
Turbo Receivers with IT++

Bogdan Cristea
∗

Sytron Technologies Overseas
266-268 Calea Rahovei

Bucharest, Romania
cristeab@ieee.org

ABSTRACT
This paper presents an extension of the IT++ library useful
for the study of turbo receivers. Turbo receivers are imple-
mented using basic Soft-Input Soft-Output (SISO) modules.
From a programming point of view, SISO modules are repre-
sented by methods of one C++ class. Each SISO module is
defined by a specific instantiation of the Maximum A Pos-
teriori (MAP) algorithm. Thus, various configurations of
turbo receivers can be obtained. Several examples of turbo
receivers together with simulation results are given.

Categories and Subject Descriptors
[open source simulation tools]: digital communications

Keywords
signal processing, turbo receivers, compiled programming
language, C++

1. INTRODUCTION
Scientific research relies heavily on computers and simu-

lation software in order to obtain new results and to val-
idate the theoretical developments. In this paper we will
consider one application of simulation software in order to
study turbo receivers for digital communications.

Turbo receivers were initially proposed for the decoding of
Parallel Concatenated Convolutional Code (PCCC) [4] and
have attracted the attention of the scientific community due
to their very good performance in Additive White Gaus-
sian Noise (AWGN) channels. Their success is based on the
application of a suboptimal decoding algorithm relying on
the iterative exchange of soft information between two SISO
modules [3]. Thus, performance close to channel capacity

∗Bogdan Cristea has a PhD in telecommunications from
National Polytechnic Institute of Toulouse, France, his re-
search interests including turbo receivers and multiple ac-
cess systems. Currently he is working as software engineer
in Bucharest, Romania.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthe first page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009ICST 978-963-9799-45-5.

can be obtained with reasonable complexity [4]. The SISO
modules use the well known MAP algorithm which com-
putes the output soft information, based on the input soft
information and code structure [2]. The principle of PCCC
was generalized to serial (hybrid) concatenated turbo codes,
equalization [6], synchronization [13] and multi-user detec-
tion [22], all relying on some modified (sometimes simplified)
form of the MAP algorithm.

When simulating turbo receivers, the main difficulty is
the implementation of the MAP algorithm in a form suit-
able for a given application (decoding, equalization, etc.). In
digital communications, a generally accepted tool among sci-
entists and engineers is MATLAB [20] offering a high-level
language, primarily intended for numerical computations.
Open source replacements for MATLAB are GNU Octave
[7] or SciLab [17], with similar functionality and program-
ming language. MATLAB offers a powerful set of functions
suited for numerical computations together with very good
graphical capabilities. However, since MATLAB uses an
interpreted language, the source code is not compiled but
is interpreted on the fly. Thus, programs written in MAT-
LAB could be significantly slower than progams written in a
compiled language (e.g. C++ or Fortran). This particular-
ity makes MATLAB impractical for the implementation of
MAP algorithms (and not only) due to their computational
complexity, so one needs to consider compiled languages.
Actually, many of the functions offered by MATLAB fol-
low the same approach and are implemented in a compiled
language, offering only an interface for MATLAB. Since in
MATLAB (and its open source replacements) there is no set
of functions specifically designed for the implementation of
turbo receivers, it seems to be a good idea to implement
several SISO modules from which turbo receivers can be
constructed. We have chosen C++ as the implementation
language using also the IT++ library [19] for some basic
mathematical and communication specific functions.

The rest of the paper is organized as follows. First, the
IT++ library is presented. The main features of this open-
source library are emphasized. In section 3 the implementa-
tion of SISO modules using the IT++ library is described.
Several examples of turbo receivers together with simulation
results are also given. The paper ends with some conclusions
and directions for future work.

2. IT++ LIBRARY
IT++ is an open-source library written in C++. Its pri-

marly use is in numerical computations, signal processing
and digital communications. The kernel of the library con-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



sists of generic vector and matrix classes and a set of ac-
companying routines. Such a kernel makes IT++ similar to
MATLAB or GNU Octave.

