
Interface connecting the INET simulation framework with
the real world

Michael Tüxen
Münster University of Applied

Sciences
Fachbereich Elektrotechnik

und Informatik
Stegerwaldstrasse 39

D-48565 Steinfurt, Germany
tuexen@fh-muenster.de

Irene Rüngeler
Münster University of Applied

Sciences
Fachbereich Elektrotechnik

und Informatik
Stegerwaldstrasse 39

D-48565 Steinfurt, Germany
i.ruengeler@fh-

muenster.de

Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental
Mathematics

Ellernstrasse 29
D-45326 Essen, Germany

erwin.rathgeb@iem.uni-
due.de

ABSTRACT
The INET framework for the widely used OMNeT++ sim-
ulation environment supports discrete event simulation for
IP-based networks.

During the development of a simulation model for the new
IETF transport protocol SCTP (Stream Control Transmis-
sion Protocol), INET was extended to also support external
interfaces. These interfaces allow to set up hybrid scenar-
ios where simulated nodes communicate with real external
IP-based nodes.

This paper will first give a short introduction to the OM-
NeT++ simulation environment and the INET framework.
Then the requirements for the external interfaces will be dis-
cussed and some implementation aspects will be described.
Hybrid scenarios offer a whole range of potential applica-
tions which will also be presented briefly. The performance
of this technique is crucial for its applicability. Therefore,
several test setups are evaluated to verify the feasibility of
this approach.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; I.6.6 [Simulation and Modeling]: Simulation
Output Analysis; D.2.12 [Software Engineering]: Inter-
operability—Data mapping ; D.4.8 [Operating Systems]:
Performance—Simulation

General Terms
Protocol simulation, Network emulation

Keywords
SCTP, Omnet++, INET, ExtInterface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008, March 3-7, 2008 Marseille, France
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

1. INTRODUCTION
Our groups have been actively involved in the standard-

ization of the new IETF Transport protocol SCTP (Stream
Control Transmission Protocol [13]) from the start and have
developed the portable open source SCTP implementation
SCTPLIB [10] together with an industry partner. To be able
to evaluate this feature-rich and complex protocol and to
develop new features and extensions, a fully featured, stan-
dards conformant simulation model of SCTP was required.
In INET, models for the standard protocols of the TCP/IP
protocol family are already provided. Since standard con-
formance was one of the major goals for the SCTP model, it
was highly desirable to be able to use the real traffic traces,
the test suite implementations for testing real SCTP imple-
mentations and of course the readily available real SCTP
implementations for debugging, testing and validating the
SCTP model. As a consequence, we extended the INET
framework to provide external interfaces for communication
between simulated nodes and real nodes over a standard IP
stack in real-time. The hybrid models combining simulation
and real measurements have several possible applications as
will be discussed later on. Of course, real-time performance
of the simulation environment is the most critical issue for
the applicability of the hybrid scenarios.

This paper will introduce the concept, realization and
evaluation of the external interfaces and is structured as fol-
lows: In Section 2 the simulation environment OMNeT++
and the INET framework in general are described. After
motivating the usefulness of simulations interacting with the
real world, the requirements for the implementation of the
external interfaces for INET are described in Section 3 to-
gether with some implementation aspects. Potential appli-
cations of the hybrid approach are discussed in Section 4. A
performance evaluation of the hybrid approach in selected
scenarios is provided in Section 5 in order to prove the fea-
sibility of the concept. After a brief discussion of the limi-
tations of the solution in Section 6 conclusions and a short
outlook on future work are given in Section 7.

2. THE SIMULATION ENVIRONMENT

2.1 An Outline of OMNeT++
OMNeT++ [3] is an open source discrete event simula-

tion environment with a modular component based architec-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.3060

ture. Types of components are channels (described by the
parameters delay, bit error rate and data rate), network def-
initions, simple and compound modules. The components
can be assembled into more complex modules via connected
gates. Networks are the result of combined module types
that communicate through messages. One message can be
encapsulated in another one, thus being able to simulate the
transmission of information via layered protocol stacks.

