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ABSTRACT

In this study, we performed a simulation of mobile agents
running on Agilla middleware designed for sensor networks. The
simulations are performed using TOSSIM assuming that Agilla
middleware is installed on the sensor nodes which are running
TinyOS operating system. We simulated different agents
corresponding to various functions and measured the time it
takes for these agent software to run in the simulated
environment and compared these results with those obtained
using actual sensor nodes. The results presented in the study
show that simulations produce results comparable to real life
experiments.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication

1.6.0 [Simulation and Modelling]: General

General Terms
Performance, Experimentation

Keywords
Middleware, simulation, mobile agents, wireless sensor
networks, Agilla.

1. INTRODUCTION

As sensor networks find new application areas and become more
and more popular, new techniques are being developed to
improve their performance. One such technique is the use of
middleware to hide the details of hardware and the operating
system (OS) from the applications. There are different
middleware developed for different purposes but they all aim at
offering flexibility to the wireless sensor networks (WSN) [1] .

Middleware can be classified according to different criteria and
one such classification is based on their functionality. Cougar [2],
DSWare [3], TinyDB [4], and SINA [5] are members of a
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category which may be classified as database approach. In this
approach, middleware abstract the WSN as a virtual database
and the sensors focus on data rather than communication. SQL-
like queries which are injected from a base station are used.
These middleware have easy-to-use interfaces. In spite of this
advantage, however, database approach is not suitable for real-
time applications and only approximate results are provided by
the middleware. Moreover, security and QoS are not considered
in this approach.

Maté [6] and Magnet [7] are considered as instances of virtual
machine approach. Virtual machine middleware are based on
code interpreters and they are implemented on top of operating
systems. Applications, which consist of small modules, run on
the middleware which inserts them into WSN for the virtual
machine to interpret. Programmability and flexibility are main
advantages of this approach. Virtual machine based systems
reduce energy consumption and network usage.

Adaptive approaches such as Milan [8] and, AutoSec [9] are
special purpose middleware which have adaptability as the main
characteristic. This approach is not suitable for general purpose
applications.

Finally there are agent based approaches such as Agilla [10] and
Smart Messages [11]. Agilla and Smart Messages have many
common characteristics and the term “smart message” is used in
the latter instead of the term “mobile agent” which is adopted in
Agilla. Both of them use mobile agents (only names are
different), support migration and use a local shared memory
(tuple space in Agilla and tag space in Smart Messages) to
provide local communication. However, Agilla have several
advantages over Smart Messages.

In this study we developed an infrastructure to perform
simulations of Agilla middleware on TOSSIM which is a
simulation platform of WSN with nodes running TinyOS [14].
We developed a tool which can be used to write the agent
software and load this software on the motes being simulated.
These agents, running on the Agilla middleware which is
installed on the motes, are allowed to perform different tasks and
the performance of the system when running these different
software is evaluated. The results obtained in the simulation
environment are also compared with those observed in the
experiments using actual motes.

The paper is organized as follows: section 2 describes Agilla
middleware and explains why it has been chosen in this study.
Section 3 explains the simulations and section 4 presents the
results of the simulations. Conclusions are presented in section 5.
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2. AGILLA MIDDLEWARE

Agilla is a middleware which supports mobile agents on WSN
[12]. Mobile agents are dynamic, localized, intelligent programs
that can move or clone themselves across the nodes to perform a
specific task. They are used when it is advantageous to move
software around so that the sensor nodes may perform different
tasks without the need to reload new programs on them. After
being injected into the network, the mobile agent performs
autonomously and executes its instructions upon reaching a
sensor node. Mobile agents can also interact with other agents
and through their use, network flexibility is considerably
increased.

Agilla is initially developed for Mica2 motes where each mote in
the network is considered to be a node. Agilla middleware is
then loaded on the nodes and mobile agents are injected to work
on this middleware. There is a neighbor list and a tuple space on
each node which are maintained by Agilla. Neighbor list consists
of the addresses of one hop neighbors and the tuple space stores
data to be shared by the local and remote agents (agents which
reside on other nodes). Multiple agents may also reside on
different nodes simultaneously and they can migrate among the
nodes. Migrating agents can carry their codes and execution
states, but they cannot carry tuple space of the node. Mica2
motes use TinyOS operating system which is specifically
designed for sensor nodes [17].

