
Implementing MAC Protocols for Cooperative Relaying:
A Compiler-Assisted Approach

Hermann S. Lichte and Stefan Valentin
Computer Networks Group

University of Paderborn
{hermann.lichte|stefan.valentin}@upb.de

ABSTRACT
Evaluating the performance of a cooperative relaying protocol re-
quires an implementation for simulators and/or software-defined
radios (SDRs) with an appropriate model for error detection, com-
bining, and Medium Access Control (MAC) automaton. Such im-
plementations are essential for meaningful evaluation of practical
systems since any protocol introduces overhead that constrains the
theoretical performance in non-obvious ways. Unfortunately, pro-
tocols for cooperative relaying often yield complex implementa-
tions which are tedious to implement and debug. Therefore, we
identify basic operations that are inherent to all cooperative relay-
ing protocols, and we propose a new language for their specifi-
cation. Then, we show how to construct a compiler for the pro-
posed language that generates most of the required implementation
(model and MAC automaton) automatically. This approach pre-
vents subtle mistakes during implementation of the protocol, and
can significantly increase development time. In addition, this pa-
per discusses code generation exemplarily for OMNeT++/Mobility
Framework, but the approach is not restricted to a specific simulator
or SDR.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.4 [Performance of Systems]: Performance attributes; I.6
[Simulation and Modeling]: Model Validation and Analysis

General Terms
Performance, Experimentation, Measurement

1. INTRODUCTION
Cooperative relaying can substantially decrease the error rate of
a wireless transmission by exploiting the broadcast nature of the
wireless channel [14]. The basic idea is shown in Fig. 1, where
a wireless transmission from source to destination is overheard by
another user, called relay. If the wireless channel from relay to des-
tination fades independently from that between source and desti-
nation, retransmission of the same data by the relay for combin-
ing at the destination yields a so-called user cooperation diver-

s

r

d

Broadcast

Retransmission

Figure 1: The basic idea of cooperative relaying is to let another
user, the relay, retransmit an overheard frame to provide a so-
called user cooperation diversity gain at the destination.

sity gain, resulting in decreased error rates. Therefore, coopera-
tive relaying is a key technology in state-of-the-art communication
systems, but prototypes and implementations are still exceptional.
How can this apparent contradiction be explained? If it is to be im-
plemented, cooperative relaying gives rise to a myriad of protocol
designs for controlling the relaying process. Such protocols are es-
sentially needed to achieve the user cooperation diversity gains, and
these protocols were classified and analyzed in [10]. This seminal
work showed that under ideal conditions, full diversity gains can be
reached by the Selection Decode-and-Forward (SD&F) approach.
Subsequently, plenty of protocols were proposed that integrate co-
operation into channel [6], network [2], space-time [7], or source
coding [5], and their general performance bounds were derived us-
ing information-theoretic methods. Using simulations, the effect of
realistic assumptions on the wireless channel has been extensively
studied for various mobility [17], fading [19], and geometric [16]
scenarios for ideal cooperation protocols.

Although these theoretical analyses provide deep insight into gen-
eral performance, protocols in particular systems always introduce
overhead that constrains the general performance in non-obvious
ways. Integrating user cooperation diversity, e.g., into IEEE 802.11
WLANs requires additional relaying protocols at the Medium Ac-
cess Control (MAC) layer, as well as coding and combining ex-
tensions at the Physical (PHY) layer. The performance of such
functions, their overhead, control latency, integration side-effects
and, finally, the performance of the complete system has to be
studied under realistic scenario assumptions. Here, simulation or
prototype-based measurements are obligatory before manufactur-
ers can decide which overall system design, comprising both lay-
ers, PHY and MAC, will eventually constitute their next-generation
systems. Unfortunately, integrating cooperation into simulators or
prototypes is an error-prone task whose complexity naturally leads
to high development times. When a multitude of system designs
must be evaluated first through simulations and prototypes, the pro-
cess of implementing cooperation becomes the bottleneck that must
be improved.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.3053

In this paper, we suggest a new design methodology that can au-
tomatize the process of implementing the most error-prone sys-
tem components. Our methodology comprises three important as-
pects. Firstly, for simulations we provide a simple model based on
Signal-to-Noise Ratio (SNR) to abstract the wireless channel and
the effects of the PHY, namely modulation, coding, and combin-
ing. Secondly, for automatizing implementation, the conceptual
design of cooperative relaying systems must be formalized. There-
fore, we derive a new specification language based on observations
of recurrent basic operations. These operations are domain-specific
knowledge that implementations of cooperative relaying do apply.
Thirdly, we illustrate how to build a code generator for cooper-
ative relaying systems that uses our specification language as in-
put. Code generators offer the highest payoff in terms of produc-
tivity [8]. Here, a code generator uses the domain-specific know-
ledge to automatically produce an implementation that consists of
the PHY model (used in simulators) and MAC automaton (used in
both simulators and prototypes) fitting the specification. In combi-
nation, these three aspects constitute a whole new framework that
enables faster and more robust implementations of cooperative re-
laying systems than conventional approaches.

The rest of the paper is organized as follows. Section 2 introduces
simple channel and PHY models for cooperative relaying systems.
For the specification of these systems, we introduce a new domain-
specific language in Section 3. We then show in Section 4 how a
correct model is formally generated from such a specification as
well as the corresponding MAC automaton. This formalism is used
to build a compiler for our domain-specific language. As a motivat-
ing example, we design a compiler for OMNeT++/Mobility Frame-
work [18, 3] as the target, but we emphasize that other targets,
e.g., a different simulator framework or even a software-defined
radio (SDR), are possible. In Section 5 we apply our compiler-
assisted approach to generate the implementation of a simple co-
operation protocol and compare the results achieved by the gen-
erated implementation with theoretical results. Finally, Section 6
concludes this paper.