According to the reference documentation [19], the IT++
library originates from the former department of Informa-
tion Theory (IT) at the Chalmers University of Technology,
Gothenburg, Sweden. Because the library is coded in C++,
the name IT++ seemed like a good idea at the time. IT++
is now released under the terms of the GNU General Public
License (GPL) and developed and maintained by the users’
community. In 2005, 2006 and 2007, IT++ was also devel-
oped as a part of the European Network of Excellence in
Wireless Communications (NEWCOM).

IT++ makes an extensive use of existing open-source or
commercial libraries for increased functionality, speed and
accuracy. In particular BLAS, LAPACK and FFTW li-
braries can be used. Instead of the reference BLAS and LA-
PACK implementations, some optimized platform-specific
libraries can be used as well, i.e.:

• Automatically Tuned Linear Algebra Software (AT-
LAS) - includes optimised BLAS and a limited set of
LAPACK routines

• Intel Math Kernel Library (MKL) - includes all re-
quired BLAS, LAPACK and FFT routines (FFTW not
required)

• AMD Core Math Library (ACML) - includes BLAS,
LAPACK and FFT routines (FFTW not required)

It is possible to compile and use IT++ without any of the
above listed libraries, but the functionality will be reduced.

IT++ works on GNU/Linux, Sun Solaris, Microsoft Win-
dows (with Cygwin, MinGW/MSYS or Microsoft Visual
C++) and Mac OS X operating systems.

Features offered by this library include:

• basic mathematical functions: templated vector and
matrix classes, sparse vector and matrix classes, ele-
mentary functions on vectors and matrices, statistics
classes and functions, random number generation (Mar-
senne Twister generator), integration of 1 dimensional
functions, etc.

• signal processing: filter functions and classes, frequency
domain filtering, Fast Fourier Transform (FFT), Dis-
crete Fourier Transform (DFT), Discrete Cosine Trans-
form (DCT), Hadamard transforms, etc.

• communications: modulators (Binary Phase Shift Key-
ing (BPSK), Phase Shift Keying (PSK), Pulse Ampli-
tude Modulation (PAM), Quadrature Amplitude Mod-
ulation (QAM)), multipath fading channels (both fre-
quency flat and frequency selective), convolutional and
punctured convolutional codes, turbo codes, low den-
sity parity check codes, interleavers, Orthogonal Fre-
quency Division Multiplex (OFDM) and Code Division
Multiple Access (CDMA) modulators, etc.

• protocol simulation: event-based simulation classes,
Transmission Control Protocol (TCP) clients and servers,
packet generators, etc.

• source coding: Gaussian mixture modeling, reading
and saving several different audio and image file for-
mats, etc.

• functions for saving variables into files and loading
those variables in MATLAB or GNU Octave (useful
when results need to be graphically displayed since
IT++ does not have graphical capabilities)

• Application Program Interface (API) for programs writ-
ten in MATLAB or GNU Octave

The use of the IT++ library has several advantages: com-
putational speed, since it uses a compiled language; a large
number of routines already written, making easier the sim-
ulation of communication systems; a MATLAB-like vector
and matrix kernel classes and its open-source nature, al-
lowing to benefit from improvements written by the users’
community. Also, it allows easy integration with MATLAB
code, thus making possible to reuse code already written in
MATLAB by implementing in C++ only the most compu-
tationally expensive routines.

In the following sections, an extension of the IT++ library
will be presented for the simulation and study of turbo re-
ceivers using generic SISO modules.

3. TURBO RECEIVERS
In our approach, turbo receivers are implemented using

basic SISO modules [3]. Thus, greater flexibility is obtained
by defining the turbo receivers structure using only these
basic modules. All SISO modules are implemented as meth-
ods of one C++ class. Within the SISO class, the following
modules are implemented:

• decoder for Recursive Systematic Convolutional (RSC)
codes

• decoder for Non-recursive non-Systematic Convolutional
(NSC) codes

• descrambler for Interleave Division Multiple Access (IDMA)
or Direct-Sequence Code Division Multiple Access (DS-
CDMA) systems

• equalizer for multipath channels (with and without
precoding)

• Multi-User Detector (MUD) for IDMA systems (with
and without precoding)

• demappers for Bit-Interleaved Coded-Modulation (BICM)
systems and Space Time Bit Interleaved Coded Mod-
ulation (ST-BICM) systems

These modules are described in the next subsections, start-
ing with a description of a generic SISO module.