A powerful GUI is implemented that helps to follow the
simulation process. Each packet is animated and its contents
can be examined just by double-clicking on it. Furthermore
debug output can be analyzed for each module individually.

The simulation can be run at different speed rates. Ev-
ery movement of a message can be inspected by stepping
through the simulation. The velocities Run and Fast pro-
vide a normal and less detailed animation than the Step
mode whereas in the Express mode the displayed informa-
tion is updated only in long intervals.

2.2 The INET Framework
Since OMNeT++ is a very versatile tool there are a great

number of ready-made simulation models provided for down-
load. One of those is the INET framework [2].

The INET framework consists of a variety of protocol im-
plementations, among them are TCP, UDP, ICMP, IP, PPP,
Ethernet, and some routing protocols. In addition a lot of
protocol independent modules like RoutingTables, Routers,
Switches, and Hubs are available. They are all simple mod-
ules and can be combined to form compound modules and
networks.

StandardHost

notificationBoard

interfaceTable

routingTable

namTrace
ppp eth

networkLayer

pingApp

tcpApp

tcp

udpApp

udp

Figure 1: Compound Module StandardHost

One of those compound modules for instance is the Stan-
dardHost (Figure 1) which consists of a complete IP stack
with PPP or Ethernet interfaces, a network layer, a Ping ap-
plication, TCP or UDP as transport layer and correspond-
ing applications. We have complemented this host with the
transport protocol SCTP, a suitable application, a dump
module and external interfaces (see Figure 2). For more
information on the implementation of SCTP in the INET
framework see [12].

Another important feature of INET is the ability to use
real network addresses and do the routing according to rules
derived from routing tables. Although a FlatNetworkCon-

ExtStandardHost

notificationBoard

interfaceTable

routingTable

namTrace ppp eth ext

sctpdump

networkLayer

pingApp

sctp

sctpApp

tcpApp

tcp

udpApp

udp

Figure 2: Compound Module ExtStandardHost

figurator can be used to automatically distribute addresses
among the hosts of a network, we prefer to set up rout-
ing tables where we can configure routes to other hosts or
networks. Thus we can determine the way a message takes
through a network. An example will be shown in Section 5.2.

3. EXTERNAL INTERFACE
During the testing and debugging of the SCTP simulation

module it seemed to be very attractive to be able to use ex-
isting tools like the Wireshark packet analyzer for analyzing
the message transfers and to test the interoperability with
available real implementations. Existing implementations
of SCTP test suites, like the ETSI conformance test suites,
could also be used to test the simulation model.

Therefore, we implemented a network interface module
for the INET simulation model which allows communication
between the simulated nodes and real nodes connected to
the host running the simulation via an IP-based network.
This capability proved to be very helpful during analysis
and testing of the SCTP simulation model.

3.1 Simulation – Emulation – Real Network
Analyzing the performance of protocols and their imple-

mentations can be done using different approaches. A widely
used way of doing this is based on simulations, most of the
time discrete event simulations. The advantages are that
one can abstract from details which are not relevant, can
easily debug the simulation model and can reproduce tests
because everything can be run in a deterministic way. One of
the problems with this approach is that several parameters
which might influence the performance have to be specified
when running a simulation. Sometimes it is very hard to
provide reasonable values for some of them or even model
them appropriately. An example is the CPU time needed for
some message handling since this can be influenced by the
cache effects of the CPU. Also the impact of having multiple
CPU cores is hard to model. In general, it is much easier to
analyze the generic protocol performance compared to the
performance of a specific protocol implementation using a
simulation.