2. PHYSICAL COOPERATION MODELS
To simulate cooperation protocols under realistic channel and sys-
tem assumptions, models reflecting the effects of the channel and
the PHY layer on a cooperative transmission are required. These
models and the required extensions for cooperative transmission
are discussed in the following.

2.1 Channel model
Cooperation protocols exploit temporal and spatial diversity in wire-
less fading channels. Hence, the gain of these protocols highly de-
pends on the channel assumptions and modeling. Typical effects
studied within the scope of wireless channels are path-loss, shad-
owing, large and small-scale fading.

Small-scale fading, determining the variation of the wireless chan-
nel at small time scale, is caused by mobility in the propagation en-
vironment. We model small-scale fading using the typical “Jakes-
like” method [1] with the “land mobile” Autocorrelation Function
(ACF) (Table 2.1 in [15]). This model is parameterized by a max-
imum Doppler shift according to carrier frequency fc and veloc-
ity v of the fastest moving object in the propagation environment,
e.g., a moving user. Furthermore, we assume a Non-Line Of Sight
(NLOS) situation modeled by Rayleigh-distributed signal ampli-

γs,r1

γr1,d

γs,rj

γs,rJ

γrj,d

γrJ,d

γs,d

...

s

r1

rj

rJ

d

Broadcast

Figure 2: Cooperation scenario where source s may cooperate
with J relays r1, . . . ,r j, . . . ,rJ to reach destination d. The figure
shows the instantaneous SNR values γ for the half-duplex chan-
nels used during phase 1 (solid line) and 2 (dashed line) of a
cooperation cycle. All user terminals employ single antennas.

tudes and frequency-flat fading1. Frequency-flat Rayleigh fading
results in an exponentially distributed instantaneous SNR γi, j for
the channel from user i to user j. The instantaneous SNR for dif-
ferent channels (i, j) is assumed to be i.i.d. which means, first, that
all users are sufficiently separated in space and, second, that the
channels are non-reciprocal, i.e., γi, j 6= γ j,i. The resulting auto-
correlated, independent and identically-distributed (i.i.d.) Rayleigh
fading model reflects a typical channel scenario found in office or
urban environments with many small stationary and uniformly dis-
tributed scatterers and moving users. With moving users, naturally,
the distance to the destination d may change over time. Therefore,
path loss, modeling the attenuation of signals during propagation,
becomes time selective – an effect also known as large-scale fading.
Finally, shadowing abstracts many physical effects such as reflec-
tion, diffraction, scattering, and absorption. Typically, shadowing
is modeled by i.i.d. log-normal distributed attenuation reflecting ur-
ban environments.

Shadowing and fading are implemented in our simulator as a block
model: γi, j stays constant during a single phase of the cooperation
cycle. Therewith, each phase experiences a quasi-static channel
while the ACF defines whether consecutive phases fade indepen-
dently.

Although these models are widely-used, naturally, they are not suit-
able for any situation. For example, a Nakagami-type amplitude
distribution may be preferred for scenarios with LOS component,
or a different ACF may be chosen to model an open-space scatter-
ing environment. In the channel model implementation, available
at [12], all these components can be changed easily.

2.2 Physical layer model
Fig. 2 extends the scenario in Fig. 1 to the general case where J
relays may forward a packet of a single source s in each cycle.
As illustrated, this cooperative transmission consists of at least two
phases. In the first phase, the source transfers its packet to all J
relays via a broadcast channel. Out of all J received packets, the
relays may correctly decode L ≤ J packets. These packets are for-
warded in the second phase via L orthogonal channels to d. Pro-
viding these orthogonal channels and separating the two phases
causes cooperative transmission to only reach a rate of Rcoop =
Rdir/(L+1) as a fraction of the direct transmission rate Rdir. How-
ever, combining L > 1 packets at the destination introduces a di-
versity gain which decreases the Packet Error Rate (PER) exponen-
tially in L. This gain can be fully achieved by using an optimal com-

1In wide band systems, e.g., WLANs, this represents the worst case
where all paths fade equally and no frequency diversity is exploited.

bining scheme such as Maximum Ratio Combining (MRC) [13].
MRC combines the L packets at d and can be employed in re-
ceivers where coherent signals are provided by a matched filter,
e.g., IEEE 802.11a/g [11]. Although the details of the combining
process depend on the used modulation, in general, the resulting
SNR after combining the L forwarded packets at d can be modeled
by assuming that

γd =
L

∑
l=1

γl,d (1)

where all γ are linear SNR values (not in dB). A detailed deriva-
tion of this SNR-based combining model is given in Section 14.4
of [13].

In addition to combining, the used modulation and Forward Error
Correction (FEC) schemes define the error rate and throughput of a
system. Typical cellular or WLAN systems employ FEC codes to
correct errors at the receiver. This introduces the so-called coding
gain which can be expressed by a factor G to the SNR of the de-
tected signal. This coding gain depends on the used code, its rate
Rc, and the employed decoding algorithm [13]. Assuming SD&F
cooperation where each relay encodes the forwarded packet, the
coding gain G for the decoded packet can be incorporated into Eq. 1
as

γ̂d = G
L

∑
l=1

γl,d (2)

where an uncoded transmission can be expressed by G = 1. The
result of Eq. 2 represents the SNR after combining all packets in
the cooperation cycle and decoding the resulting combined packet
at d. This SNR value is compared to an SNR threshold (thγ) to
model transmission errors in the decider (Section 4.2). Here, a
transmission error is assumed at d if γ̂d < thγ . The SNR threshold
thγ calibrates the system to stay below a given PER bound, e.g.,
as defined in [11]. Its a priori selection depends on the Bit Error
Rate (BER) of the chosen modulation scheme, which can be ob-
tained by the methods in [13]. Transmission errors at the relay(s)
are defined likewise using SNR, coding gains, and thresholds for
the respective channels, codes, and modulation schemes.