3.1 Generic SISO Module
A generic SISO module (figure 1) has two inputs with

intrinsic and a priori information and two outputs with ex-
trinsic information [4]. The relashionship between its out-
puts and its inputs is computed based on the knowledge of
the coder structure by employing some form of the MAP
algorithm [2].

For completeness, the definitions of intrinsic, a priori and
extrinsic information are given below.

The intrinsic information of coded bits is defined as:

L(v(n); I) = ln
p(y(n)/v(n) = 1)

p(y(n)/v(n) = 0)
(1)

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



SISO

module

intrinsic coded

a priori data

extrinsic coded

extrinsic data

Figure 1: Generic SISO module

where p(y(n)/v(n) = 1) is the probability density of the
received modulated symbol, y(n), knowing the coded bit
v(n) = 1.

The a priori information of data bits is defined as:

L(u(k); I) = ln
P (u(k) = 1)

P (u(k) = 0)
(2)

where P (u(k) = 1) is the a priori probability of the data bit,
u(k) = 1. The relationship between the data bits, u(k), and
the coded bits, v(n), defines the coding algorithm (e.g. con-
volutional coding, multipath propagation, multiple-access
channel, symbol mapping, space-time coding, etc.).

The extrinsic information of coded bits is defined as:

L(v(n); O) = Λ(v(n)) − L(v(n); I) (3)

where Λ(v(n)) is the Logarithm of Likelihood Ratio (LLR) of
coded bits. The extrinsic information of data bits is defined
as:

L(u(k); O) = Λ(u(k)) − L(u(k); I) (4)

where Λ(u(k)) is the LLR of data bits. Both LLRs, Λ(v(n))
and Λ(u(k)), are computed using the MAP algorithm or
some simplified version of it.

After the last iteration of the turbo reception algorithm,
data bits can be recovered from the LLR of data bits:

ũ(k) = 1 if Λ(u(k)) ≥ 0 (5)

Following the above described structure, SISO modules
can be specified by using a particular instance of the MAP
algorithm. These SISO modules are described in the follow-
ing subsection.

3.2 Detailed Description of SISO Modules
The SISO RSC module (figure 2) decodes RSC codes

of coding rate 1/2 and uses an adaptation of the MAP al-
gorithm for RSC codes [14]. Both versions, log MAP and
max log MAP are implemented. As can be seen from figure
2, its inputs and outputs are specific for this type of code
[4], their detailed description being out of the scope of our
paper.

An important detail related to the MAP algorithm is the
specification of initial conditions. In our implementation,
the trellis describing the RSC code must begin in zero state
and can end in zero state (tail bits must be added to input
data bits of the RSC code) or in an unknown state (no tail
bits needed). Thus, one knows how to set the RSC code ini-
tial and final states in order to correclty realize the decoding
operation.

SISO

RSC

intrinsic data&parity

a priori data

extrinsic parity

extrinsic data

Figure 2: SISO RSC module

When the BPSK modulated received symbols, y(n), are
fed into the SISO RSC module input, the intrinsic informa-
tion of data and parity bits has the expression:

L(v(n); I) = −
2

σ2
y(n) (6)

where σ2 is the variance of the AWGN. The sign minus in
the above expression comes from the way the BPSK map-
ping is done: 0 → +1 and 1 → −1. This situation appears
when the symbols arriving at the decoder input, y(n), af-
ter propagation through the AWGN channel, must be fed
direcly to the SISO RSC module.

If otherwise specified, all SISO modules assume the use
of BPSK mapping. The choice of this particular mapping
(0 → +1 and 1 → −1) was made in order to use the same
mapping as the IT++ library and allows to simplify the
implementation of MAP algorithms.

Applications of the SISO RSC module include turbo de-
coders for PCCC and Serial Concatenated Convolutional
Code (SCCC). An example of a turbo decoder for PCCC
will be discussed in subsection 3.3.

Another SISO module used in turbo decoders for SCCC
is the SISO NSC module (figure 3).

SISO

NSC

intrinsic coded

a priori data

extrinsic coded

extrinsic data

Figure 3: SISO NSC module

The NSC codes must have a coding rate of 1/r, where r
is the number of outputs of the NSC code. Both variants
of the MAP algorithm can be used (log MAP and max log
MAP) and the trellis must have the same properties as in
the case of RSC codes.