When using real implementations for performance anal-
ysis one can emulate the network between the sender and

receiver. This can be done by special nodes running for ex-
ample the DUMMYNET (see [11]) network emulator of the
FreeBSD operating system, which allows to emulate packet
loss rates, bandwidth limitations, delays and with some ad-
ditional tools also packet duplication and corruption. There
are also similar tools for the Linux operating systems, for
example NIST Net described in [6]. Going one step fur-
ther one could replace the network emulation by a real net-
work between the nodes. This is done, for example, in a
project called PlanetLab, where experiments can use an al-
most global network which is based on the public Internet.
See [7] for more details. This approach not only provides
real endpoint behavior but also incorporates all effects of
real network scenarios. However, it is hard to reproduce ex-
periments, because of the various impacts on the network
which can not be controlled. Real systems are also used by
Emulab (see [1] for more details), but they are not arbitrar-
ily distributed, and so parameters like delay and loss can be
controlled.

Having the possibility that nodes within a simulation can
interact with nodes in a real IP-based network combines the
advantages of these different approaches.

The Network Simulator NS-2 (see [4] for more details)
has a limited support for interacting with real nodes, as de-
scribed in chapter 44 of the manual of NS-2. An integration
of Emulab and NS-2 is described in [8], including the usage
of this technique for distributed simulation.

3.2 Requirements for the external interfaces
The INET framework currently runs on several Unix based

operating systems and a variety of Windows operating sys-
tems versions. The external interfaces should be supported
on all of these systems. Although we are mainly interested
in SCTP, it should be possible to use all IP-based protocols
like UDP, TCP and SCTP, but also OSPF and other pro-
tocols on these interfaces. From the simulation’s point of
view the interface should look like the already supported in-
terfaces for the Point-to-Point Protocol (PPP) or Ethernet.
For being able to use the external interface for multihomed
SCTP endpoints multiple external interfaces have to be sup-
ported. This is also required to support scenarios where a
real sender sends messages to a real receiver through a sim-
ulated network.

3.3 Receiving and sending real packets
When an IP packet is received by the host running the

simulation for a node being simulated, it must be trans-
formed into an OMNet++ object and injected into the sim-
ulated network. The network stack of the host running the
simulation should not process these packets. Therefore, the
host can not have the IP addresses of the simulated node
configured as addresses of one of its real interfaces. This
means that using raw sockets is not an appropriate mecha-
nism for receiving these packets. The packet capture library
libpcap, however, provides an appropriate way of capturing
these packets. This library provides an operating system in-
dependent way of capturing Ethernet packets and supports
all operating systems which are relevant here. It provides
capture filters which can be used to make sure that only
packets which are sent to the simulation are captured and
not the ones sent by the simulation.

Sending packets from the simulation to nodes in the real
network can be done by using raw IP sockets. It should be

noted that the host sends packets with source addresses not
belonging to the host. This is not a problem for the Unix
based operating systems but may not be supported by all
versions of the Windows operating system. In this case the
libpcap could also be used to send the packets.

The routing in the real network has to be configured such
that the host running the simulation acts like a router which
provides access to the network being simulated.

For sending packets, a method of transforming the simu-
lation internal format to the network format has to be im-
plemented for each protocol. This is called a serializer. For
receiving packets a method called parser will transform the
packet in network format into the simulation internal for-
mat. The code is structured in a way that these methods
are encapsulated on a per protocol basis.

3.4 Scheduling external and internal events
A discrete event simulation which also takes interactions

with the real external world into account has to handle two
kinds of events: internal events which have their origin in
the simulation and external events which stem from the in-
terface to the external world. Also the simulation time has
to be synchronized to the real time. This is possible assum-
ing that there is a speedup in the simulation compared to
real-time, i.e. the simulated time runs faster than the real
time. As we will show in our experiments, this is a valid
assumption when using state-of-the art computer hardware
and networks having a limited total packet rate. Time syn-
chronization is basically done by looking at the time of the
next scheduled event. If this time is already in the past, this
event is processed. Otherwise external events are processed
and the simulation is put to sleep until either the next in-
ternal event has to be processed or another external event
arrives. It is important to note that internal events have to
be given a higher priority.

Due to limitations of the libpcap library, the simulation is
put to sleep for a fixed small amount of time if no external
event is present. This results also in a time granularity for
all internal events. Choosing a small value for this granu-
larity led to good results. It should be noted that operating
systems have a systems based timer granularity for putting
processes to sleep, hence choosing a smaller value for the
simulation granularity than the systems granularity does not
provide any benefit. For the Mac OS X operating systems,
e.g. this granularity is 10 ms.

