
Between Small Complex and Large Simplistic Network
Simulators

Marat Zhanikeev
Waseda University

1-21-1 Nishi-Waseda, Shinjuku-ku, Tokyo, 169-0051 Japan
maratishe@aoni.waseda.jp

ABSTRACT
Presently, discrete-even network simulation market is split
among a number of popular simulators, such as NS-x, OM-
NET++, Opnet, and maybe a few others. These tools are
very common in research that targets small to medium size
networks. Whenever one needs to simulate a large network
of many tens of thousands nodes, the ability to use tra-
ditional network simulators is questionable. Since perfor-
mance, and specifically, execution speed, is the number one
priority in traditional network simulation, simulation runs
are normally implemented as solid executables running in a
memory space, to which there is a physical limit. This paper
proposes a different paradigm of simulation that specifically
aims at the ability to simulate large networks while support-
ing models in nodes with any level of complexity.

Categories and Subject Descriptors
I.6.8 [Types of Simulation]: Discrete event, Distributed;
I.6.5 [Model Development]: Modeling methodologies

General Terms
Network simulation, large topology

Keywords
Computer networks, simulation, modeling, traffic, scalabil-
ity, discrete event simulation

1. INTRODUCTION
Many discrete-even simulators exist today in the area of

network analysis. Among them, OMNET++ [1] is proba-
bly the most actively developed since its source code has
been released to public. OMNET++ also offers GUI envi-
ronment for both topology creation and analysis of results
that makes it more attractive than ns2, which is text-based
in both these areas. In commercial domain there is OPNET,
which also offers a strong GUI support at three major lev-
els of modeling: node, module, and process. These three

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference name: SIMUTools 2008, March 3-7, 2008, Marseille,
France
Copyright number (LaTex): TBA
Copyright 200X ACM ...$5.00.

simulators arguably are the top three simulators in the area
of network analysis. Also, since UML (Universal Modeling
Language) is a well established standard, there are many
tools that are able to generate source code structures based
on UML descriptions. This technique has also been used in
simulation [2] [3] [4].

On the part of the performance of simulation runs, when
simulations include tens of thousands of objects, single-executable
kind of simulation may simply run out of memory in the
middle or even at the beginning of simulation. In fact, some
reports have been filed about the physical limit on the num-
ber of nodes that can be used in OMNET++, which is said
to be around several dozen thousand nodes. This number
should vary depending on the contents of each particular
node.

To solve the scalability problem this paper proposes dy-
namic loading and unloading of models. This does however
affect the performance since it takes time to load and un-
load models, but offers the advantage in form of virtually
unlimited number of nodes that can be used in simulation.
While simulation is being executed, the volume of mem-
ory occupied by all active models is being monitored at all
times, and when a threshold defined at simulation start is
surpassed, some models are dumped to the hard disk and
are loaded only when an event is scheduled to arrive at an
unloaded model.

As for the practical uses of the proposed simulator, it is the
only choice for a number of simulation-based research top-
ics. Backbone-level multiple source traffic generation, grid,
mesh, and p2p network research, and NGN-related research
are only few areas which use extremely large topologies for
simulation analysis. The author, in particular, uses the pro-
posed simulator for development and verification of active
probing techniques.

2. SIMULATOR DESIGN
Each model in the proposed simulator is defined as one

Model system-global class and a number of states and tran-
sitions, where Model class is standard for all models used
in simulation. This section discusses other design solutions
that support dynamic loading of models proposed in this
paper.

2.1 State Machines
Let us consider a simple state machine - a common case

with one blocking state normally called IDLE and a non-
blocking state called process that is used to process an inter-
rupt and immediately return back to IDLE where the model

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.3085

Simulator

Model

interrupt

user-developed

model

enter State B

States

enter

interrupt

enter

enter

enter State A

exit State A

Model

delete model and state

create model and state

States
setState

interrupt

setState

b
lo

c
k
e

d

Figure 1: Role of Model class in changing states in

models developed by users.

would wait for the next interrupt. Most existing simulators
discriminate between non-blocking and blocking states.

Many simulators implement blocking behavior by plac-
ing two pieces of code in each state. For example, OPNET
refers to these pieces as ENTER and EXIT instructions. What-
ever the term, the purpose of enter and exit instructions is
common for all simulators that use this concept.