Optionally, a scrambler can be used at the NSC code out-
put in order to lower the coding rate. In this case, the SISO
NSC module is used for decoding both the NSC code and
the scrambler. The combination between an NSC code and a
scrambler is employed in IDMA systems in order to achieve
error correction capabilities together with spectral spreading
[15].

When only a spreading code is used (e.g. in IDMA or
DS-CDMA systems [16]) a SISO descrambling module

is also available (figure 4). The scrambler is seen as a repe-

SISO

descr

intrinsic coded

a priori data

extrinsic coded

extrinsic data

Figure 4: SISO descrambler module

tition code, thus allowing the implementation of a simplified
version of the MAP algorithm [12].

In the case of equalization, in single-user multipath chan-
nels, a SISO equalizer module can be used (figure 5).
The multipath channel is represented by a Finite Impulse
Response (FIR) filter with real coefficients, seen as a code
of coding rate 1. The channel order must be at least L = 1
(2 paths). The channel inputs must be BPSK modulated
symbols.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



SISO

EQ

received signal

a priori data

extrinsic data

Figure 5: SISO EQ module

As can be seen from figure 5, the general model of the
SISO module (figure 1) is not followed and the received sig-
nal is directly used as one input of the SISO module (in-
stead of the intrinsic information). The second input is rep-
resented by the a priori information of the channel input
symbols. There is a single output represented by the extrin-
sic information of the input symbols.

Optionally, a precoder can be used at the channel input
in order to obtain a recursive equivalent channel. When a
precoder is used, the channel order must be at least L = 0
(one path). Using a precoder allows to improve the perfor-
mance of turbo equalization at high Signal to Noise Ratio
(SNR).

The MAP algorithm (log MAP and max log MAP) is im-
plemented according to [10]. The channel trellis must begin
in zero state (that is, the channel cases must be filled with
+1 BPSK-modulated symbols). The channel trellis can end
in zero state or in an unknown state.

The SISO MUD module can be used in IDMA systems
in order to decode the Multiple-Input Single-Output (MISO)
equivalent channel represented by the multipath channels of
all users. Its inputs are the received signal (sum of signals
from all users after multipath propagation) and the a pri-

ori information of emitted symbols from all users (figure 6).
The output of the SISO MUD is represented by the extrin-

SISO

MUD

received signal

a priori data

extrinsic data

Figure 6: SISO MUD module

sic information of all users. In our implementation, we have
defined the a priori and extrinsic information as matrices
with rows corresponding to different users. The BPSK mod-
ulation is assumed for emitted symbols and the multipath
channels must have real coefficients.

The following algorithms are implemented [12], [11]:

• max log MAP

• Gaussian Chip Detector (GCD)

• simplified GCD

When the max log MAP algorithm is used, the channel
trellis must begin in zero state (that is the channel cases of
each users must be filled with +1 BPSK modulated symbols)
and can end in zero state or in an unknown state. When
the GCD and the simplified GCD are used, a zero padding
technique is necessary in order to eliminate the interblock
interference (a block is defined by the interleaver length)
[23].

As in the case of turbo equalization, a precoder can be
used at the input of each channel in order to obtain recursive
equivalent channels. In this case, only the max log MAP
algorithm can be used in the SISO MUD module [5].

For the more general case of Multiple-Input Multiple-Output
(MIMO) channels, a SISO demapper was implemented
(figure 7). The MIMO channel is assumed to be flat-fading,

SISO

demapper

received signal

a priori data

extrinsic data

Figure 7: SISO demapper

represented by a single complex attenuation at each time
instant. The channel inputs must be complex symbols from
QAM constellations.

The SISO demapper was designed for two types of MIMO
systems: BICM and ST-BICM. For BICM the following al-
gorithms are implemented [21]:

• log MAP

• max log MAP

and for ST-BICM [9, 24]:

• max log MAP algorithm adapted for Space-Time (ST)
block codes

• max log MAP algorithm adapted for Alamouti code
[1] (much lower complexity than the max log MAP
algorithm for ST block codes)

• Gaussian Approximation (GA)

• simplified GA

• Minimum Mean Square Error (MMSE) Parallel Inter-
ference Canceller (PIC)

• Zero Forcing (ZF) PIC

The ST block codes are implemented using the model pro-
posed in [8] with an an additional C++ class. Based on this
model, all algorithms implemented in the SISO demapper for
ST-BICM use an equivalent channel model with real coeffi-
cients including the ST block code and the MIMO channel.