4. POSSIBLE APPLICATIONS

4.1 Verification of IETF specifications
After having implemented a simulation and tested it, the

question arises how the functionality (rather than the per-
formance) of the model can be verified in conjunction with
other implementations. For real protocol implementations,
the normal way to do this is attending IETF interoperabil-
ity events to prove that the implementation can interact
correctly with those of others. This is what we did with
the external interface, when we attended the last two SCTP
InterOps in Vancouver and Kyoto.

As the focus was on functionality, performance issues were
not crucial. Therefore, it was sufficient to run the simulation
in a virtual machine on a notebook computer. After a sec-
ond external interface was configured, it was even possible to
test the behavior of multihomed hosts. The advantage of at-

tending interop tests compared to just testing against a box
with any kernel implementation is the interchange of ideas
with the developers as sometimes the IETF specifications
can be interpreted differently. Hence clarification of some
issues was necessary and led to an interoperable solution.

4.2 Testing new features
Thinking of a new feature to implement, for instance han-

dling incoming packets in a different way than before, it is
always important to test new ideas. Besides simulating the
new feature and testing it, its impact on real systems has
to be analyzed. With the external interface the outside be-
havior, which sometimes differs depending on the operating
system used, can be taken into account and the feature can
be tested in a real environment.

4.3 Testing protocol behavior that needs a real
counterpart

There are aspects of behavior that can only be properly
examined and evaluated in a real network environment. The
flow control, i.e. the reduction of the advertised receiver
window, is hard to model in a simulation as it can depend
on the host’s resources and on the way in which incoming
data is stored and counted. One question could be whether
the window is reduced by the payload that arrived or by
the amount of memory that is really needed to process the
packet. It is, therefore, necessary to test congestion control
aspects in a real network or at least against hosts with other
implementations before making general assumptions.

4.4 Behavior of middleboxes and routers
What can be done to test a new feature where middleboxes

or routers are involved without influencing their code? An
easy way is to simulate the middleboxes and connect them
via external interfaces to real computers. Thus the feature
only has to be implemented on the hosts and the code of the
real routers does not have to be altered.

An example of such a situation is the Quick-Start [9] algo-
rithm for TCP and IP that we wanted to adopt for SCTP.
Here every router that is on the path has to examine the
packet, calculate its free capacities and change several pa-
rameters in the IP header. A good way to test the algorithm
on real hosts is to implement it in the kernel, but to simulate
the behavior of the router. Thus the packets that originate
from a real sender are manipulated by the simulated router
and send on to the real receiver.

4.5 Generate traces
As mentioned in Section 2.2 we added a dump module

similar to the one used by TCP to the StandardHost module
(see Figure 2). It was placed between the link layer and the
network layer to be able to distinguish between the interfaces
the message passed through.

Thus we got an overview of the packets sent to and from
the hosts. One drawback of the dump module was that its
output was bound to the output of OMNeT++. Therefore
we wanted to use the ExtInterface to generate traces that
could be read by protocol analyzers, independent from the
simulation. Hence our task was to provide a file in the pcap
format, where each packet in network format is preceeded
by a pcap header and an Ethernet header. As the transfor-
mation from the simulation internal format to the network
format is done by the serializer, the file entries are formed

by writing the headers and the output of the serializer for
each packet.

After the simulation the trace can be analyzed by Wire-
shark ([5]) or any other packet sniffer understanding pcap
files. This feature is of great benefit when it comes to ana-
lyzing the simulation data.