In this paper, we exemplarily assume PHY functions according to
IEEE 802.11a/g WLAN transceivers [11]. All users perform con-
volution FEC coding and soft-decision Viterbi decoding using the
common g0 = 1338,g1 = 1718 code of rate Rc = 1/2. Depending
on the BER, this results in a coding gain of G between 2.4 and
3.8 (Table 8.2-15 in [13]). The source and all relays employ Bi-
nary Phase Shift Keying (BPSK) modulation resulting in an SNR
threshold of thγ = 2 at an PER upper bound of 0.1 [11]. For sim-
plicity, in this example, modulation and FEC do not change over
time. By using time-variant thγ and G, adaptive modulation (where
the transmitter adjusts modulation and coding properties accord-
ing to the current channel state) can be easily incorporated into the
given SNR framework.

3. A DESCRIPTION LANGUAGE FOR MAC
PATTERNS

Before we can formalize the design of cooperative relaying sys-
tems, we must first recognize the recurrent operations that consti-
tute the domain-specific knowledge used by the compiler. For this,
we need the concept of MAC patterns that relies on roles.

Users in a wireless network take roles out of a predefined set of
roles. For example, two users A and B may take the roles source

and destination. We then define a MAC pattern as an ordered
sequence of frames assigned to roles, and Inter-Frame Spacings
(IFSs). Each frame originates at a user which has a particular role
out of this predefined set. The pattern describes a convention in ex-
changing frames that users must obey to successfully convey data
from a source to a destination. The pattern does not define the roles
that particular users take. Users may take any role defined by the
pattern. Consider the two users A and B again. Their roles can
be swapped, i.e., at some point time, A may be a source and B its
destination; at another point in time, these roles may be vice versa.
A pattern is said to be instantiated as soon as all roles are mapped
to particular users. Although some roles can be determined a pri-
ori (i.e., before the transmission of the pattern has begun), the entire
mapping cannot be done a priori as many criteria depend on control
information in frames. For example, the destination is determined
by comparing its MAC address to that specified in the destination
address field of the received frame. Consider cooperative relaying
protocols as another example where the role of the relay can either
be determined a priori or while already processing the pattern. The
latter case applies when the selection of a suitable relay requires
information that must first be exchanged between users (e.g., to es-
timate channel states) and, hence, relies on a frame exchange.

A simple protocol that only involves source and destination may
be described by a single pattern, which is discussed in more de-
tail in Section 3.1, but several patterns become necessary when a
protocol provides alternatives. For example, a cooperative relay-
ing protocol might initiate a retransmission through a relay if a
particular frame is not acknowledged. Such a protocol could be
described using two patterns, one for the normal case and one for
the erroneous case that resorts to retransmission as an alternative.
Patterns for cooperative relaying protocols are discussed in Sec-
tion 3.2. The domain-specific knowledge that we can derive from
both kinds of patterns forms the basis for the design of a MAC Pat-
tern Description Language (MPDL), which we thoroughly discuss
in Section 3.3.

3.1 Examples for non-cooperative patterns
Fig. 3(a) shows the pattern of a simple acknowledged data ex-
change involving two users. The pattern consists of two frames,
DATA and ACK, where the ACK frame is sent in response to a
DATA frame. In absence of the ACK frame, the source assumes
the transmission of the DATA frame to have failed and may either
retry the transmission or signal an error to the upper layer. The
DATA frame, as any initial frame of a pattern, is always triggered
from the upper layer when it has a packet to transmit, whereas suc-
cessive frames are triggered either by reception of a frame or by
an event, e.g., a time-out. The progression of the pattern can be
described by a finite automaton, and Section 4.3 later explains how
such automaton can be derived from a pattern. The pattern depicted
in Fig. 3(a) involves two roles, source and destination, which can
only be determined during run-time. Once the role of a user is set,
it will keep this role for the instance of the pattern. In the example,
the criterion for taking the source role is a transmit request from the
upper layer, whereas a user becomes the destination when its MAC
address matches the address of the recipient specified in the DATA
frame.

Fig. 3(b) shows an alternative and slightly more complex pattern.
It protects this simple DATA exchange by an RTS/CTS sequence
to tackle the hidden and exposed user problem. Both RTS and
CTS frames carry the duration for which the wireless medium is
expected to be allocated. Users overhearing these frames update

S
IF

S

DATAS

D

D
IF

S

ACK

TO
NAV

(a) RTS/CTS-free

NAV

S
IF

S

S

D

D
IF

S

ACK

S
IF

S

RTS

S
IF

S

DATA

CTS
NAVTO

(b) RTS/CTS-protected

Figure 3: Example of two non-cooperative patterns.

an internal timer called the Network Allocation Vector (NAV) that
indicates a busy medium. A user must refrain from transmitting
when the NAV contains a non-zero value. This is called virtual
carrier sensing and is typically done in IEEE 802.11-based sys-
tems [11]. In Fig. 3(b), the duration field of the RTS frame com-
prises all frames and IFSs that follow the RTS. The same is true for
the CTS. Assuming that the transmission parameters of all frames
are known (we further discuss this point in Section 3.3), the pattern
itself provides the required information (i.e., which frames and how
many IFSs follow) to sufficiently compute the duration field of any
frame. Similarly, Time-Outs (TOs) can be computed. After a frame
has been sent, the recipient is required to respond within a certain
time span. As an example consider the pattern in Fig. 3(b) again.
When the source has sent the RTS (i.e., the action of S), it antic-
ipates the CTS from the destination (i.e., the reaction of D). The
time span TO that S has to wait for a reply after it has sent its frame
equals the IFS and the transmission time of the successive frame.
Again, the pattern itself suffices to compute TO when the transmis-
sion parameters are known. Only the final frame is exceptional as
it terminates the pattern and, thus, does not require a time-out to be
set.

