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ABSTRACT

ns-2 is a well known network simulator, recently
extended with improvements to its emulation fa-
cility. Real-time constraints and the boundary be-
tween real-world and simulated entities impose scal-
ability and accuracy limitations, and distort the sim-
ulated network as perceived by the involved real-
world applications. This paper presents results from
a performance evaluation of the ns-2 emulation fa-
cility. Conducting emulation experiments of differ-
ing magnitudes, and under varying emulation envi-
ronment set-ups, we unveil central types of scala-
bility limitations and obtainable accuracy. We find
throughput limits using high and low end comput-
ers, and a significant throughput decrease when in-
creasing the number of involved real-world applica-
tions. We furthermore show how end-to-end delay
increases both with traffic load and an increasing
number of involved real-world applications. More-
over, during these conditions, we find that the sys-
tem treats these applications increasingly unfair by
distributing total throughput unevenly between them,
and by imposing different amounts of end-to-end de-
lay.

Categories and Subject Descriptors

C.4 [Performance of Systems]; I.6.3 [Simulation and
Modeling]: Applications—ns-2

Keywords

ns-2, Performance Evaluation, Network Simulation, Network
Emulation

1. INTRODUCTION
New computer network solutions are continuously being

developed. Testing and evaluating these has traditionally
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been performed with network simulators. However, the de-
sire to utilize already existing real-world implementations
within experiments has in the later years lead to the de-
velopment of network emulation solutions, where real-world
components can interact with synthetic models.

ns-2 is a well known network simulator, written as a com-
bination of C++ and the scripting language OTcl [1]. Ex-
tensions written by Mahrenholz and Ivanov [2] [3] have re-
cently improved ns-2’s emulation facility, allowing real-world
applications (RWApps) to be connected to specific nodes
within a simulated ns-2 network (SimNet). This approach
has the advantage of possible reuse of existing network mod-
els developed and refined for ns-2 over the years. The im-
proved emulation facility is available in two variants: the
single host extension (SHE) and distributed clients exten-

sion (DCE). The former allows RWApps to run alongside
ns-2 utilizing one physical host only, while the latter dis-
tributes these across separate hosts (RWHosts) connected
through a custom tailored UDP tunnel.

In lieu of the accuracy and scalability issues introduced by
real-time constraints during emulation [4], this paper sub-
jects the DCE to a performance evaluation by obtaining ac-
curacy and resource measurements during execution of em-
ulation experiments of differing scale. We define accuracy of

emulation to be the degree to which our system is able to
present to communication endpoints a SimNet conforming to
the specifications defining it. This accuracy is determined by
the SimNet model and the components and mechanisms en-
abling the distribution of RWApps across separate RWHosts.
The latter include the UDP tunnel, the physical network
and kernel scheduling of RWApps, and can be regarded as a
distribution layer on top of the SimNet. In this paper, we
investigate how the distribution layer impacts scalability and

accuracy of emulation for the DCE extension. Our findings
hence apply to experiments involving any SimNet as they
only provide an indication on how this layer affects traffic
on the path between RWApps and the SimNet. In our work
we therefore employ a simple and deterministic SimNet to
easier isolate the effects imposed by the distribution layer.

Realizing that accuracy decreases both with increased traf-
fic workload and the number of communicating RWApps,
we observe system behavior while varying experiment scale
in both of these dimensions. Since our system is provided
with only a limited amount of resources, system saturation
is bound to occur at some point, in our case manifested as a
limit in throughput. The end-to-end delay is another impor-
tant metric which is affected by emulation mechanisms, and
since we include several communicating RWApps, we inves-
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Figure 1: The DCE-Extension.

tigate how equally simultaneously flowing traffic streams are
treated. The latter is here referred to as fairness. Our over-
all goal is partly to discover which considerations are impor-
tant and general enough to be usefully applied to other dis-
tributed emulation solutions sufficiently similar to the DCE,
and partly to aid researchers in considering the feasibility of
the DCE for their own use. From the insight gained during
the analysis of our results, we also propose a set modifica-
tions to the system believed to amount to improvements in
performance.

Section 2 introduces the DCE-extension. Thereafter, in
Section 3, we motivate our experiments and present their
set-up, while Section 4 presents the results and improvement
proposals based on these. Finally, Section 5 concludes this
paper and elaborates on possible future work.

2. DISTRIBUTED CLIENTS EMULATION
This section provides the reader with an overview of the

buildup and mechanisms of the DCE-extension. For further
details, we refer to [2], [3], [5], and the ns-2 manual [6].

The DCE-extension dedicates one computer (EmuHost)
for running ns-2 to perform network simulation, and a set
of RWHosts for execution of the involved RWApps. The
DCE-extension can be regarded as being composed of two
separate parts: first, an extension of the ns-2 codebase,
and second, mechanisms implemented at the RWHosts for
(de)multiplexing and tunneling of traffic between the Emu-
Host and the involved RWApps.

Each RWHost is connected to the EmuHost through their
own UDP tunnel, the endpoints of which are realized by the
dedicated user space application tapudp at the RWHosts’
end, and a UDP Network Object at the ns-2 end. tapudp
reads Ethernet-frames from a set of virtual TAP interfaces

[7] in a round-robin manner, and writes them onto the UDP
tunnel, thereby working as a multiplexer of outbound traf-
fic. Conversely, all traffic arriving at an RWHost through
the UDP tunnel is demultiplexed towards the correct TAP
device according to destination address.