Enter instructions of a blocking state are important since
they perform all necessary calculations immediately before
the state blocks. For example, if two models were exchang-
ing data, enter instructions of a blocking state would con-
tain the code that schedules an event to arrive at the other
model. The state itself would block after having scheduled
the interrupt.

Exit instructions are executed when the state receives an-
other interrupt while being blocking. The purpose of exit
instructions is dual. Of course, they can be used to process
the contents of the interrupt and even send data to some
other model within the simulation. However, more com-
mon use for exit instructions is preparation of the transition
from the blocking state to some other state within the same
model. Depending on the type of the interrupt arriving at
the blocking state, based on the contents of the interrupt and
values of current state variables exit instructions of blocking
state can prepare the transition to another state within the
same state machine.

The simulator proposed in this paper also supports en-
ter and exit instructions both for blocking and non-blocking
states. When the state is declared non-blocking its enter and
exit instructions are executing continuously without block-
ing, which means that exit instructions can be placed to-
gether with enter instructions and vice versa. The subject
of transitions among states will be discussed later in this
paper.

2.2 Model Class and Dynamic Loading
The proposed simulator defines the Model class, which is

used by all user-developed models. The role of the Model
class is described in Fig.1. For simplicity reasons all states
within user-developed model are placed into the combined
execution thread called States.

Fig.1 represents two separate concepts. One concept is
the relay of interrupts issued by the simulator over to the
states within user-defined model. Another concept is dy-
namic loading of models.

The relay of interrupts is fairly straightforward. Since
Model class is the same in all user-defined models, the method
of relaying interrupts is the same for all interrupts and all
models. As will be shown later, this is implemented in form
of interrupt method defined in Model class, which takes
Event object as the only argument. Given that each Model
class instance stores the current state of user-defined model,
it knows exactly which state to call at all times.

Dynamic loading also fits within the design depicted in
Fig.1. To allow dynamic loading, each Model class instance
has to be abstracted from user-defined models. This is done
by defining setState() method in Model class. When a model
is unloaded, its current state is destroyed along with its
Model class instance, thus releasing the memory used by
the model. To restore it, the opposite action is performed,
i.e. the current state of the model is recreated, then a new
instance of Model class is created and its method setState()
is called to place it exactly in the state at which the model
was unloaded from the memory.

It should be noted that since all state variables of a model
are stored separately from model states and Model class it-
self, each model can be unloaded without the fear of losing
data. The details about loading and unloading models and
model state variables will be given later in this paper.

It is also clear that each loaded and unloaded model is
always in its blocking state, i.e. having executing enter in-
structions of a blocking state and waiting for the next in-
terrupt. Naturally, when the model is loaded next time, it
is also placed into the blocking state, and when the next
interrupt arrives, exit instructions are executed. Class and
method structures will be discusses later in this paper.

2.3 Context Switching
It was already mentioned that state variables owned by

each user-defined model are stored separately from both
user-developed model states and the Model class. The DataRepos-
itory class in Fig.2 is used to store all state variables for all
currently active models in simulation.

Fig.2 also performs the loading/unloading sequence. Re-
gardless of whether a model has just been loaded or whether
it remained in the memory since the last interrupt, at each
interrupt the Model class checks whether the context is present
in it. If the model has just been loaded, the context in the
Model class will be set to NULL, which is when the Model
class restores its context by calling a method in DataRepos-
itory class.

The optimization of context switching is not considered in
this paper and is left for future work on the proposed simula-
tor. It is obvious that some improvements can be introduced
to performance, for example, by allowing the Model class to
skip requesting DataRepository class for context in case the
user-defined model has not registered any state variables.
Since model contexts are stored in a list, context searches
cause major performance degradation.

In the proposed simulation, even when the model has no
state variables registered, an empty context slot is created
in the list within DataRepository class instance.

2.4 Event Scheduling

Simulator

Model

interrupt

user-developed

model

StatesDataRepository

restore context

return

enter

Model

States

delete model and state

unload model data

load model data

restore model and state

set state

interrupt restore context

return

exit

b
lo

c
k
in

g

Figure 2: Context switching including loads and un-

loads of models.