5. EXAMPLE SETUPS

5.1 Performance evaluation
One aspect that always matters is the performance of an

implementation. Of course a simulation cannot be as effi-
cient as a real implementation because a lot of additional
information is stored, other data structures are used, and
performance is normally not the most important issue when
designing a simulation model.

cli2

Router2

extRouter

Router3

srv1

cli1

Router1

external server

Simulated
network

Real network

Figure 3: Cli1 sends data via extRouter to a real
PC while internal traffic from cli2 to srv1 is passing
through extRouter

Nevertheless we wanted to find out how good our simu-
lation was and tested it against a real implementation. We
chose the setup in Figure 3, where the simulated parts are
marked by a gray background. The external interface can
be considered as part of both worlds. Here the client cli1
is linked via a router with the external interface, which is
connected to a real server. The channel between the client
and the router is limited to a data rate of 10 Mbit/sec. First
we sent 200,000 data chunks of increasing sizes between 10
and 1400 Bytes and measured the throughput. In Figure 4
the red graph with the diamond-shaped symbol shows the
result. As a comparison the maximal theoretical through-
put is represented by the blue graph with the square-shaped
symbol. The figure shows that the simulation is able to fully
utilize a link of 10 Mbit/sec.

A second series of measurements was performed to find
out whether additional traffic passing through the router
would have an impact on the throughput, meaning that the
processing of the events from the external router could not
keep up with the packets arriving. Therefore cli2 was to
start earlier than cli1 and had to run longer than the ex-
ternal association. The throughput is shown by the green
graph with the triangle-shaped symbol. It is obvious that
the internal traffic has no significant influence on the exter-
nal traffic.

Another goal was to find out how long it takes for a router
to process a packet. Therefore the throughput was measured

200 400 600 800 1000 1200 1400

User
Message
Size
�Bytes�

200000

400000

600000

800000

1�10^6

1.2�10^6

1.4�10^6

Throughput
�Bytes�sec�

Optimal Throughput

Simulated client, real server
internal traffic passing through extRouter

Client � Router � ExtRouter

Limited Link: 10 Mbit�sec

Figure 4: Throughput of the SCTP-association between Cli1 and a real PC

200 400 600 800 1000 1200 1400

User

Message

Size

�Bytes�

2�106

4�106

6�106

8�106

1�107

1.2�107

Throughput

�Bytes�sec�

Client � 3 Routers � ExtRouter
Client � 2 Routers � ExtRouter
Client � Router � ExtRouter
Client � ExtRouter
ExtClient

Simulated Network:

Figure 5: Throughput of the SCTP-association between Cli1 and a real PC with varying number of routers

without internal traffic but with 0, 1, 2, and 3 routers be-
tween the client and the external router. The data rate was
not limited. From Figure 5 can be concluded that the time a
router needs to handle the packets is nearly constant. Sub-
tracting the measured times for the particular user message
sizes from one router to another and dividing the difference
by the number of packets that passed through the routers,
an average process time of about 11 µs per packet can be
assumed.

5.2 Traceroute
In Figure 6 the network scenario of an example setup with

the corresponding IP addresses is shown. The route the re-
quests have to take are marked with bold arrows. We verified

that the output of the traceroute command reflects various
settings of network parameters in the simulated network, for
example configured delays.

5.3 Ping flood
In this example, shown in Figure 7, the simulated parts

only consist of routers. That means that two external in-
terfaces are needed that have to be simultaneously serviced
by the scheduler. The command we chose to test the per-
formance of the scheduler was ping with the f-option. This
option causes the source to send packets as fast as they come
back or one hundred times per second, whichever is more.
We verified that no packets were lost. Some packets arrived
after ping had been stopped. They were still in queues and

10.2.1.1

cli1

cli2

cli3

cli4

cli5

cli6

cli7

cli8

switch1

switch2

switch3

switch4

router1

router2

router3

router4

Router5

Router6

extRouter

real PC

10.2.1.2

10.2.2.1

10.2.2.2

10.3.1.1

10.3.1.2

10.3.2.2

10.3.2.1

10.2.1.254

10.2.254.1

10.2.2.254 10.2.254.4

10.2.254.3

10.3.1.254

10.3.254.1

10.2.254.2

10.3.254.2

10.3.2.254 10.3.254.4

10.3.254.3

10.2.0.2

10.2.0.1

10.3.0.1

10.3.0.2

10.4.100.129

10.4.100.6 10.4.100.5

Simulation Real network

Figure 6: Real PC follows the way to a client in the
simulation using traceroute -n 10.2.2.2

extRouter1

Router1 Router2 Router3 Router4 Router5

extRouter2

Figure 7: Ping flood is passing from a real PC to a
real PC through the simulation

left the simulation after having been processed.