At the ns-2-end, network objects capture packets from
their UDP-socket, inspecting the source address to obtain an
index into an array of tapagents, and pass the packet towards
that agent for further processing. Pointers to all agents are
stored in an array of 64K entries, at the index correspond-
ing to the combination of the associated RWHost number
(one byte) and TAP interface number (one byte). When a
packet arrives at the EmuHost-end of the UDP tunnel, the
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Figure 2: Emulation Environment Set-Up. Black
Boxes Represent TAP Devices.

virtual source-tap-agent to receive the packet is found by a
direct lookup in this array. This results in the frame emerg-
ing at its virtual source location within the SimNet, after
being encapsulated into an ns-2 packet marked with a vir-
tual destination agent’s address. This address is composed
of the third (destination TAP device) and fourth (destina-
tion RWHost) octets in the destination IP-address. Upon
arrival at the virtual destination node, tap-agent and net-
work object, the packet is written onto the UDP tunnel lead-
ing towards the destination RWHost, eventually forwarded
through the receiving tapudp-application towards the cor-
rect destination TAP device. Figure 1 gives an overview of
the DCE-extension.

3. EXPERIMENTS
Figure 2 gives an overview of the emulation environment

used in our experiments. The main components are de-
scribed below.

Hardware: We use 6 computers, three of which are equip-
ped with 64-bit AMD dual-core 2.2Ghz processors and 2 GB
RAM (called high end), and three of which have 32-bit Intel
Pentium 4 1.6Ghz processors and 512 MB RAM (i.e. low

end). During experiment runs our testbed always consist
of 3 of these computers: two RWHosts running RWApps,
and one EmuHost running ns-2. The RWHosts are further-
more assigned the roles source and destination depending on
the direction of traffic flow. We interconnect the comput-
ers using a gigabit 802.3 Ethernet LAN, providing enough
bandwidth to exclude the network as a prospective bottle-
neck.

RWApps: Instances of Traffic Generator (TG) v. 2.0 [8]
make up our RWApps. These are configured to generate
uniform UDP traffic, i.e. with packets of a constant size
and a constant inter-departure time. We have N pairs of
TG instances, communicating across separate paths (Emu-
Paths) across the SimNet, each identified by a unique path
number. The TAP devices at both ends of the EmuPaths
are identified by the combination of an EmuPath ID and
the RWHost ID (both integers in the range [1, 255]). For
round trip time (RTT) measurements, we use ping to trans-
mit ICMP probes across Path 1, Path N/2 and Path N. By
distributing three streams of probes uniformly across the
paths we aim to obtain a good indication of any correlation
between path number and RTT.
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Table 1: Experiment Details

Exp. 1 Packet Size (bytes) Traffic Load (pps)
Low-End 58,500,1000,1472 300→20100
High-End 58,500,1000,1472 1000→85000
Exp. 2 Nr. of EmuPaths Traffic Load (pps)
Low-End 10→250 2500→15000
High-End 10→250 5000→30000

SimNet: Our performance evaluation aims to be as Sim-
Net independent as possible. We want to focus on the over-
head of passing traffic between RWApps and the SimNet,
rather than how accurately the SimNet conforms to its spec-
ifications. To make it easier to isolate this overhead, we uti-
lize a SimNet as simple and deterministic as possible. Our
SimNet is entirely built out of N point-to-point, 1Tb, 10
ms links (SimLinks), at the ends of which our RWApps are
connected through ns-2 tapagents. We also avoid simulated
traffic shaping and throughput limits for easier separation
between effects imposed by the SimNet and those caused by
external mechanisms. Using this SimNet set-up, we can re-
gard any throughput limit, RTT above 20 ms, jitter and/or
burstyness observed in the end-to-end path as deviations
from the SimNet configuration, i.e. inaccuracies of emula-
tion.

We conduct four sets of experiments summarized in Table
1, each tailored to accommodate specific sub-goals derived
from the overall goals presented in the introduction. Exper-
iments 1 and 2 measure RTT and throughput in the pres-
ence of increasing traffic workload, and increased amount of

RWApps, respectively. Since pairs of RWApps communicate
over EmuPaths, we hereafter refer to the latter factor as
the number of EmuPaths. Furthermore, in Experiment 2 we
compare measurements of different EmuPaths to unveil how
similarly EmuPaths are treated. For the first experiment we
only utilize one EmuPath, and in the second we keep the
packet size constant at 500 bytes.

During preliminary experiments, we found that the through-
put bottleneck wrt. total amount of traffic flowing through

the system was ns-2. To add validity to our results beyond
only one specification, we therefore run our first experiment
with two different EmuHosts with differing hardware spec-
ifications. Similarly, since we found that the destination
RWHost’s tapudp became the main bottleneck when increas-
ing the number of EmuPaths, we run our second experiment
with high and low end destination RWHosts. Traffic gener-
ation rates and the number of EmuPaths were chosen based
on results retrieved during preliminary experiments, to un-
veil system behaviour up to and beyond system saturation.