Since unique ID numbers are attributed to models at sim-
ulation initiation, a model might not know the ID of the
model to which an event is to be scheduled. For this pur-
pose, ID can be obtained using a globally accessible method,
which takes the name of the node for an argument and re-
turns its ID which can be used to schedule an interrupt.

The ModelRepository class is created specifically for this
purpose and contains a list of all models created by the simu-
lator both at the initiation or dynamically during simulation.
Each slot in this list contains model ID, name of the model,
and name of the model instance. Names of the model and
its instance are different since one model can have many in-
stances. In this case all instances will share the model name,
but instance names will be different. In fact, instance names
are unique throughout simulation regardless of what model
was used to instantiate them.

3. IMPLEMENTATION DETAILS
The proposed simulator is written in C++. All objects in

it are defined as classes, where each class may have multiple
instances within the simulation. For example, Model class
is used in each user-defined model. This section contains
details on implementation of the proposed simulator.

3.1 Class Mapping of State Machines
Fig.3 contains UML Static Structure diagrams of the three

basic classes used in each model. As was mentioned before,
each model consists of user-defined states and transitions
and the Model class, defined in the simulator code.

As was also mentioned earlier, each Model class instance
stores the current state of the state machine it belongs to.
This is represented by class-wide curstate variable, which
can be set using setCurState(State state) method defined in
the Model class. Naturally, in C++, a pointer to State class
instance would be passed, but this much detail is excessive
when discussing the structure of classes.

Another method defined in the Model class is interrupt(

+setCurState(in state : State) : void

+interrupt(in event : Event) : void

Model

-curstate : State

+enter(in event : Event) : void

+exit(in event : Event) : Condition

<<interface>>

State

+getNextState() : State

<<interface>>

Condition

u
s
e
r-

d
e

v
e
lo

p
e
d

 m
o

d
e
l

Figure 3: The Model class and two basic interfaces

that have to be used in order to develop individual

models.

Event event) method, which is used to schedule interrupts
to the state machine classes by this Model class instance.
Each interrupt finally is translated into enter() and exit()
calls on individual states within user-defined state machine.

State and Condition classes in Fig.3 are declared as inter-
face classes. In Java programming language this would cor-
respond to literally declaring a class as interface, but since
C++ has no concept of interfaces, another technique is used.
The State and Condition classes are declared as classes, but
their methods are declared using the virtual keywords. The
use of this keyword allows other classes to extend the class
by using the keyword public in the class declaration and
re-declaring and re-implementing the interface methods in
the extension class. Using this technique, one can reach the
same result as using the interface keyword directly in Java.

The State and Condition interface classes are declared
in the header file of the simulator, but user-defined models
can be developed elsewhere and do not have to merge their
header files with those of the simulator. They, however,
have to include simulator.h to be able to operate with the
interface classes.

Given that some models can be fairly complex and can
have many states and multiple conditions facilitating tran-
sits among states, user-defined models may define many
classes for each model.

This design, however, allows for automatic generation of
source code, given that all states and all conditions use the
same interface classes. The proposed simulator does not
offer a GUI environment yet, but in future work GUI will
be implemented and will generate classes for each model
automatically.

3.2 Loading and Unloading Models
As was mentioned earlier, a sound programming practice

dictates that models are to be developed outside of the simu-
lator source tree. The only connection between user-defined
models and the simulator is the simulator.h header file, that
contains definitions of Model, State and Condition classes,
which should be used in user-developed code. The code of
the model itself should be placed outside of the tree.

The proposed simulator uses dl-load technique, which al-
lows dynamic loading of shared libraries in Linux. In Win-
dows, this concept is represented by dll libraries. When a
dynamic library is loaded at runtime, all its shared symbols
can be used from within the main code. The dl-load tech-
nique is often used to develop application plugins which can
be loaded in runtime.

In the proposed simulator, the only requirement to a user-
developed dl-library is the presence of the (modelname) cre-
ate state(const char *statename) method, where (model-

name) is the name of the model that is loaded. Each model
name should be unique among other models used in the
simulation to prevent namespace conflicts. The purpose of
(modelname) create state() method is to create a state in
runtime based on its name. This is the only convention that
model developers have to follow in order to support dynamic
model loading at runtime.