The next subsection shows how the above described SISO
modules can be used to implement turbo decoders/receivers
for different types of communication systems.

3.3 Examples of Turbo Receivers
As a first example, we have chosen the PCCC (figure 8).

A PCCC is constructed from two RSC codes, usually with
the same generator polynomials and separated by an inter-
leaver [4]. In our example, the generator polynomials are:
G1 = 0378 and G2 = 0218. The first RSC code has the trel-
lis terminated (tail bits are added) and the second has un-
terminated trellis (no tail bits). The separating interleaver
is pseudo-random and has length of 214 bits. The output
is formed by using the systematic bits and the parity bits
from both RSC codes (figure 8). The symbols are BPSK
modulated before being send through an AWGN channel.

The IT++ library offers several classes for the implemen-
tation of the above described system. There is even a Turbo
Codec class implementing both the encoder and the turbo
decoder. However, our approach allows for greater flexibility
with respect to the coder structure (e.g. serial or hybrid con-
catenated codes) and interleaver choice. Further, separating

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



��
��
��
��d(n)

c(s)(n)

c(p1)(n)

c(p2)(n)

RSC1

RSC2

π(n)

Figure 8: Structure of PCCC

the turbo decoders into SISO modules allows the application
of EXtrinsic Information Transfer (EXIT) charts in order to
study the convergence of the turbo decoder [18].

The turbo decoder for PCCC uses two SISO RSC mod-
ules (figure 9). The input of the first SISO RSC module is
represented by the intrinsic information of data and parity
bits. The input of the second RSC module is represented
only by the intrinsic information of parity bits since the in-
trinsic information of data bits has been used in the first
SISO RSC module. The extrinsic information of data bits
is exchanged between the two SISO RSC modules during
several iterations after which the decision is made in order
to recover the data bits.

The performance of PCCC is evaluated using the max log
MAP (figure 10) and the log MAP algorithms (figure 11).
It can be seen that the use of the max log MAP algorithm
has worser performance at low SNR than the log MAP al-
gorithm. This is due to the fact that the approximation
log(exp(a) + exp(b)) ≈ max(a, b), used in the max log MAP
algorithm, does not hold at low SNR.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

1st it.

2nd it.

3rd it.

4th it.

Figure 10: Performances of the turbo decoder for

PCCC using max log MAP algorithm

Simulation time of programs written in C++ and MAT-
LAB are shown in table 1. Both programs use methods
from the SISO class. In order to call SISO class methods
from MATLAB, the API offered by IT++ has been used.

Packets of 214 pseudo-random data bits are send till 1500
bit errors are obtained at the decoder output. In order to
limit the simulation time, for high SNR where the number
of bit errors is small, the simulation stops if 106 data bits
were send. The data bits, together with parity bits, are
send, after BPSK modulation, through an AWGN channel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

1st it.

2nd it.

3rd it.

4th it.

Figure 11: Performances of the turbo decoder for

PCCC using log MAP algorithm

represented by an additive Gaussian random variable with
zero mean and variance determined by the SNR. Thus, the
simulation time represent the mean processing time needed
to encode and decode at least 106/214

≈ 61 packets.
Note that the time difference between simulation times

in C++ and MATLAB is almost constant for both MAP
algorithms since the most complex routines are written in
C++. Even so, simulation times show that there is an im-

Table 1: Simulation times for PCCC in C++ and

MATLAB
C++ MATLAB

max log MAP 1 hr, 0 min, 22 sec 1 hr, 35 min, 40 sec
log MAP 3 hr, 3 min, 57 sec 3 hr, 32 min, 55 sec

provement in simulation time for programs written in C++
with respect to MATLAB programs. Also, using the IT++
library, the development time in C++ is shortened with re-
spect to plain C/C++, since IT++ offers several classes
for the simulation of digital communication systems and a
MATLAB-like kernel.