In each experiment, we vary packet size, packet genera-

tion rate (also called traffic load) and the number of Emu-

Paths. For each combination, we collect measurements from
three identical 36 second emulation runs, where the initial
and final three seconds are disregarded to avoid including
prospective transient measurement variations. We present
the average of these three runs, as we find a satisfyingly low
standard deviation (SD) between runs1. The central mea-
surements on which we base our analysis are the following:

• TG Source and Receiver Logs: Denotes departure/arrival

1There is one exception, which is explicitly stated in Sec-
tion 4.1.
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Figure 3: Throughput for Experiment 1.

times, sequence numbers and IP-addresses (thereby
implicitly TAP device number) of UDP packets. Ob-
tained only at source and destination RWHosts.

• Ping report: Denotes individual, average and SD of
RTT across a specific EmuPath. Obtained only at
source RWHost.

• Sar Resource Measurements: Reports CPU, memory
and network device (both physical and virtual/TAP)
utilization statistics during the runs. Obtained at all
hosts.

• ns-2 Event-Loop Instrumentation: Reports utilization
of the three main sections of the ns-2 real-time event
loop, indicated in Figure 2. Obtained at the EmuHost
only. These include portions of time consumed for

1. handling of scheduled events (SimEvents)

2. sleeping while waiting for the arrival of live pack-
ets or for the handling time of SimEvents2

3. reading and writing packets to the physical net-
work

All measurements are stored to ramdisk during experiment
execution to avoid any interfering disk IO overhead. Jitter
measurements were excluded in this paper due to spatial
constraints, but elaboration on this can be found in [9].

4. RESULTS AND FINDINGS
This section presents the most important results from our

performance evaluation. The two subsections present results
obtained from Experiments 1 and 2 respectively, along with
analysis, comments on the most important findings, and im-
provement proposals.

4.1 Effect of Increasing Traffic Load
In our first experiment, the main bottleneck on the end-

to-end path is ns-2. The plots presented in Figure 3 show
throughput in packets per second (pps), and Figure 4 shows
the RTT values retrieved from ping-reports during increas-
ing traffic load.

2In fact, the sleep returns shortly before the handling of the
next scheduled event, as described in [3].
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Figure 4: RTT overhead for Experiment 1.

The throughput plots show, as expected, higher pps val-
ues when utilizing the high end EmuHost. The maximum
obtainable throughput is two to three times larger with the
high end EmuHost than with the low end EmuHost, depend-
ing on packet size. Maybe not so expected is the difference
between the development in throughput with increasing im-
posed traffic load. For the low end EmuHost, we see a clear
point of saturation for all packet sizes. The plots indicate
that all additional traffic load imposed beyond these points
is dropped by the EmuHost. For the high end EmuHost,
however, we can identify such a distinct point of saturation
only for 58-byte packets. As we increase traffic load beyond
certain values, we experience what appears to be a less pre-
dictable increase in the amount of packet drops for the three
highest packet sizes. We furthermore have higher SD values
between identically configured runs when utilizing the high
end EmuHost, with SDs of up to almost 2% when generat-
ing less than 75000 pps, and at certain higher rates rising
to up to just above 7%. In contrast, the corresponding val-
ues for the low end EmuHost never surpass 0.02%. Figure 3
also suggests a more consistent correlation between packet
size and throughput for the low end EmuHost, as there is
no immediately distinguishable difference between 500, 1000
and 1478-byte packets in the high end case, 50-byte packets
being an exception.

Since our SimLinks are configured to impose a delay of 10
ms, our ping instances should never report an RTT lower
than 20 ms; ideally, we would experience an RTT of just
above 20 ms. However, because of the emulation boundary,
this is not achievable. The plots in Figure 4 show the amount
of RTT overhead imposed by the emulation extension in
the presence of increasing traffic load. If we compare the
throughput and the RTT plots, we notice a slightly and
steadily increasing RTT across increasing traffic loads before
reaching the capacity limit. We also observe a significant
increase in RTT as we surpass EmuHost capacity, and that
this increase is the most drastic for the smallest 58-byte
packets, especially when utilizing the low end destination
RWHost.

4.1.1 Analysis

Firstly, we consider the observed throughput limits at
different imposed traffic loads. As expected, the cause of
throughput limit can in most cases be attributed the sat-
uration of the EmuHost CPU. Since we have such a sim-
ple SimNet, our event-loop utilization measurements show

that the most clock-cycles are consumed handling events
related to capturing and writing packets from/to the phys-
ical network. Compared to the handling of the relatively
simple events of simulating the propagation of a captured
packet across a SimLink, the events passing packets across
the emulation boundary require system calls involving costly
operations of copying complete packets between kernel and
user space. The ns-2 event-loop instrumentation results pre-
sented in Figure 5 clearly show the difference in handling-
time between the two types of aforementioned events. For
the four packet sizes, it shows the distribution of event loop
time on the low and high end machines. The lowest area
represents the time used for read operations, and the area
above for write. The area entitled “sleep” and the black area
together make up unproductive event-loop time, the latter
comprising the busy waiting introduced in [3]. The area
in-between represents pure simulated events, constituting a
relatively small fraction of available time compared to the
read and write operations. These plots also show that the
main reason for the throughput bottleneck is saturation of
the ns-2 event-loop, in turn caused by exhaustion of available
CPU clockcycles. They are furthermore coherent with the
development seen in the throughput plots; we see a linear in-
crease in event-loop utilization across increasing traffic loads
for the low end EmuHost, while the high end instrumenta-
tion plots reflect the pre-saturation packet drops indicated
by the throughput measurements.