3.2 Example for cooperative patterns
Fig. 4 shows an example of a simple cooperative protocol that con-
sists of two alternative patterns. Both patterns comprise two phases
where the second phase is reserved for use by a relay for retransmit-
ting data of the first phase. Fig. 4(a) shows the pattern that specifies
the behavior when the acknowledgment of the first phase is cor-
rectly received. The protocol comprises three roles, namely source
S, relay R, and destination D. The source starts the frame exchange
by transmitting a DATA frame to D. The duration field of the DATA
frame is set such that overhearing users update their NAV to refrain
from transmitting for the entire duration of the pattern (comprising
both phases). Assuming that D can successfully decode the DATA
frame, it replies with an ACK frame to indicate successful recep-
tion to S after a Short Inter-Frame Spacing (SIFS) time, thereby
finishing the first phase of the protocol. Although retransmission
is not required, note that the wireless medium has already been re-
served for the duration of the entire pattern. This is because in the
beginning it is not known whether the source’s DATA of the first
phase will be correctly received or not. S has two alternatives. It
could either remain silent during the second phase or send its suc-
cessive data frame. In the latter case, D must again acknowledge
successful reception with an ACK frame after a SIFS time.

Suppose that the DATA frame sent by S in the first phase could
not be decoded correctly at D. Thus, the anticipated ACK frame
is never sent, which is detected by S and R after the time-out has
elapsed that is associated with the DATA frame. The exemplary co-
operative protocol specifies an alternative pattern in Fig. 4(b) that
handles this case. Assuming that a user in the vicinity of S has
overheard and correctly decoded the DATA frame sent by S, it must
retransmit this DATA frame in the second phase of the protocol on
behalf of S. We neglect the problem of finding a suitable relay here

NAV

S
IF

S

DATA S1S

R

D
IF

S

D

S
IF

S

S
IF

S

ACK

DATA S2

ACK
NAV

Phase 1 Phase 2

(a) When the DATA frame was successfully received and ac-
knowledged in the first phase, the source S can send its succes-
sive DATA frame in the second phase.

NAV

S
IF

S

DATA S1S

R

D
IF

S

D

S
IF

S

S
IF

S

?

DATA S1

ACK
NAVTO

Phase 1 Phase 2

(b) When the DATA frame was not acknowledged in the first
phase, the relay R must retransmit the overheard DATA frame
in the second phase.

Figure 4: Example of a simple 2-phase cooperative protocol
that consists of two alternative patterns.

Action

ReactionIF
S

FBA

tframe

tifs

A B

FAB

FBA

FABA

B

Figure 5: The frame compound (left) is the fundamental com-
ponent describing a single frame exchange between two users
(right), which is an essential part of any pattern.

(i.e., assigning the role of being a relay to some user). One pos-
sibility would be that S permanently monitors users in its vicinity
and elects one as a relay R according to some metric before starting
to transmit the pattern. Then, R can be specified in the first phase’s
DATA frame, and the criterion for becoming a relay is merely a
comparison of MAC addresses, like it is used for determining the
destination. To keep pattern’s specifications simple, criteria for role
election are not part of the pattern, and must be amended manually
after code generation. For the specification of a pattern it does not
matter which roles particular users take.

3.3 A formalism to specify patterns
We now develop MPDL as a new specification language for MAC
patterns. The goal is to have a compiler generate both a model
for combining and error detection as well as a MAC automaton for
any specification of a pattern. In this paper, we base our work on
compilers that perform their task by evaluating abstract program
trees. When this internal data structure is used, semantic analy-
sis and transformation can be implemented using standard meth-
ods [4]. Thus, we need a way to represent patterns as trees. There-
fore, we first identify the frame compound depicted in Fig. 5 as a
fundamental structure that is perfectly suited for being mapped to
nodes2 in an abstract program tree. Although the frame compound
is not an atomic component (such as a single frame or a single IFS),
it is the smallest compound component that sufficiently describes a
frame exchange between two users.

A frame exchange between two nodes A and B can be uniquely
described by the frame that was sent from A and received by B,
2Throughout the paper we use the term user to refer to nodes in a
network, whereas we use the term node to refer to nodes in trees.

...

NAV(F1)

NAV(Fi)

TO(Fi)

A

B

IF
S

1

IF
S

2

IF
S

i-2

IF
S

i-1

IF
S

i

IF
S

i+
1

IF
S

n-1F2

Fi-1

Fi

Fi+1

...
F1

IF
S

nFn

... ...

Figure 6: Network allocation and time-outs are fundamental
properties of any pattern.

FAB, the frame that was sent in reply from B to A, FBA, and the IFS
that separates both frames. Such exchange naturally takes time,
which is important for virtual carrier sensing and error detection.
Virtual carrier sensing requires knowledge about the time that the
medium is expected to be busy, and errors are detected when an
anticipated frame, say FBA, does not arrive after a time-out. In
order to later quantify these times, we now define tframe (Fi) as the
time required for transmitting frame Fi, and tifs (Fi) as the duration
of the inter-frame spacing that follows Fi. Fig. 5 exemplarily shows
tifs (FAB) and tframe (FBA).