As we have already mentioned above, using a turbo de-
coder based on SISO modules allows to study the conver-
gence of the turbo decoder with EXIT charts. Functions
needed for EXIT chart analysis are implemented as a sep-
arate EXIT class using IT++. The EXIT diagram of the
turbo decoder is shown in figure 12 at a fixed SNR of Eb

N0
=

0.8 dB. Both SISO RSC modules use the log MAP algo-
rihm. Note that in [18] the extrinsic information of data
bits is computed differently, by substracting from the LLR
both a priori and intrinsic information, not only the a priori

information as in our approach. Otherwise, our results are
identical with those presented in [18].

A second example of the use of SISO modules is the turbo
MUD for IDMA systems (figure 13). The presentation of
IDMA system goes behond the scope of our paper and will
not be made here. The interested reader is directed to [5]
and references therein. The turbo MUD (figure 13) uses a
SISO MUD module and several SISO descrambler modules,
corresponding to each user. In figure 14 it is shown the
performance of this multiple-access system. In this case, the
performance converges toward the performance of a single-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



�� ��

��

��

(L(d(n); I), L(c(p1)(n); I)) (0, L(c(p2)(n); I))

L(d(n); I) L(d(n); O)

L(c(p1)(n); O) L(c(p2)(n); O)

SISOSISO

RSC1 RSC2

π−1(n)

π−1(n)

π(n)

Figure 9: PCCC turbo decoder

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A
RSC1, I

E
RSC2

I ER
S

C
1 , I

AR
S

C
2

Figure 12: EXIT diagram of the turbo decoder for

PCCC

user system in AWGN channel. Variations at high SNR
of Bit Error Rate (BER) courves in figure 14 are due to
insufficient simulation samples and can be improved using
several techniques (e.g. using as stopping criterion for the
simulation a greater number of bit errors obtained at the
receiver output). As in the case of PCCC, the EXIT chart
analysis could also be applied to study the convergence of
the turbo MUD.

We have thus shown two examples of turbo receivers im-
plemented using SISO modules. These modules are generic
enough to be used for other configurations of turbo receivers.
The main advantage of using this approach is the compu-
tational speed obtained from the use of a compiled lan-
guage (C++). Further, the IT++ library already imple-
ments many functions and classes useful in simulations of
digital communication systems.

The sources of the above presented examples, together
with the SISO class, are available at
http://cristeab.googlepages.com/SISO_index.html.

4. CONCLUSIONS
In this paper we have presented an extension of the IT++

library useful for the study of turbo receivers employed in
digital communications systems. The extension consists in
the implementation of SISO modules for the construction of
various configurations of turbo decoders/receivers. Further,

x(0)(n)

SISO

SISO

SISO

SISO

MUD

descr

descr

descr

L(v1(n); O)

L(v2(n); O)

L(vM (n); O)

π−1
1 (n)

π−1
2 (n)

π−1
M (n)

L(b1(i); O)

L(b2(i); O)

L(bM (i); O)

π1(n)

π2(n)

πM (n)

L(v1(n); I)

L(v2(n); I)

L(vM (n); I)

Figure 13: Turbo MUD for IDMA systems

this approach allows the study of turbo receivers using EXIT
charts.

First, a brief overview of the IT++ library was given.
Then, several SISO modules, implemented as methods of
one C++ class, were described. Based on these modules, we
have discussed several examples of turbo receivers. Sim-
ulation results were also presented together with simula-
tion times for programs written in IT++ and MATLAB.
Thus, the advantage of using a compiled language (C++) for
complex algorithms implementation (in our case MAP algo-
rithms) was clearly demonstrated. The IT++ library, with
its MATLAB-like kernel, is in our opinion a good replace-
ment for MATLAB and other interpreted languages used by
scientists and engineers as simulations tools.

However, further work still can be done in order to extend
and optimize IT++ classes, for example by taking advantage
of the parallel processing capabilities of modern processors.

5. ACKNOWLEDGMENTS
The author would like to thank Adam Pi ↪atyszek for main-

taining the IT++ library and for kindly reviewing this pa-
per.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 



0 2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

1st it.

3rd it.

5th it.

7th it.