For 500, 1000 and 1472-byte packets in the high end case,
the sub-linear increase in event-loop utilization indicate that
packets get dropped already before arriving at the UDP-
socket for ns-2 to capture. Hence, for these three packet
sizes, ns-2 no longer poses as the bottleneck. In addition,
our SAR-measurements report that practically 100% of the
traffic load in fact arrives at the network interface card
(NIC). Hence, these packets must have been dropped af-
ter arriving at the NIC, but before arriving at the ns-2’s
UDP-socket; an effect observed for the low end EmuHost
only during CPU-saturation. The reason may be that al-
though both low and high end computers run on identically
configured kernels, the different CPU-architectures (32-bit,
single-core Intel versus 64-bit, dual-core AMD) may have
an effect on scheduling between ns-2 and the kernels inter-
nal packet forwarding, affecting how packets are dropped
within the kernel. The observed packet drop development,
gradually increasing during increased packet arrival rates,
may remind of a dropping scheme similar to random early
detection. The fact that only the larger packets experience
these packet drops, suggest that receive queues in the ker-
nel, whose sizes are specified in number of bytes, may drop
packets due to the kernel forwarding packets from the NIC’s
receive queue in bursts during high arrival rates. Another
possibility may be that different policing rules are deployed
in kernels due to the two hosts utilizing different NICs. Fi-
nally, because of the unreliable nature of UDP, the kernel
may indeed drop packets at any suitable location in the stack
as it sees fit, depending on the particular implementation.
Although further studies are required to confirm or deny
these speculations, our results show how different host sys-
tem hardware and/or OS configurations can impact network
emulation performance. Hence, in preliminary work during
experiment design, one should not underestimate the im-
portance of becoming properly familiar with key hardware-
and kernel-specific mechanisms involved in traffic reception
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and transmission. Tools such as iptables [10] and tc [11] are
among those that can be utilized to modify and gain valuable
information about routing and shaping policies employed by
the kernel.

The correlation between increasing packet size and de-
creasing throughput is partly caused by packet copying time
between kernel and user-space. On the end-to-end packet
journey, we rely on three such copy operations per packet
per RWHosts, namely between RWApps and TAP devices,
TAP devices and tapudp, and between tapudp and the UDP
tunnel. At the EmuHost, two such copy operations are re-
quired between the UDP tunnel and ns-2. Another reason
for packet drops lies in the forwarding of outbound traffic by
tapudp. As soon as tapudp is scheduled for execution, all
packets waiting on TAP devices are written to the tunnel as
fast as possible, hence being forwarded in bursts. Further-
more, since receive queue sizes at the EmuHost are specified
in bytes, the smaller the incoming packets are, the more of
them fit within receive queues. Hence, it is probable that
large packets are dropped since the bursts grow too big for
the receive queues. This effect is more prevalent in our last
experiment, presented and analyzed in Section 4.2.

Looking at the RTT-plots in Figure 4, we notice a steady,
nearly linear pre-saturation increase of about 1 ms and 2
ms for high and low end configurations, respectively. Since
there is an increasing number of packets to forward across
the EmuPath, the average duration ping probes have to wait
for expedition at intermediate buffers increases, especially
in lieu of the aforementioned bursty forwarding. Since the
high end hosts have more processing power, and because
their two cores open for the possibility of running packet
reception code in parallel with ns-2, receive queues may not
grow as much, and can be emptied faster, resulting in lower
RTT during non-saturating conditions.

We furthermore see how RTT increases drastically in cor-
respondance to the amount of packet drops performed. One
of the main reasons for dropping packets are filling queues.
Upon EmuHost saturation, the rate at which packets arrive
at the NIC surpasses the rate at which the host can capture
them, resulting in a sudden filling of receive queues. Ping
probes that are not dropped must in these cases suddenly
wait in receive queues for a significantly longer time while
all preceding packets are dequeued and forwarded, result-

ing in the observed jump in RTT measurements. Also, the
smaller the packet, the more fit within the queues, and since
we experience a maximum queue utilization during satura-
tion, the corresponding waiting times are much higher for
the smallest packets.

4.1.2 Summary and Possible Improvements

This experiment unveils throughput limits and RTT over-
head imposed by DCE while utilizing EmuHosts with two
hardware specifications. We also found that the CPU-power
at the EmuHost is the main limiting factor for throughput,
that receive queues at the EmuHost cause increased extra
RTT with higher traffic rates, and that their sizes probably
have a significant effect on packet drops internally in the
kernel for very high packet arrival rates. Taking into con-
sideration these results when designing experiments across
hardware with certain specifications, one can make more
precise assumptions about achievable accuracy of emulation,
and more easily avoid the unwanted effects of system satu-
ration. However, our results show how the type of hardware
utilized and its configuration have a major impact on perfor-
mance, indicating the importance of proper familiarization
and configuration of ns-2 external mechanisms such at re-
ceive queues and kernel scheduling.

Based on our findings, this section proposes a few changes
to the system believed to improve performance in different
ways. Our focus lies on the EmuHost, since it was found
to be the throughput bottleneck and main source of RTT-
overhead.