Mobile agents running on Agilla have many advantages such as
adaptation  to  environmental changes and  wireless
reprogramming which are the two important challenges for WSN.
To illustrate this situation, assume that a WSN is primarily
deployed for intrusion detection in a building. Civil defense
authorities may want to reprogram the network to detect fire or
gas leak in an emergency situation. Installing all these
applications at once is not flexible, manageable or scalable.
Mobile agent middleware address this problem. It provides
dynamic reprogramming of WSN by allowing new agents to be
injected and allows old agents to die. Hence, mobile agent
middleware support adaptability and mobility.

Since multiple agents can exist on a node simultaneously, mobile
agent middleware support coexistence of multiple applications
on a node.

Shared memory model of the tuple/tag spaces enables one agent
to insert a tuple which contains data and another to retrieve this
data later. This feature allows coordination of agents to perform a
common task independently. This model provides scalability of
the middleware.

Mobile agents also use resources of sensor nodes efficiently as
they only need resources of the visited nodes. We can also say
that mobile agent middleware are power aware.

These are the main reasons which led us to adopt a middleware
which supports mobile agents such as Agilla in our studies.

3. SIMULATION METHOD

In real world applications Agilla is loaded on the motes and then
agents are injected on these motes to run on this middleware.

Later, agents copy or move themselves to other motes; hence the
whole network is covered.

In this study, we used TOSSIM to simulate a WSN with agents
loaded on each mote. The motes have TinyOS running on them.
We have also used TinyViz, a visualization tool for TOSSIM
simulator [15].

We developed a Java application which is used to embed the
agent -which we wanted to simulate- into Agilla middleware.
Moreover, upon embedding the agent, this tool compiles Agilla
middleware and starts TinyViz simulation.

Agilla has different components which facilitate the simulation
process. One such component that we utilized is the
AgentMgrM.nc file, which manages the context of the agent.

AgentMgrM.nc file has several important functions:

1. It migrates an agent from host node to destination node.

2. Whenever a new agent has arrived at a node, it allocates
resources for this agent.

3. If agent dies or moves, it frees all resources (memory etc.)
occupied by the agent.

As mentioned before, in real experiments, applications are
compiled on the (real) wireless sensor network components,
namely motes. In simulations, on the other hand, the software
should be compiled together with the middleware at the time of
initialization of the simulation process. The number of nodes and
other parameters may also be specified at this stage when
running the application.

The following steps are taken when the proposed approach is
used in the simulation of Agilla agents on TOSSIM:

1. Java tool is used to write the agent software using Agilla
commands or open an Agilla agent file which has already
been written.

2. Java program converts this code into nesC.

3. This agent is embedded into the Agilla code at the
appropriate position.

4. Java program compiles Agilla middleware and loads it onto
the motes.

5. TinyViz simulation is started and the agents which are
already part of the program code are activated.

3.1 Advantages of the proposed approach

A similar agent simulation method (original method) is described
in the Agilla website and it uses the same files as we used in our
approach [16]. However, there are major differences between two
methods:

1. User must write the agent code using NesC language in the
original method.

2. User must manually open AgentMgrM.nc file and paste the
NesC code into this file at the appropriate location. User
may corrupt AgentMgrM.nc file because of these manual
operations.

3. User must set some parameters manually before and after
the simulation.

4. User must manually compile Agilla middleware and start
TOSSIM.



5. Different agents can be simulated using our approach, while
this is not possible with the original method.

6. Our method uses visual simulation with TinyViz, while this
is not possible in the original approach.

7.  Our method can run series of simulations with autorun
property of TinyViz, while the original method cannot.

8. Simulation results can be saved to specified files for
analysis with our method.

3.2 Simulations with TinyViz

TinyViz is a powerful tool with an autorun feature which permits
setting of the parameters automatically, running multiple
simulations, logging data to files, taking screenshots and some
other operations.

An autorun file, shown in Figure 1, is used to specify the
properties of TinyViz simulation, such as number of simulations,
names of log files, number of simulation seconds elapsed etc.