The NAV and time-out values that occur in patterns are shown in
Fig. 6. To reduce possible interference by other users in the vicin-
ity, the duration field of any frame in the pattern must state the
time span until the transmission of the last frame of the pattern is
completed. Given a particular frame of the pattern, this time span
can be computed by adding all transmission times of the successive
frames as well as all IFSs, except for the final one. In other words,
frames of a pattern can be thought of as a chain of frame com-
pounds as shown in Fig. 6. Given a particular frame Fi in a pattern
P = (F1, . . . ,Fn), the value NAV(Fi) of its duration field equals

NAV(Fi) =
n−1

∑
k=i

tifs (Fk)+
n

∑
k=i+1

tframe (Fk) . (3)

In a similar way, time-outs can be computed. Except for the last
frame in the pattern, any frame is associated with a time-out. This
time-out indicates how long a user should wait until it can consider
the successive frame as lost. When the anticipated frame has not
arrived until the time-out expires, alternative actions must (usually)
be performed. Given a particular frame Fi in a pattern P with i 6= n,
its time-out TO(Fi) corresponds to the end of transmission of the
successive frame, thus yielding

TO(Fi) = tifs (Fi)+ tframe (Fi+1) . (4)

We need NAV and TO as important attributes of the abstract pro-
gram tree’s nodes. Fig. 7 shows the structure of such a node which
is an internal representation of the frame compound depicted in
Fig. 5. Action and reaction of the frame compound appear in the
node as FAB and FBA with their associated roles B and A, respec-
tively. The associated roles inform the compiler that a user in role
B can handle the reception of a frame (denoted as “FAB” in nodes),
or the absence of that frame after a time-out (denoted as “not FAB”
in nodes). The handling (or reaction) defined by frame compounds
is to send another frame in reply. Therefore, the node also states
which frame FBA to send after an optional IFS, and the role A of
its recipient. Although a reply is the most common reaction, others
are also feasible. For cooperative relaying protocols, for example,
a relay that overhears some data may wait for an acknowledgment
to decide whether to retransmit or not. Thus, another reaction to a
data frame is to wait for an acknowledgment and to perform alter-
native actions when it does not arrive. Finally, a node includes the

(not) FAB

(waitfor) FBA

Inter-Frame Spacing (IFS)

B

A

Node #

TO

NAV
Attributes related

to timings

Action

Reaction

Role of the user that
handles the action

Role of the user that is
the target of the reaction

Number used for
references in the text

Figure 7: Necessary attributes of any frame compound in form
of an abstract program tree’s node that is used in the compiler.

S

R

D
IF

S

D

S

R

D

Node #1

Node #3

Node #7

Node #2

Node #6

Node #9

DATA S1 S
IF

S

DATA S2S
IF

S

S
IF

S

S
IF

S

DATA S1 D
IF

S

S
IF

S

S
IF

S

?

DATA S1

ACK

Primary pattern

Alternative pattern

ACKACK

Figure 8: Patterns of the simple 2-phase cooperative protocol
introduced in Fig. 4. Each pattern corresponds to a path in the
abstract program tree.

two fundamental properties NAV and TO that indicate the network
allocation for the remaining pattern and the time-out for the reply,
respectively. Initially, NAV equals TO, but the compiler updates
NAV during semantic analysis according to an attribute grammar
as discussed later in Section 4.

A single pattern corresponds to a particular path in the abstract
program tree whose nodes represent the frame compounds of the
pattern. An alternative path is possible whenever a frame is antic-
ipated and may or may not arrive. We illustrate this notation by
exemplarily constructing an abstract program tree for the 2-phase
cooperative protocol. Fig. 8 annotates the frame compounds of
both the primary and alternative pattern with their corresponding
tree nodes. The associated abstract program tree is shown in Fig. 9.
Its root corresponds to the declaration of the pattern, followed by
the first frame compound that is part of both pattern excerpts. The
root does not correspond to a frame compound since the first frame
is triggered by a transmit request from the upper layer. Thus, the
action is an event rather than a frame, whereas the reaction indeed
is a frame, and allows for linking to other frame compounds.

In this tree, an alternative path must arise because the ACK frame
of the first phase may not arrive at S, causing the relay to assist.
Therefore, node #2 of the alternative path defines that a user having
the relay role shall react upon the first data frame by waiting for the
associated ACK frame. If the ACK never arrives at the relay (i.e.,
a “not ACK”-action occurs), it reacts by retransmitting the data
frame to the destination; otherwise it remains silent for the rest of
the NAV period.

The compiler uses an attribute evaluator to compute network allo-
cation and time-outs by performing a depth-first left-to-right walk
through the abstract program tree. TO can be computed on the first
visit of a node according to Eq. 4. A node that describes a frame
compound provides information about the IFS and the successive
frame. The attribute evaluator computes the sum and stores it in

SIFS

ACK

D

S

ACK

SIFS

S

D

S

DATA S1

not ACK

DATA S2

15

3

#1

12

9

#3 #4

n/a

DATA S1

S

D

root

23

8

#0

SIFS

waitfor ACK

R

R

ACK R

SIFS

R

D

DATA S1

not ACK

15

3

#2

#5

12

9

#6

DATA S1

DATA S2

SIFS

D

S

Dnot DATA S2

ACK3

3

#7 #8 DATA S1

SIFS

D

S

Dnot DATA S1

ACK3

3

#9 #10

ACK S Snot ACK#11 #12 ACK S Snot ACK#13 #14

max{l,r}

Primary pattern Alternative pattern

Figure 9: This abstract program tree corresponds to the simple
2-phase cooperative protocol shown in Fig. 4. The computa-
tions for NAV and TO in the tree assume tDATA = 8 s, tACK = 2 s,
and tSIFS = 1 s for the sake of an example.

the TO attribute of the node that it currently visits. For the last
frame compound encountered in a particular branch, NAV equals
TO (refer to Fig. 3(a) for an example); thus, the attribute evaluator
sets NAV accordingly. When the attribute evaluator visits nodes
again on the bottom-up pass, it updates NAV according to Eq. 3. It
adds the NAV value of the child node to the TO value of the current
node, and stores the result as the NAV value of the current node.

