinational logic. Furthermore,
measuring the area by the number of gates can be inaccu-
rate because the standard-cell library used can also have a
significant impact on the final area.

In power consumption estimations, many techniques are
also developed to estimate power at layout, gate or behav-
ior level. In [5] the general power consumption models on
gate level are introduced on logic circuits, interconnections,
clock distribution, and on-chip memories. Power estimation
models at the gate level require the low level information
of the circuit such as the capacitance of nodes, the switch-
ing activity at nodes and so on. Obtaining this information
requires large amounts of simulation work.

Further models have been proposed at higher levels. In [2]
an analytical model is derived to estimate the power con-
sumption based on the information from gate-level simula-
tions such as number of gates, switching activity and model
coefficients. A behavior-level model is further derived to
estimate the average switching activity by monitoring the
switching activity of input and output nodes. The model is
tested on different instruction states, the error of behavior-
level power estimation is up to 58 %. The accuracy of this
behavior-level estimation can be improved to 39 % by insert-
ing internal nodes as test points. However, with this model,
logic synthesis is still necessary to obtain the corresponding
number of gates.

6. CONCLUSION

We have presented a disciplined approach to area and
power-consumption estimations at electronic system level
using our performance evaluation framework System(@ 2.0.
System(allows system engineers to explore the design space
of multiprocessor SoCs and to perform architecture perfor-
mance evaluations. With its new features SystemQ is ca-
pable of pinpointing the interdependencies between area,
power, and performance.

The foundation of our estimations is a large amount of
data from synthesized and physically implemented hardware
components. From that we have built a set of formulas and
integrated them into System(Q. We have shown the chal-
lenges that arise from applying low level effects to higher
abstraction levels, especially the system level.

In a case study on a complex multiprocessor SoC inter-
connect system we have shown how the synthesis data can
be integrated into System@Q and how area and power con-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5668
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5668

sumption estimations can be performed. We have shown the
background, challenges, and pitfalls of our approach. The
results of our ESL estimations have been compared to the
real transistor-level data. We have shown that the average
error for the area estimations is up to 6.3 % for single com-
ponents. For the complete system we examined two differ-
ent standard-cell libraries. The error is 17.0% and 28.1 %,
respectively. The power estimation error is 11.5% at com-
ponent level.

Acknowledgments

This work has been developed in the project RapidMP-
SoC. RapidMPSoC (project label 01M3085) is partly funded
within the Research Programme ICT 2020 by the German
Federal Ministry of Education and Research (BMBF).

The authors wish to thank W. Ullmann for providing us
the synthesis environment as well as D. Margraf and R. Mei-
jer for their support on power analysis and gate level simu-
lation.

7. REFERENCES

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,

C. Passerone, and A. Sangiovanni-Vincentelli.
Metropolis: An integrated electronic system design
environment. IEEE Computer, 36(4):45-52, Apr. 2003.

[2] M. Caldari, M. Conti, P. Crippa, G. Nuzzo,

S. Orcioni, and C. Turchetti. Instruction based power
consumption estimation methodology. 9th
International Conference on Electronics, Circuits and
Systems, 2002., 2:721-724, Sept. 2002.

[3] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and
Q. Zhu. A next-generation design framework for
platform-based design. In DVCon 2007, Feb. 2007.

[4] F. Kurdahi and A. Parker. PLEST: a program for area
estimation of VLSI integrated circuits. 23rd
ACM/IEEE conference on Design automation, pages
467-473, 1986.

[5] D. Liu and C. Svensson. Power consumption
estimation in CMOS VLSI chips. IEEE Journal of
Solid-State Clircuits, 29(6):663-670, 1994.

[6] M. Nemani and F. Najm. High-level area and power
estimation for VLSI circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 18(6):697-713, 1999.

[7] Open SystemC Initiative (OSCI).
http://www.systemc.org/, Oct. 2008.

[8] A. D. Pimentel. The Artemis workbench for
system-level performance evaluation of embedded
systems. International Journal of Embedded Systems,
1(7), 2005.

[9] S. Sonntag, M. Gries, and C. Sauer. SystemQ:
Bridging the gap between queuing-based performance
evaluation and SystemC. Design Automation for
Embedded Systems, 11(2):91-117, Sept. 2007.

[10] S. Sonntag, H. Reinig, S. Linz, F. Pitter, and
M. Ruhwandl. XBO7: A highly reusable crossbar
architecture for multiprocessor system on chip
(MPSoC). In IP Based FElectronic System Conference
(IP07), pages 307-311, Dec. 2007.