With regard to throughput, it is clear that increasing
computational resources on the EmuHost results in higher
throughput and lower RTT. Aside from increasing CPU power,
distributed or parallel execution of ns-2 may be an alterna-
tive [12] [13]. On the other hand, one could attempt to
lower the computational cost associated with passing pack-
ets across the emulation boundary. Since network models
often inspect only a small fraction of packets (i.e. headers)
during emulations, lowering packet read and write overhead
could be accomplished by passing only the portions of inter-
est through the SimNet, while routing the complete pack-
ets directly to the destination RWApp. Another approach
could be to utilize memory-mapped ring buffers for exchange
of packets between user and kernel space, eliminating both
packet copy and system call overhead. Finally, increased re-
ceive queue sizes residing within the EmuHost kernel should
have a positive impact on performance.

4.2 Effect of Increasing the Number of Emu-
Paths

In this section we focus on achievable throughput, accu-
racy and flow fairness across increasing numbers of involved
EmuPaths. We impose traffic at 6 different rates for both ex-
periment sets, all rates at any time configured to be equally
distributed across all available EmuPaths. Total throughput
is defined as the sum of the throughput of all EmuPaths, and
is in Figure 6 denoted in relation to an increasing number
of included EmuPaths. The grayscale plots indicate how to-
tal throughput is distributed across the available EmuPaths,
with increasing the number of EmuPaths along their x-axes
and EmuPath ID along the y-axes. From black to white, our
gray scales represent 100% to 0% throughput, relative to the
traffic load injected onto the particular EmuPath. Practi-
cally all packet drops are performed between the NIC and
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Figure 6: Throughput for Experiment 2.

TAPs at the destination RWHost. For an accurate repre-
sentation of throughput, we therefore decide to present the
average number of packets per second arriving at the desti-
nation TAP devices.

The graphs outline an overall exponential decline in total
throughput with increasing the number of EmuPaths. In
our experiments, maximum throughput drops from 24200
pps to 7700 pps (68.18% decrease) and 15000 to 2800 pps
(81.33% decrease)3 for the low and high end set-ups, respec-
tively. This observation is particularly interesting as increas-
ing the number of EmuPaths and RWApps in real-world ex-
periments often imply increased amounts of injected traffic.
This effect should therefore be kept in mind when consider-
ing the feasibility of the DCE for large-scale experiments.

Secondly, our throughput distribution plots show an un-
even distribution of packet drops across EmuPaths; fewer
packets are dropped for the lower numbered EmuPaths. Hence,
if one does not carefully restrict imposed traffic workload
during emulation experiments including multiple EmuPaths,
traffic flowing across these will experience unfair packet drop-
ping. However, as mentioned above, care should be taken
to restrict the experiment magnitude to avoid any packet
drops in the distribution layer. These throughput distribu-
tion plots during system overload are nevertheless beneficial
for the purpose of analysis to gain understanding of system

3Note that maximum obtainable throughput with 10 Emu-
Paths is in fact somewhat larger, but due to shortage of time
we could could not pinpoint this exact value.
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Figure 7: RTT for Experiment 2.

behaviour and underlying mechanisms in the work towards
prospective improvements (see Section 4.2.2).

Figure 7 illustrates the amount of RTT over 20ms ob-
served across our three selected EmuPaths while increasing
the total number of EmuPaths across the environment. The
main purpose of these is to show the trends in RTT increase.
To avoid overfilling the plots and because of very high ping-
probe losses at high rates, we include only measurements
for the lower rates. Notice that the y-axes have different
dimensions. At a first glance we immediately notice how
RTT increases with increased number of EmuPaths. We fur-
thermore experience larger delays at higher numbered Emu-
Paths, and an increasing difference between them as we add
more of them to the environment. During pre-saturation
conditions, we see that EmuPath 1 shows a relatively mod-
est increase of less than 1ms for all reported rates, while the
middle and highest numbered ones increase with up to 2-3
ms. We also see that higher numbered EmuPaths are more
affected by increasing traffic rates, adding to the difference
in RTT between the paths. These observations suggest that
even if we keep imposed traffic load below the throughput
limit, increasing the number of EmuPaths involved in the
experiment cause increased RTT emulation overhead and
larger differences between them. Finally, we see a sudden
increase at certain points, similar to that found in RTT mea-
surements obtained in our first experiment (see Figure 4).
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4.2.1 Analysis

In this section, we first look at the reasons behind the
throughput development found in Figure 6. In our analysis,
we focus on the throughput distribution plots, in which we
have identified three particular characteristics:

1. EmuPaths are unfairly differentiated into three dis-
tinct groups wrt. packet drop rate:

• Group 1: A small set of the lowest numbered ones
experiencing relatively low packet drop rate.

• Group 2: An equally small set of the highest num-
bered ones experiencing a close to 100% packet
drop rate.

• Group 3: A larger set of the remaining EmuPaths
experiencing increasing drop rates with increasing
the number of EmuPaths.

2. At certain numbers of EmuPaths (for instance, 220
EmuPaths, 7500 pps in the low end case), we see how
EmuPaths in the above mentioned Group 3 are grouped
in clusters wrt. the packet drop rates they experience.
This is more clearly visible for the measurements from
the low end plots, where we also notice how this effect,
visible as “stripes of waves” in the grayscale plots in
Figure 6, occur more often for lower rates.