Fig. 9 illustrates this computation for nodes #3 and #7 (left branch).
For the sake of an example let us assume that DATA frames take 8 s
to transmit, ACK frames take 2 s, and a SIFS equals a duration of
1 s. Node #7 describes the last frame compound of the pattern in
Fig. 4(a), where the ACK of the second phase is sent in response
to the DATA frame from the source. After the destination has re-
ceived the DATA frame, it waits a SIFS time (1 s) and sends back
an ACK frame (2 s). Thus, the source should wait for 3 s before it
can assume that no ACK has arrived. The same value holds for the
NAV, since the network is busy for the SIFS and the transmission
time of the ACK frame as well. The parent node #3 describes the
frame compound where the source sends DATA in response to the
ACK of the first phase. Again, the time-out is the sum of SIFS (1 s)
and the successive frame. For this compound, the response is a
DATA frame (8 s), so TO equals 9 s. In contrast to node #7, the net-
work allocation differs from the time-out since not only the DATA
frame but also the remaining compounds that constitute the rest of
the pattern must be protected. The attribute evaluator uses the NAV
value of the child node (3 s) to compute a NAV that is valid until
the end of the pattern, namely 3s+9s = 12s. If a node has several
descendants, the largest NAV of the descendants must be used to
protect the longest pattern.

In practice, however, computing NAV and TO depends on addi-
tional parameters such as code rate, modulation type, or length of
a frame’s payload (e.g., that of a DATA frame). These parameters
are not known a priori. Consequently, the attribute evaluator cannot
compute final values for NAV and TO. Instead, it uses worst-case
approximations, and the generated code contains placeholders for
these parameters that are substituted at run-time. In contrast, the
transmission times for frames that always have a fixed length and
always use the same code rate and modulation type can be com-
puted a priori. Management frames such as RTS, CTS, and ACK,

which are transmitted using the most robust modulation type, are
an example for such frames. More details on code generation can
be found in Section 4.

3.4 From formalism to language design
In the following, we propose MPDL as a specification language for
MAC patterns. Patterns are composed of frame compounds which
can be linked by overlapping. Consider the non-cooperative pat-
tern in Fig. 3(b) again. The first frame compound describes the
RTS/CTS-exchange between source S and destination D, where D
acts upon the source’s RTS by sending back a CTS. In turn, a re-
ceived CTS at S is the action that S reacts upon by transmitting
its data to D. Thus, the RTS/CTS-exchange and the CTS/DATA-
exchange can be linked since the frames that constitute action and
reaction of both compounds are identical. In other words, the reac-
tion of the first frame exchange becomes the action of the second.
Before we can describe a frame compound formally in MPDL, we
must first establish the notation of roles, frames, and handlers. All
roles that users may take must be declared using the role-keyword
before they can be used in the specification of the pattern:

r o l e R1 , R2 , . . . , Rn

Similarly, all frames of the pattern must be declared using the frame-
keyword before being used:

frame Fi { l e n g t h=. . . [b i t s | by t e s]
[, pay load=. . . [b i t s | by t e s]]
[, combin ing=[MRC| . . .]] }

Unlike roles, the declaration of frames involves a list of proper-
ties (property=value) that tell the compiler the fixed length of the
frame, either specified in bits or bytes, the worst-case approxima-
tion to use for the variable part of the frame (the payload), and
which combining algorithm to use for frames of type Fi. The length

property is mandatory, but payload and combining may be omitted.
Then, the frame does not have a variable part and no combining
is used, respectively. Further PHY parameters may be supplied as
properties when they are always known a priori.

The on-handler defines how a user having role B reacts upon the
successful reception of frame FAB:

on FAB at B s ta tement {. . .} [e l s e s ta tement {. . .}]

The reaction must be specified as a statement. MPDL provides
several statements that reflect typical user’s actions, e.g., sending
frames, waiting to overhear a frame, or retrying a transmission.
These statements cause predefined code templates to be inserted
into the generated code. Further handlers can be stated in between
the curly brackets for linking frame compounds and defining al-
ternatives. The optional else-part states what needs to be done in
absence of FAB after its time-out has elapsed. Now, a frame com-
pound can be described with a handler using the send-statement as
follows:

on FAB at B send FBA to A [a f t e r tifs] {. . .}

Here, a user having role B reacts by sending a frame FBA to an-
other user having role A after an IFS. The specification of an
IFS is optional. When omitted, the compiler assumes an IFS of
zero, i.e., send immediately. The combination of on-handler and
send-statement formally describes the frame compound depicted in

Fig. 5. Only the first frame deserves special treatment since it initi-
ates a pattern, so it is defined using the pattern-keyword:

pat te rn FOO at A send FAB to B {. . .}

The pattern-keyword declares a pattern called foo, and it implicitly
states the criterion for becoming role A which is any user whose
MAC layer receives a transmit request from the upper layer. The
only feasible reaction here is to send the initial frame. We assume
that all users wanting to send an initial frame contend using the
IEEE 802.11 Distributed Coordination Function (DCF) [11]. Suc-
cessive send-statements are protected by the NAV and, thus, cause
their frames to be sent without contention.

We now explain how to link frame compounds by using Listing 1 as
an example that formally describes the RTS/CTS-protected pattern
shown in Fig. 3(b). After having specified a single frame compound
using a combination of on-handler and send-statement, further han-
dlers can be specified in the statement’s body (given by curly braces
following the handler’s statement). The body of a handler creates
another level in the abstract program tree and must contain a han-
dler for the last frame sent. For example, after the CTS is sent to S,
the body must provide a handler for a CTS at S. The compiler en-
forces such handler and, if it is missing, will reject the specification
as incomplete.