6. LIMITATIONS AND CONSTRAINTS
The usage of libpcap for handling the packets received by

the simulation and raw sockets for sending packets from the
simulation results in some limitations and contraints. First
of all, it is not possible for a regular user on a Unix operating
system to use this feature because he needs root privileges.
However, this is not a serious drawback but might be im-
portant when using this technique for education purposes.

The simulation time is handled in a discrete way with a
specific granularity. However, experiments we did showed
no substantially different results when busy waiting is con-
figured instead. The only difference was the CPU usage. So
we recommend to use a simulation timer granularity equal
to the operating system timer granularity.

When packets arrive at a very high rate the libpcap library
might not be capable to handle all these packets. This would
result in packet loss. We did not observe this during our
experiments. However, it should be taken into account when
doing experiments. The simulation tool reports at the end
how many packets were dropped. The major limitation is
the CPU of the host running the simulation. It is easy to
observe the CPU utilization during experiments to make
sure that the CPU is not the factor which dominates the
results.

7. CONCLUSION AND OUTLOOK
This paper discussed the various benefits of the ability

for simulated nodes to interact with real nodes in a net-
work. An implementation of such an interface for the dis-

crete event simulation OMNet++ and the INET framework
was described and the performance of this implementation
has been analyzed to show that it is possible to do reason-
able experiments with such a setup. A complete network
can be simulated or only one node. Several applications
where the external interface can successfully be used have
been described.

The external interface will be integrated into a future ver-
sion of the INET framework. More protocol parsers and
serializers will be implemented. In particular protocols for
telephone signaling will be supported. This helps us test-
ing the simulation model of SIGTRAN protocols which are
currently being developed.

8. ACKNOWLEDGEMENTS
We would like to thank Andras Varga for supporting us

during the development of the external interface, Christian
Dankbar for developing a prototype of it, and the anony-
mous reviewers for their comments.

9. REFERENCES
[1] emulab – total network testbed. See at:

http://www.emulab.net/.

[2] INET Framework Documentation. Retrieved from:
http://www.omnetpp.org/staticpages/index.php?
page=20041019113420757.

[3] OMNET++ User Manual Version 3.2. Retrieved from:
http://www.omnetpp.org/doc/manual/usman.html.

[4] The Network Simulator NS-2. Available at:
http://www.isi.edu/nsnam/ns/.

[5] Wireshark protocol analyzer. Available at:
http://www.wireshark.org.

[6] M. Carson and D. Santay. NIST Net: a Linux-based
network emulation tool. ACM SIGCOMM Computer
Communication Review, 33(3):111–126, 2003.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an
overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[8] S. Guruprasad, R. Ricci, and J. Lepreau. Integrated
network experimentation using simulation and
emulation. Testbeds and Research Infrastructures for
the Development of Networks and Communities, 2005.
Tridentcom 2005. First International Conference on,
pages 204–212, 2005.

[9] A. Jain and S. Floyd. Quick-Start for TCP and IP.
Work in Progress (Internet-Draft
draft-ietf-tsvwg-quickstart-06), August, 2006.

[10] A. Jungmaier, M. Tüxen, T. Dreibholz, et al.
SCTPLIB–an SCTP implementation, 2005.

[11] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM SIGCOMM
Computer Communication Review, 27(1):31–41, 1997.

[12] I. Rüngeler, M. Tüxen, and E. Rathgeb. Integration of
SCTP in the OMNeT++ Simulation Environment.
International developer’s Workshop on OMNeT++
(OMNeT++ 2008), March 2008.

[13] R. Stewart. Stream Control Transmission Protocol.
RFC 4960, September 2007.