# Set the layout (grid, random, grid+random)
layout grid

# This plugin takes debug messzges

plugm DebughdsgPlugim

# Total number of simulated seconds to nn
numsec 40

# Name of the executable file

executable build pe'main exe

# Number of motes

nummotes 23

# File to log all debug messages to

logfile Shop_siml

Figure 1. Autorun file used for simulations

The Java application developed executes the simulations with
TinyViz via this autorun file. Each simulation is logged to the
specified file. TinyViz runs each simulation for 40 simulation
seconds. Once the simulation ends, TinyViz automatically
terminates.

The relation between real time and simulation time is based on
the clock cycle of the Mica2 motes. Because they use a clock
frequency of 4 MHz, to convert the time produced by TinyViz
into seconds one has to divide these numbers by 4,000,000 [13].
So we used a factor of 4000 to convert the time to milliseconds.

We had over 2000 log files after simulations. Manually analyzing
these files was not feasible; hence they were analyzed using
AWK scripting language.

4. SIMULATIONS

4.1 Strong migration vs. Weak migration

The term “migration” means moving or cloning of an agent.
Moving an agent is transferring the agent from one node to
another, while cloning means copying the agent. Special
instructions are used to move or clone an agent. Cloning
instructions are sclone and wclone and the moving instructions
are smove and wiove.

First letters of these terms (s and w) describe whether the
migration is strong or weak. The difference is the transferred
parts of the agent. In strong migration, agent code, program
counter, heap, stack and reactions are transferred and agent
resumes running where it stopped. On the other hand, only the
code is transferred and the agent starts execution from the
beginning in a weak migration.

There are some trade-offs between using strong and weak
migration. Since strong migration transfers everything,
programming is simplified. However, strong migration consumes
more memory, bandwidth and requires more processing.

We used test agents to benchmark strong and weak migrations.
We measured consumed time during smove (strong move),
wmove (weak move), sclone (strong clone) and welone (weak
clone) operations.

4.1.1 Smove vs. Wmove

We used two different agents to benchmark smove and wmove.
The difference between them is the heap operations; 10 values
are recorded to the heap in the first agent while heap operations
have not been used in the other.

3 pushcl // push 1" to stack
2 setvar 0 [/ record “1" to heap[0]
ER pushcl [/ push “1” to stack
4: setvarl [/ record 1" to heap[1]
19: pushc1 [/ push “1" to stack

20: setvar 9 // record 1" to heap[9]

2 randnbr // get a random neighbor
22 smove [/ (or wmove) move to the random neighbor

23: halt [/ agent terminates itseff

Figure 2. Code of the agent with heap operations.

Figure 2 shows the agent used to simulate smove instruction with
heap operations. This agent saves 10 values to heap (from
heap[0] to heap[9]) and finally moves to a random neighbor and
terminates itself. We simulated this agent on a virtual wireless
sensor network which had 25 nodes. We repeated the simulations
100 times for each instruction (smove and wmove) and we
computed the average consumed time for smove and wmove
operations. The results are displayed in Figure 3.

Average migration time of an agent from one node to another is
399 milliseconds with smove instruction; while wmove takes 218
milliseconds, 55% of the value recorded for smove. This result is
expected, because smove instruction transfers agent’s heap
together with the agent’s code, while wmove instruction transfers
only the agent’s code. As each variable in the heap is 40 bits and
we used 10 variables, a total of 400 bits or 50 bytes are
transferred. This extra-load increases the migration time of
sniove agent.

Figure 4 shows the second agent which has its heap operations
removed. The agent performs smove (similar agent was used for



wmove) and the amount of the time taken for smove (and wrove)
was measured with the same amount of data in both cases.
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Figure 3. Latency of smove and wmove instructions with
heap operations

1: randnbr |/ get 2 random neighbor
2: smove
3 halt

/ (or wmove) move to 2 random neighbor

// agsnt terminates itself

Figure 4. Code of the agent without heap operations.

We also repeated the simulations for 100 times for each
instruction (smove or wmove) for this agent. We then computed
the average latency for these operations which are shown in
Figure 5.
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Figure 5. Latency of smove and wmove instructions without
heap operations

As can be seen from Figure 5, there is only 6% difference
between latencies of each move instruction (205 milliseconds for
smove and 218 milliseconds for wmove). As the amount of data
is the same we experienced similar latency in both cases.