Listing 1: MPDL specification of the RTS/CTS-protected pat-
tern shown in Fig. 3(b)
r o l e S , D;

frame RTS { l e n g t h =160 b i t s } ;
frame CTS { l e n g t h =112 b i t s } ;
frame DATA { l e n g t h =224 b i t s , pay load=2312 by t e s } ;
frame ACK { l e n g t h =112 b i t s } ;

pat te rn SIMPLE at S send RTS to D {
on RTS at D send CTS to S a f t e r SIFS {

on CTS at S send DATA to D a f t e r SIFS {
on DATA at D send ACK to S a f t e r SIFS {

on ACK at S done a f t e r DIFS e l s e r e t r y
} e l s e r e s e t # r e s e t when no DATA

} e l s e r e t r y # r e t r y when no CTS
}

}

Further handlers may be specified in a body. For each additional
handler, an alternative branch is created in the tree. Listing 2 shows
a specification of the simple 2-phase cooperative pattern introduced
in Fig. 4. The body of the first send-statement specifies two han-
dlers. The first one (DATA1 at D) links the next frame compound
for the primary pattern. The second one (DATA1 at R) specifies the
behavior of a relaying user R. After overhearing the frame DATA1,
it waits for the required ACK frame. The body of the waitfor-
statement defines what to do when the ACK arrives (namely reset
the automaton) and when it does not (namely retransmit DATA1).

In the simple 2-phase protocol, frames of the first phase may be
retransmitted in the second phase, and a combining model such as
MRC should be used. The declaration of DATA1 must, thus, spec-
ify the combining model (combining=MRC). The compiler then
knows that it must generate code for buffering DATA1 frames at the
destination, and code for combining two (or more) DATA1 frames.

Listing 2: MPDL specification of the simple 2-phase coopera-
tive pattern shown in Fig. 4
r o l e S , D, R ;

frame DATA1 { l e n g t h =272 b i t s , pay load=2312 bytes ,
combin ing=MRC} ;

frame DATA2 { l e n g t h =272 b i t s , pay load=2312 by t e s } ;
frame ACK1 { l e n g t h =112 b i t s } ;
frame ACK2 l i k e ACK1 ;

pat te rn COOP2PHASE at S send DATA1 to D {
on DATA1 at D send ACK1 to S a f t e r SIFS {

on ACK1 at S send DATA2 to D a f t e r SIFS {
on DATA2 at D send ACK2 to S a f t e r SIFS {

on ACK2 at S done a f t e r DIFS e l s e r e t r y
} e l s e r e s e t # r e s e t when no DATA2

} e l s e wa i t f o r DATA1 # wai t f o r the r e l a y
} ;

on DATA1 at R wa i t f o r ACK1 { # a l t e r n a t i v e
on ACK1 at R r e s e t e l s e send DATA1 to D {

on DATA1 at D send ACK2 to S a f t e r SIFS {
on ACK2 at S done a f t e r DIFS e l s e r e t r y

} e l s e r e s e t ; # r e s e t when s t i l l no DATA1
on ACK2 at R r e s e t e l s e r e s e t

}
}

}

4. CODE GENERATION
In this section, we show how the backend of a compiler for MPDL
transforms any MAC pattern into the target’s language such that
the meaning of the pattern is unchanged. The structure of the MAC
automaton can be derived from the pattern, as well as which station
needs to buffer frames, and how they are combined. The generated
code is not specific to a particular role, but will instead be able to
handle all declared roles.

Powerful tools exist for the generation of compilers. We used a
publicly available toolset for compiler construction called Eli [4].
Section 6 provides an early specification of MPDL to be used in Eli
to generate a complete analyzer for the language. Further specifi-
cations are required for the translation process which we describe
conceptually in the following sections.

4.1 OMNeT++/Mobility Framework
We now exemplarily develop a backend for a wireless network sim-
ulator based on OMNeT++ [18] and the Mobility Framework [3].
We explain the translation of MPDL code for use in the target
framework and which basic components are required.

Fig. 10 shows the structure of an extended version of the publicly
available Mobility Framework. All users are managed by a central
module called ChannelControl that computes the maximum inter-
ference range of users and establishes channels between those users
that can possibly interfere. Internally, users are modeled using a
layered protocol stack. SnrEval represents the PHY and models
the analog transmission. The extended Mobility Framework incor-
porates Chsim [12], our implementation of the channel models pro-
vided in Section 2. The Decider is used on the receiver-side to de-
termine whether a frame was correctly received or not. For cooper-
ative relaying protocols, the decider also buffers erroneous frames
and runs the combining algorithm. Its generation is discussed in
Section 4.2. The MacLayer implements the MAC automaton of
the protocol and its generation is discussed in Section 4.3. The

U
ser i

ChannelControl

U
ser j

SnrEval

Decider

MacLayer

NetwLayer

ApplLayer

ChsimSnrEval

Decider

MacLayer

NetwLayer

ApplLayer

Figure 10: Structure of the extended Mobility Framework.

Passes CRC
check?

Buffer frame
with time-out

no
Does

it combine with
buffered fra-

me(s)?

no

Frame received

yes

Remove frame(s)
from buffer

Pass frame on
to MAC layer

yes

Wait for
next frame

Time-out
Remove frame

from buffer

Figure 11: Flow diagram of a Maximum Ratio Combining de-
cider, whose implementation can be generated automatically
from the specification of the pattern.

NetwLayer implements routing algorithms, and the ApplLayer, fi-
nally, implements a traffic load model (e.g., constant bit-rate traf-
fic).