3.3 Model Context Dumps
It was previously mentioned that state variables of all

models is stored in the DataRepository object, shared by all
entities in the same simulation. Two important data han-
dling conventions are adopted by the proposed simulator.

First, context dumps are implemented as simple dumps of
memory occupied by model state variables to a file on the
hard disk. Two files are created on each dump: model dump
and data dump. Model dump is a simple structure which
contains the name of the model, name of the model instance,
and the name of the current state the model was blocking in
at the time the dump was necessary. This is required to be
able to load the model and recreate its condition adequately
at some later time during simulation.

The second structure is a data dump, which is stored un-
der a separate file consisting of a number of blocks each
representing a state variable. The length of each variable
type may be different, which is why each state variable is
wrapped in a structure that contains its type in form of an
integer value. Depending on the variable type, the appro-
priate number of bytes are dumped to of read from the hard
disk. In the current version the simulator supports only int,
double, float, and string. In future work some flexibility will
be introduced including user-defined datatypes.

4. PERFORMANCE ANALYSIS
Time measurements were performed using gettimeofday()

system call in Linux operating system. On the hardware
used for the trials, the precision of this call was guaranteed
to be better than 1ms, which should be enough to see the
difference in performance in the three stages of each simula-
tion run above.

4.1 Simulation Topology and Setup
For performance verification, a very simple topology was

used with 100K traffic generation nodes connected to a single
sink node. Traffic was generated randomly in such a way
that the combined throughput received by the sink would
be around 1Gbps. Memory limit used to define when to
unload models is set to 1MB, which is quite small given the
number of nodes and, naturally, stimulates dynamic loading.
This simple topology however allows for the analysis of load
distribution by various parts of simulation cycles.

4.2 Distribution of Performance Load
Fig.4 contains aggregated statistics of the relative time

share consumed by each action within each cycle. Since
each simulation cycle consists of model load, execution of
the user-defined code in the model, and model unload, only
those three types of actions are compared. Naturally, loads
and unloads happen only when the memory threshold of
1MB is exceeded. The histogram was created using all time
measurements collected within a 30-second simulation.

At the first sight, the peaks in the histogram are around
10-30 percent for all three actions, but it is also interesting

Figure 4: Histogram of time consumed by model

loads and unloads, and work done within models.

that model loads and unloads are found only around their
corresponding maximum points, while model interrupts are
distributed all across the horizontal scale. In the right part
of this distribution it always takes more time to execute the
code of a model than to load and unload models.

Unloading in Fig.4 almost always takes more time due to
the nature of each simulation loop. In each loop only one
model may be loaded under the condition that the model
is found to be offline at the moment. As for the unloading,
if memory overflow was detected, several models may be
unloaded until the memory falls back below its threshold.
This alone makes unloading a more time consuming process.

5. CONCLUSIONS
The paper proposed a new simulator design which main

feature is the ability to load and unload model instances at
runtime. To be able to implement this in practice, two major
changes to traditional simulator design had to be introduced.

A user-defined model in the proposed simulator is split
into a number of State and Condition classes defined by
user, and the basic Model class which is defined globally
and statically by the simulator. In other words, the Model
class plays the role of an interface between the simulator
core and the user-defined code. This was practically imple-
mented in form of defining the State and Condition classes
as interfaces, which can be extended by states and transi-
tions developed by users.

Another coding convention required for each user-developed
model to define and implement a method which would return
a State object based on the name of the state. Naturally,
the first state in each model would be the INIT state, while
all other states are allowed to have any name as long as it is
uniquely defined within the user-defined model. This State
factory code is to be implemented in form of a shared library
to be dl-loaded by the simulator at runtime.

6. REFERENCES
[1] Omnet++. Available at: http://www.omnetpp.org/.

[2] L. B. Arief and N. A. Speirs. A UML tool for an
automatic generation of simulation programs. In
Workshop on Software and Performance (WOSP),
pages 71–76, Ottawa, Ontario, Canada, 2000.

[3] S. Balsamo and M. Marzolla. Simulation modeling of
UML software architectures. In European Simulation
Multiconference, Nottingham, UK, 2003.

[4] N. de Wet and P. Kritzinger. Using UML models for
the performance analysis of network systems. In
Elsevier Computer Networks, volume 49(5), pages
627–642, 2005.