4.1.2 Sclone vs. Wclone

Similar agents are used to benchmark sclone and wclone
instructions. Code of these agents is similar to the above; only

the line with smove/wmove was replaced by sclone/wecione. We
repeated the simulations for 100 times on a simulated wireless
sensor network which has 25 nodes. Figure 6 displays the results
of the simulations for sclone and wclone with and without heap
operations.
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Figure 6. Latency of sclone and wclone instructions

4.2 Comparison of Simulations with
Experiments Performed Using Actual WSN

Latency and reliability of individual Agilla instructions are
evaluated by Agilla developers in a technical report [12]. They
used a 25-node network which was formed in a 5x5 grid
topology. All messages except those from neighbors are filtered
in the grid. Grid coordinates (x,y) are used to identify each node.

We compared the results of simulations and the results of actual
experiments to evaluate the wusability of mobile agent
simulations. Same number of nodes, same network topology and
same agents are used for consistency.

4.2 1 Smove

In this simulation, the smove agent, shown in Figure 7, moves
from node (1,1) to a remote node. Remote node could be 1 to 5
hops away. This experiment is repeated 100 times for 1 to 5
hops. Average latency of successful executions and number of
failures are computed. Then, simulation results are compared
with actual experiments (Figure 8 and Figure 9). According to
the figures, differences between values of the simulation
environment and real experiments differ between 0% and 3%.
This outcome indicates that the simulation environment produces
very similar results as the real life experiments for migration
instructions.



1: pushloc 3 1 // push location (3,1) 1: pushe 1 // push value 1 to stack
2 smove I strong move to node 2t (3.1) 2 pushe 1 !/ tuple =valuel> on stack
3: pushloc 0 0 // push locztion (0,0) 3 pushloc 3 1 !/ push location (3,1)
4: move // strong move to nede at (0,00 1 rout /! remote out to node at (3.1)
3 halt /! agent terminates itself 5 halt // zgent terminates tself
Figure 7. Code of smove agent Figure 10. Code of routagent
4.2.2 Rout

Rout (remote out) agent, shown in Figure 10, inserts a tuple in a
remote node’s tuple space. Simulations are performed to test this
operation and tests are repeated 100 times again for 1 to 5 hops.
Comparisons of simulation results with real world experiments
are shown in Figure 11 and Figure 12. These figures show that
difference between of the results of the simulated system and the
real system is under 1%.
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Figure 8. Comparison of simulations and real experiments
for the latency of smove instruction
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Figure 9. Comparison of simulations and real experiments
for the reliability of smove instruction

4.2.3 Remote Operations

Agilla middleware enables remote coordination of agents by
remote operations. Most important ones are rout, rinp, rrdp
(remote probing rd) and migration instructions (smove, wmove,
sclone, wclone).
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Figure 11. Comparison of simulations and real experiments
for the latency of routinstruction

1.00
" '\
w
8 090
o
=]
w
o
H —m— Real World
e 080
2 —= - Simulation

0.70

1 2 3 4 5
Number of Hops

Figure 12. Comparison of simulations and real experiments
for the reliability of routinstruction

Rout instruction and migration instructions are mentioned before.
Rinp (remote probing in) and rrdp (remote probing rd) search
remote node’s tuple space for a matching template. If one is
found, rinp removes this tuple from remote node’s tuple space,
while rrdp doesn’t.
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Figure 13. Comparison of remote operations

Comparisons of simulation results of remote operations with
those obtained in real life experiments are shown in Figure 13.
The figure shows that, again, the simulations produce similar
results as experiments using real nodes for both remote tuple
space operations (rinp, rout and rrdp) and migration operations
(smove, wmove, sclone, welone).

5. CONCLUSIONS

In this study we performed simulations of mobile agents running
on Agilla using TOSSIM. We tested the different Agilla
commands and measured the time it takes to execute them on the
simulator. We used TinyViz to help us collect the simulation
data and also to visually observe the simulation process. We
compared the simulation results with those obtained in
experiments where real sensor motes were used.

Our results show that simulations produce quite similar
outcomes as real life experiments and they can be used to
evaluate the performance of Agilla agents. As it is much cheaper
and more flexible than using actual motes, this approach could
save a lot of time and expense.

These experiments will be carried out using different network
topologies and different agents in the future. Actual network will
be set up and experiments will be compared with simulations as
future work.
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