3. We experience higher packet drop rates with increasing
packet generation rates for all three groups.

Packets are mainly dropped at two locations: at EmuHost
receive queues and at destination RWHost receive queues be-
fore arriving at the tapudp instance. At the EmuHost, we
find that packets are dropped independently of the number
of EmuPaths, while increasing total traffic load results in
drops according to what is seen in Figure 3. This is the
cause of Characteristic 3 above. Upon packet arrival, ns-2
locates the virtual source to receive the packet through a
simple lookup in the tapudp-array (see Section 2), the com-
putational workload of which is independent of the number
of occupied slots in the array. Further propagation of the
packet between the virtual source and destination, and back
onto a UDP tunnel, is with our simple SimNet also inde-
pendent of the number of EmuPaths. This explains why
increasing the number of EmuPaths does not affect ns-2
throughput. How more complex SimNets are affected by
increasing emulation experiment magnitudes, are out of the
scope of this paper (see [2] and [3] for some investigations).

The packet drops causing throughput distribution Char-
acteristics 2 and 3 are performed at the receive queues of the
receiving RWHost, and mainly increase with the number of
EmuPaths. This behaviour is rooted in the interaction be-
tween RWApp multitasking and tapudp’s manner in which
to forward traffic between TAP devices and the UDP tun-
nel. Between every time tapudp is scheduled to execute,
a set of RWApps have time to transmit packets to TAP
devices. Depending on transmission rate, scheduling order
and the number of executing RWApps, certain TAP devices
will have packets waiting to be forwarded when tapudp is
scheduled to execute. Upon selection of outbound packets,
tapudp runs through all available TAP interfaces, in the or-
der of their associated number, forwarding one packet, if
available, per interface onto the UDP tunnel. We refer to a
complete cycle through the TAPs as a round. A key observa-
tion is that the order in which packets are transmitted from
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Figure 8: Snapshot of a run in Experiment 2.

RWApps are not preserved upon tunneling; lower-numbered
TAPs are always serviced before higher-numbered ones, re-
gardless of the order in which they arrive at the TAPs. Fur-
thermore, the resulting train of outbound packets are writ-
ten onto the UDP tunnel as fast as possible, restricted only
by the bandwidth of the network link. In effect, outbound
traffic is forwarded in bursts in which packets are ordered
by increasing EmuPath id, and the burst sizes depend on
the number of involved EmuPaths and individual RWApps’
packet transmission rates. At the receiving RWHost, only

one packet is captured per round regardless of the number of

EmuPaths, while as increased number of EmuPaths implies
more work per round for polling TAP devices, even in the
absence of outbound traffic. Therefore, tail dropping oc-
curs at the destination RWHost during increasing number
of EmuPaths due to more slowly emptying receive queues.
The added overhead of scheduling an increased number of
RWApps also matters, although our measurements suggest
this to be of less impact than the added tapudp polling.

For clarification, we employ the instrumented version of
tapudp in a 30 second experiment run, from which Figure 8
presents a snapshot of 8 sequence numbers, drawn from the
middle of the run, i.e. after 18 seconds. We generate 15000
pps distributed over 200 EmuPaths, and enable our simpli-
fied ns-2 tracing (the overhead of this tracing is neglectable
for the following analysis). The snapshots in Figure 8 rep-
resent EmuPath IDs along the y-axes and time along the x-
axes. TG and tapudp timestamps are denoted in gray and
black pixels, respectively. The middle plot denotes times-
tamps for packets arriving at and departing from the Sim-
Net as gray and black pixels, respectively. At the source
RWHost, notice the steep slopes present in the tapudp mea-
surements, and how the TG instances and tapudp take turns
at execution. This slope indicates the rapid forwarding of
subsequent packets, resulting in the aforementioned bursts.
We also see how the SimNet, not configured to perform any
traffic shaping, preserves the burstyness of passing traffic,
even though an added computational effort of sustaining the
SimNet results in a modest dispersion of packets within the
bursts. Upon arrival at the destination RWHost, we see how
tail dropping causes a significant loss of packets at the end
of the bursts. As mentioned, these are always the ones be-
longing to the highest numbered EmuPaths, explaining the
appearance of Group 2 from Characteristic 1. Low num-
bered EmuPaths (Group 1) are on the other hand always
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Figure 9: Throughput for Experiment 2 with modi-
fied tapudp

favoured, as early packets never get dropped from bursts ar-
riving at empty queues. Notice also how TG and tapudp
timestamps overlap in the plot for the destination RWHost.
This indicates that the kernel schedules the destination TG
instance to capture its packet immediately after tapudp has
forwarded it from the tunnel. We find this to be the case
during high packet generation rates and/or high numbers of
EmuPaths.

In testing this theory, we conducted Experiment 2 again
with tapudp modified to address the issue of differing amounts
of workload associated with in- and outbound traffic. In-
stead of polling for only one inbound packet per round, our
modified tapudp polls for one inbound packet for each poll
for an outbound packet from a TAP device. That is, in the
presence of N TAP devices, the number of polls for both
inbound and outbound packets per round becomes equal to
N. The results presented in Figure 9 indicates a significant
increase in throughput of up to 172% for 250 EmuPaths
compared to Figure 7, and that the modified tapudp treats
the EmuPaths much more fair. Note that the dimension of
the y-axis is different from that in Figure 6. Now, ns-2 re-
claims the role as the main bottleneck, which is not affected
by the number of EmuPaths. This modification is meant for
proof of concept purposes only, as we have not yet performed
any proper evaluation to unveil any other prospective con-
sequences of this modification.

