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ABSTRACT

We propose a framework called HydLa for simple model-
ing and reliable simulation of hybrid systems which involve
discrete and continuous changes over time. HydLa employs
interval constraints as a central principle to express uncer-
tainties in modeling, error bounds in the computation of
nonlinear continuous changes, and reachable state sets that
play key roles in verification. In this research, we propose
a modeling language with hierarchical interval constraints
to facilitate well-defined modeling, and its implementation
which uses machine-representable interval constraints to en-
close computation errors with intervals or boxes. The im-
plementation is based on the integration of a consistency
technique for nonlinear interval constraints and a technique
for solving ordinary differential equations. We also present
a method for solving constraint hierarchies among interval
constraints.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors; I.6.4 [Sim-

ulation and Modeling]: Model Validation and Analysis

General Terms

Simulation, languages

Keywords

Hybrid systems, interval arithmetic, constraint hierarchies

1. INTRODUCTION
Hybrid systems are systems consisting of discrete and con-

tinuous changes over time. An example of hybrid systems
is a “bouncing particle” illustrated in Figure 1, which falls
down by gravity (i.e. continuous change) and bounces off a
sinusoidal surface (i.e. discrete change). Various languages
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Figure 1: An execution result of a bouncing particle.

such as hybrid automata and Hybrid CC [4] have been used
for modeling hybrid systems (See [3] for a survey). We aim
to develop a language that allows us to describe large sys-
tems with complex laws concisely. From model descriptions,
various model checkers for hybrid systems compute continu-
ous states rigorously. However, those methods still have the
limitations in the handling of nonlinear models.

We propose a framework called HydLa for modeling and
simulating hybrid systems. HydLa employs interval con-

straints as a central principle to express uncertainties in
modeling, error bounds in the computation of nonlinear con-
tinuous changes, and reachable state sets that play key roles
in verification. Another important feature is constraint hier-

archies [2] to facilitate the construction of well-defined mod-
els, which we have found is often difficult. In HydLa, a model
composes of constraints. In the particle example, simulta-
neously activating constraints corresponding to the gravity
law and collisions will result in an over-constrained system
implying an error. On the other hand, to model switching
of several sets of constraints is often difficult; Modeling as
a under-constrained system, a location of the particle may
becomes undefined when a discrete change occurs.

This paper presents an implementation of HydLa for ob-
taining overapproximation of trajectories, that is, sets of
intervals or boxes enclosing every possible execution of the
model. The implementation employs techniques for solv-
ing nonlinear constraints and ordinary differential equations
(ODEs) by enclosing solutions with tight intervals. These
techniques reliably handle machine-representable intervals
which have floating-point numbers as its boundaries; every
computation error is enclosed with the intervals. Although
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INIT ⇔ x = (2, 5) ∧ x′ = (0,−5).

LAWS ⇔ ¤(g ≥ 9.8 ∧ g ≤ 9.81 ∧ k = 0.3 ∧ e = 0.5).

FALL ⇔ ¤(x′′

1 = −g − k · x′

1).

BOUNCE ⇔ ¤(x1− = sin(x0−) ⇒

m = (− sin′(x0−), 1) ∧ n = m/‖m‖

∧ x′ = e · (x′

− − 2 · n · 〈n, x′

−〉)).

INIT, LAWS, (FALL ¿ BOUNCE).

Figure 2: A bouncing particle model described by

HydLa language.

symbolic computation techniques handle a limited class of
hybrid systems, the proposed implementation allows models
involving nonlinear constraints for both discrete and contin-
uous changes. Furthermore, verification of various proper-
ties such as “will the particle fall into a hole?” and “how
long will the particle stay in a designated area?” would be
done by assigning intervals to variables in a model.

2. HIERARCHICAL INTERVAL

CONSTRAINTS
Figure 2 is a model of the bouncing particle described in

the HydLa language with hierarchical interval constraints.
The model expresses a trajectory that is a vector of real-
valued functions over time. Although the acceleration of
the particle is governed by the gravity law most of the time,
the velocity is determined by an equation of collision when
the particle collides with the ground. HydLa manages hi-
erarchies of constraints to determine which constraint to be
activated in each point of time.

In Figure 2, x and x′ are real vector-valued variables and
x1 denotes the first element of the vector x. The model
consists of four user-defined modules and the composition
of the modules using the binary composition operators with
or without priority (“¿” and “,” respectively). Modules are
described in terms of general mathematical notations (given
an expression E, E′ denotes the derivative, and E− denotes
the left-hand limit value at the time of a discrete change).
The implication operator ⇒ in the fourth statement gives a
guard for a discrete change. The always operator ¤ activates
a constraint to be satisfied on and after time 0.

3. IMPLEMENTATION
In the following, our implementation of HydLa for simu-

lating models based on interval arithmetic is described. For
the bouncing particle, the proposed implementation com-
putes a set of boxes as shown in Figure 1 that encloses every
possible trajectory of the model.

A trajectory is computed by alternating point phases (i.e.
computation of an initial state or a discrete change) and
interval phases (i.e. computation of continuous changes)
as in previous methods [3, 5]. One of the difficulties in the
computation of interval enclosures is the handling of discrete
changes. An enclosure of a state where a discrete change will
occur is computed by applying a method [5] that integrates
a consistency technique for interval constraints [1] and an
interval-based technique for solving ODEs [6]. In an interval
phase, the method divides and prunes a continuous state

space to search for a tight enclosure of a state that will
trigger discrete change, i.e. the next point phase.

Constraint modules in a model form a partially ordered
set. In each phase, a downward-closed set of modules (a
module with higher priority comes lower), which is maxi-
mal and consistent, is computed as follows. First, a set M
of downward closures of each module is created from the
model. A constraint store S := ∅ is also prepared. Then, a
maximal consistent set of modules in M is greedily searched.
Computation is done by iteratively adding a constraint set
in a closure in M to S and checking consistency. If a clo-
sure is inconsistent with S, then the closure is skipped (the
algorithm will be optimized in various ways).

The check of consistency in the above is determined by
checking if the existence of a unique solution is proved by
the interval Newton method. Our modified version of the
interval Newton method works for a problem consisting of
nonlinear constraints and an ODE under certain conditions.
The modification is based on the underlying solvers [1, 6],
each proving that a box encloses a solution of a guard con-
dition or a trajectory. If the above conditions do not hold
for a problem, the implementation tries to avoid a singular
point by dividing the initial domain.

The proposed implementation generally does not handle
exact solutions. However, the implementation is able to
compute intervals with a specified accuracy by repeatedly
dividing and reducing intervals. When several guard con-
ditions intersect within an interval enclosure, or when an
initial interval value is too wide for a property to be veri-
fied, dividing of the intervals will be effective.

4. FUTURE WORK
Experiments on the implementation with large examples

are needed. The examples will include a model with a com-
plex law where dividing of intervals be effective, and a model
composed of several sub-systems.
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