Figure 14: Performance of the IDMA system with

scrambler and using the simplified GCD for 8 users

6. REFERENCES
[1] S. M. Alamouti. A simple transmit diversity technique

for wireless communications. IEEE Journal on

Selected Areas in Communications, 16(8):1451–1458,
Oct. 1998.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv.
Optimal decoding of linear codes for minimizing
symbol error rate. IEEE Transactions on Information

Theory, pages 284–287, Mar. 1974.

[3] S. Benedetto, D. Divsalar, G. Montorsi, and
F. Pollara. A soft-input soft-output APP module for
iterative decoding of concatenated codes. IEEE

Communications Letters, 1(1):22–24, Jan. 1997.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near
Shannon limit error-correcting coding and decoding:
turbo-codes. In Proceedings of ICC’93, pages
1064–1070, May 1993. Geneva, Switzerland.

[5] B. Cristea, D. Roviras, and B. Escrig. Turbo receivers
for Interleave-Division Multiple-Access systems. IEEE

Transactions on Communications, 2008. to appear.

[6] C. Douillard, M. Jezequel, C. Berrou, A. Picart,
P. Didier, and A. Glavieux. Iterative correction of
intersymbol interferrence: turbo-equalization.
European Trans. Telecomm., pages 507–511, Sept.
1995.

[7] GNU Octave.
http://www.gnu.org/software/octave/index.html.

[8] B. Hassibi and B. M. Hochwald. High-rate codes that
are linear in space and time. IEEE Transactions on

Information Theory, 48(7):1804–1824, July 2002.

[9] C. Hermosilla and L. Szczecinski. Turbo receivers for
narrow-band MIMO systems. In Proc. ICASSP, 2003.

[10] R. Koetter, A. C. Singer, and M. Tuchler. Turbo
equalization: an iterative equalization and decoding
technique for coded data transmission. IEEE Signal

Processing Magazine, Jan. 2004.

[11] L. Liu and L. Ping. Iterative detection of chip
interleaved CDMA systems in multipath channels.
Electronics Letters, 40(14):884–886, July 2004.

[12] R. H. Mahadevappa and J. G. Proakis. Mitigating
multiple access interference and intersymbol
interference in uncoded CDMA systems with

chip-level interleaving. IEEE Transactions on Wireless

Communications, (4):781–792, Oct. 2002.

[13] N. Noels, C. Herzet, A. Dejonghe, V. Lottici,
H. Steendam, M. Moeneclaey, M. Luise, and
L. Vandendorpe. Turbo synchronization: an EM
algorithm interpretation. In Proc. IEEE International

Conference on Communications ICC ’03, volume 4,
pages 2933–2937, 11–15 May 2003.

[14] S. S. Pietrobon and A. S. Barbulescu. A simplification
of the modified Bahl decoding algorithm for
systematic convolutional codes. In Proc. ISITA, pages
1073–1077, Nov. 1994. Sydney, Australia.

[15] L. Ping. Interleave-division multiple access and
chip-by-chip iterative multi-user detection. IEEE

Communications Magazine, 43(6):S19–S23, 2005.

[16] J. G. Proakis. Digital Communications. McGraw-Hill,
New York, fourth edition, 2001.

[17] Scilab Consortium. http://www.scilab.org/.

[18] S. ten Brink. Convergence behavior of iteratively
decoded parallel concatenated codes. IEEE

Transactions on Communications, 49(10):1727–1737,
Oct. 2001.

[19] The IT++ library. http://itpp.sourceforge.net.

[20] The MathWorks, Inc. http://www.mathworks.com/.

[21] A. Tonello. Space-time bit-interleaved coded
modulation with an iterative decoding strategy. In
Vehicular Technology Conference, volume 1, pages
473–478 vol.1, 2000.

[22] X. Wang and H. V. Poor. Iterative (turbo) soft
interference cancellation and decoding for coded
CDMA. IEEE Transactions on Communications,
47(7):11–22, July 1999.

[23] Z. Wang and G. B. Giannakis. Wireless multicarrier
communications: where Fourier meets Shannon. IEEE

Signal Processing Magazine, pages 29–48, May 2000.

[24] X. Yuan, K. Wu, and L. Ping. The jointly Gaussian
approach to iterative detection in MIMO systems. In
ICC ’06. IEEE International Conference on

Communications, volume 7, pages 2935–2940, 2006.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5564 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5564 