Next, we look at the RTT emulation overhead found in
Figure 7. In explaining the different characteristics of RTT
overhead, we employ our instrumented tapudp and ns-2 trac-
ing experiment runs across 50 to 250 EmuPaths, generating
500 byte frames at a total rate of 10000 pps. These were
repeated 5 times to obtain a satisfyingly low SD in our re-
sults. We use this combination of values because Figure 7
shows how the corresponding obtained measurements clearly
contain the most important characteristics new to this ex-
periment. We use the high end setup (but the underlying
mechanisms responsible for RTT overhead is the same in the
low end case). We collect RTTs at the ping instances, the
source tapudp instance, the ns-2 exit-point and at the des-
tination’s tapudp instance. By combining these, we are able
to differentiate between contributions to the RTT overhead
belonging to four portions of the end-to-end path. These
portions are numbered 1 through 4 in Figure 10 where we
present our five-run averages. In comparing these results
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Figure 10: Distribution of RTT overhead.

with those for the high end setup in Figure 7, we see overall
larger values due to the extra measurement overhead. How-
ever, in this analysis the most important information lies in
the difference in values between portions of the end-to-end
path.

First, we observe how the major difference in RTT mea-
surements between EmuPaths appear in Portion 3 of the
end-to-end path, especially for higher numbers of EmuPaths.
This is in agreement with our throughput distribution dis-
cussion above. An increased number of EmuPaths implies
larger bursts in which packets are ordered increasingly wrt.
their EmuPath IDs. Therefore, packets belonging to higher
numbered EmuPaths are preceded by a higher number of
packets in the destination RWHost’s receive queue, and must
hence wait longer to be serviced by tapudp. Once cap-
tured by tapudp, a packet covers Portion 4 of the path rel-
atively quickly, causing the corresponding bars in Figure 10
to be invisibly small. This graph also suggests a similar,
but less prevalent, relationship between EmuPaths for Por-
tion 2, caused by the same queuing effect occurring within
EmuHost receive queues. Here, the difference is smaller be-
cause less work has to be done per packet. Although future
experiments have to confirm this, we believe a more compli-
cated SimNet may increase this difference also for Portion
2.

4.2.2 Summary and Improvement Proposals

Experiment 2 shows how the mechanism for reception of
traffic from the UDP tunnel is responsible for the perfor-
mance degradation with increased number of EmuPaths,
shifting the bottleneck from ns-2 to tapudp when includ-
ing many EmuPaths. Increasing the number of 1-to-1 map-
pings between TAP devices and tapagents decreases max-
imum obtainable throughput and increases end-to-end de-
lay, an effect one should be particularly aware of when de-
signing large-scale experiments. Furthermore, we see how
tapudp treats EmuPaths increasingly unfair when increas-
ing the number of them. Hence, when analysing results from
large-scale experiments one should consider how the system
differentiates the involved EmuPaths.

Taking our findings into consideration, we believe per-
formance improvements can be gained both by configura-
tional means and by utilizing alternative approaches for traf-
fic forwarding between RWApps and ns-2. One optimiza-
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tion regards the manner in which to distribute RWApps
across RWHosts. We see how increasing the number of Emu-
Paths causes an increased difference between RWHosts in
the amount of instructions required by tapudp per commu-
nicated packet. Hence, given that the approximate amount
of traffic to be generated by each RWApp included in an
experiment is known, a manner in which to increase total
obtainable throughput would be to distribute RWApps so
as to balance the amount of inbound and outbound traf-
fic at each RWHost. This way, the polling of TAP devices
for outbound traffic becomes more efficient, since this traffic
will more often be available. Note that in this respect, our
experiments represent the opposite extremity involving only
simplex traffic travelling from one RWHost to another.

To address the problem of tail dropping upon reception
of large packet bursts, one could increase the size of re-
ceive queues to at least max(NrTAP )×NrRWHost ×MTU ,
max(NrTAP ) being the highest number of TAP devices pre-
sent at any RWHost, MTU being the maximum packet size
involved in the experiment and NrRWHost the number of
RWHosts involved. This way, receive queues will always
be large enough to contain bursts created by tapudp, and
moreover any train of bursts resulting from simultaneous
transmission among RWHosts. For large-scale experiments,
however, this approach could become unfeasible in requiring
very large receive queues.

Other possible optimizations involve employing alterna-
tive mechanisms for traffic forwarding. Upon being sched-
uled for execution, tapudp forwards the burst of available
outbound packets in the order of the TAP device at which
they appear, regardless of the order in which they left RW-
Apps. We propose adding a single FIFO queue between
the TAP devices and tapudp, such that references to all
packets arriving at TAP devices are placed into this queue
immediately after arriving at the device. tapudp may then
retrieve outbound packets from such a queue in the order
in which they left their RWApps, rather than according to
TAP device numbers, effectively resolving the unfairness ob-
served in our results. Also, if one enables tapudp to poll
the FIFO queue once per round regardless of the number of
TAP devices present, the difference in instructions required
at a source and a destination RWHost disappears, allowing
RWApps to be distributed more freely across RWHosts wrt.
the amount of traffic they generate and receive. For maxi-
mum efficiency, this FIFO queue should be implemented as
part of the kernel.

In our final proposal we suggest exchanging the user space
tunneler with the kernel space ethernet switch emulator
Net:Bridge [14]. By attaching all TAP devices along with
the physical network interface to such a switch, and by de-
noting the EmuHost as the gateway for all outbound traffic,
we can achieve forwarding of packets between RWApps and
ns-2 without a UDP tunnel. A similar approach was outlined
in [2] for the SHE, but does not seem to be properly evalu-
ated. This solution avoids the extra packet copying between
kernel and user space, along with having the same prop-
erties as the above mentioned FIFO-queue. Furthermore,
because of the absence of extra UDP-headers, the network
interconnecting RWHosts and the EmuHost could more re-
alistically be considered as part of the emulation experiment
(further elaboration in [9]). This approach however requires
the EmuHost and RWHosts to reside in the same private
physical network, as the source and destination TAP devices’

addresses still adhere to the imposed addressing scheme in-
volving only private 10.*.*.* addresses.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we expose the DCE extension to a perfor-

mance evaluation. The extension enables the 1-to-1 mapping
between real world applications (RWApps) and dedicated
locations within a simulated ns-2 network (SimNet), where
RWApps and ns-2 can execute on different physical hosts
connected through a UDP tunnel. We obtain measurements
from experiments where we vary the number of communicat-
ing RWApp pairs (EmuPaths) and the amount of traffic gen-
erated by these. By including only a minimal SimNet and
uniform traffic streams, we unveil how ns-2 external emula-
tion mechanisms (the distribution layer) impose throughput
limits, unfairness and end-to-end delay overhead.

Aside from pinpointing the throughput limit with two dif-
ferent hardware specifications, we locate and analyze the two
main traffic bottlenecks. First, ns-2 limits the total obtain-
able throughput due to CPU saturation, and second, the
design of the custom tailored UDP tunnel limits the num-
ber of involved RWApps. We unveil how increasing the the
number of RWApps causes the instructions required per re-
ceived packet to increase at the destination RWHost’s end
of the UDP tunnel, in effect significantly decreasing max-
imum obtainable throughput. Packet drops were further-
more found to be unevenly distributed between the Emu-
Paths, due to the UDP tunnel implicitly prioritizing lower
numbered EmuPaths over higher numbered ones. In addi-
tion, we show how increased traffic load and the number
of RWApps cause higher end-to-end delays, and how these
values also differ between EmuPaths.

To the best of our knowledge, the only earlier studies re-
ported in literature on the performance of ns-2 extended for
emulation was those performed by the authors of the exten-
sions themselves [2] [3]. Their main focus lies on the ac-
curacy of wireless ns-2 SimNets under real-time constraints,
and they compare measurements from emulations and equiv-
alent experiments with real networks. Following a single
host approach (SHE), they utilize only one physical Linux
computer for their experiments, emulating RWHosts as in-
stances of User Mode Linux (UML) running alongside ns-
2. Our performance evaluation differs from the above men-
tioned in two aspects. First, our work evaluates the DCE
rather than the SHE, and second, our focus lies on the dis-

tribution layer rather than the SimNet model.
Besides ns-2 there are numerous other distributed net-

work emulators. Marenholz and Ivanov discuss in [3] and [2]
how some of these emulators relate to their ns-2 extension.
Furthermore, we recommend the surveys from Göktürk [15]
and Kroppf [16] for a classification of the different emulators.
For each of these emulators, their authors have performed
some kind of evaluation. The common concerns in these
evaluations are whether the emulating machinery can keep
up with the real-world (mostly limited by CPU), and how
precisely network emulation is performed. In comparing our
work with these, we realize that our particular focus on ns-
2 specific mechanisms make direct comparisons unfeasible.
Differing hardware and operating systems (OS) utilized fur-
ther complicate such comparisons.

NetBed [17], a descendant of EmuLab, should nevertheless
be explicitly mentioned as it utilizes ns-2 emulation to in-
tegrate simulated networks with real-world elements. Their
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performance evaluation includes measurements of the accu-
racy and scalability of ns-2 emulation utilizing an 850Mhz
PC for emulation interposed between two PCs, each trans-
mitting a UDP traffic flow to the other (i.e. a duplex flow).
They obtain an aggregate throughput of 8000pps with 64
and 1512-byte packets, which, taken the difference in exper-
iment set-up, OS and hardware into account, is in agreement
with our results. It should be noted that they also utilize
an older and simpler version of ns-2 emulation [18], to which
they made several fixes and improvements for the particu-
lar integration into NetBed. They do however lack a proper
evaluation of fairness between concurrent traffic flows, and
utilize only one hardware configuration in their experiments.

Based on our measurement analysis, we propose a few
modifications to the system believed to result in different
kinds of performance gains. We demonstrate with a simple
proof of concept modification how to improve throughput
and fairness. However, proper implementation and evalua-
tion of our suggestions remain as future work. In this re-
spect, the evaluation of the emulator Trellis [19] may be of
particular interest, as they include investigations of differ-
ent approaches for forwarding packets between distributed
applications. They demonstrate how avoiding user space
forwarding of packets can result in significant throughput
gains, and how tunneling and software bridging of physical
and virtual network interfaces impact performance. On the
other hand, an approach similar to our proposed packet dis-

tilling is taken by the ModelNet emulator [20] to maximize
throughput. Here, the emulating machinery consists of a
set of Core Nodes over which the simulated network is dis-
tributed, and between which only packet headers are passed
during emulation.

For other future work, it would be interesting to see how
the system performs with larger and more complex SimNets
and/or with differing characteristics of traffic load (such as
bursty or duplex traffic). Finally, performing a similar eval-
uation of the SHE extension would be a natural second step.
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