4.2 Generating the decider
The decider is the module used at the receiver for determining
whether a frame was correctly received or not. It takes this de-
cision based on, e.g., signal-to-noise ratio, modulation, and FEC.
Fig. 11 shows a flow diagram of an MRC-capable decider. Upon
reception of a frame, the decider verifies its correctness by com-
paring the instantaneous SNR of the frame to the associated thresh-
old, as discussed in Section 2. The channel models implemented
in Chsim provide the instantaneous SNR, which is then recorded
by SnrEval and supplied to the decider. In practical systems, the
threshold comparison at the decider reflects the Cyclic Redundancy
Check (CRC). Correct frames are passed on to the MAC layer,
whereas incorrect ones are buffered. However, only those frames
are buffered that have been declared as combinable in the specifica-
tion. This is to avoid the unnecessary buffering of frames for which
cooperation should not be applied. The compiler includes a type
field in every frame according to the specification, and uses it for
comparison in the generated code. The decider always associates
buffered frames with a time-out that, when triggered, causes the de-
cider to remove the frame from the buffer. The maximum time span
in which relays may retransmit frames can be estimated, and there
is no use in keeping frames for which no more redundancy will ar-
rive. In practical systems, the CRC decides whether combination
with a buffered frame was successful.

In summary, the basic operations, which the compiler must gen-
erate code for, are verifying frames (CRC), buffering frames, un-
buffering frames, and combining frames. These operations are not
specific to our target, and must be implemented in any simulator
framework, even when a different combining algorithm is to be
used.

waitfor Fi

IF
S waitfor Fi+2

IF
S Fi+2

Fi / Fi+1

state(S)not Fi / S

Fi

transformation

R1

R2 Fi+1

Figure 12: Transformation of a linked pair of frame com-
pounds involving roles R1 and R2 into states of a MAC automa-
ton for role R2.

4.3 Generating the MAC automaton
The compiler generates a single MAC automaton that involves all
roles. It begins code generation with an initial automaton that al-
ways provides the four basic states idle, contend, quiet, and busy.
These states are necessary for the implementation of contention ac-
cording to IEEE 802.11 DCF (contend-state) with virtual carrier
sensing through the NAV (quiet-state) and a final IFS before en-
tering another contention period (busy-state). The compiler intro-
duces additional states by traversing the abstract program tree and
applying transformations according to Fig. 12. The figure shows
how states are generated for the automaton to handle a frame Fi
at its receiver. We discuss the general case where Fi and Fi+2 do
not correspond to the first and last frame of a pattern, respectively.
Listing 3 shows a specification for the linked frame compounds.
The dotted parts of Listing 3 embed the two frame compounds into
a complete pattern, and are not required to perform the transforma-
tion step shown in Fig. 12.

Listing 3: A specification that yields the linked frame com-
pounds shown in Fig. 12.
on . . . at R1 send Fi to R2 {

on Fi at R2 send Fi+1 to R1 a f t e r tifs {
on Fi+1 at R1 . . .

} e l s e S ;
} e l s e . . . ;

At some point in time, the compiler encounters a node whose ac-
tion is given by the send-statement that causes frame Fi to be sent to
a user in role R2. Consequently, the automaton must provide a state
in which R2 accepts the frame Fi. This state is called waitfor Fi, and
two events must be handled there, leading to two transitions in the
automaton. Either the frame arrives, in which case another handler
must be present in the body of the send-statement that specifies the
reaction. Here, it is to reply with a frame Fi+1, which establishes
the link between two frame compounds. If Fi+1 triggers another
frame Fi+2, the automaton enters a waiting state in which R2 can
accept it. Alternatively, Fi does not arrive at the MAC layer be-
cause it was incorrectly decoded or never sent. In this case, the
else-part of the handler defines the alternative action by a statement
S. The resulting state of the automaton depends on S. For example,
the reset-statement creates a transition to the idle-state, whereas the
retry-statement would cause the user to contend again for retrans-
mission, thus, creating a transition to the contend-state. Further-
more, statements such as retry or reset not only create transitions,
the compiler also inserts predefined basic operations into the imple-
mentation. For example, a user does not retry ad infinitum. Instead,
its MAC implementation uses retry counters and limits to give up
and signal an error to the upper layer. The backend provides these
basic operations in form of method templates. During transforma-
tion the compiler inserts calls to these methods into the generated
code. Porting the backend to other targets requires to rewrite those
templates for all statements that MPDL provides.

Finally, it should be noted that the generated code does not run
out of the box. To keep the specification language simple enough,
the generated automaton requires some fine-tuning by hand after it
has been generated. For example, some criteria for role election
must be added manually. Nonetheless, the overall structure of the
automaton with all its transitions is correct in the sense that it fits
the pattern’s specification. Thus, developers can be sure that the
generated automaton is able to successfully process the pattern and
that it also handles all time-outs that may occur. This significantly
reliefs the developer as only small parts need to be implemented by
hand afterward. The compiler identifies candidates for fine-tuning
and places comments in the generated code.

5. EVALUATING COOPERATIVE PROTO-
COLS

In this section, we compare analytic and simulation results to jus-
tify our simulation framework. For this comparison, we study basic
SD&F cooperation protocols for which analytic results can be de-
rived using the methods from [10]. An implementation of such a
simple 2-phase cooperation protocol, which we introduced as an
example in Section 3.2 and formally specified in Section 3.4, was
generated by following the methodology suggested in this paper for
OMNeT++/Mobility Framework. The implemented protocol runs
on top of our IEEE 802.11a PHY model (Section 2) at a carrier
frequency of 5.2 GHz at 20 MHz bandwidth. The channel model
(Section 2) is parameterized with a path loss exponent of 2.4, a
maximum Doppler spread according to a velocity of v = 1 m/s, and
no shadowing. The three users, source, destination, and relay, are
symmetrically placed, each 20 m apart. Each user transmits with
the same power Ptx that is varied from -20 to 20 dBm. We assume
a constant bit rate traffic stream corresponding to the download of
a large file.

Fig. 13 shows the results that we achieved by analyzing and sim-
ulating the 2-phase cooperation protocol presented in Fig. 4. Ex-
cept for the O-marked plot, corresponding analytic and simulation
results closely match and show the behavior known from outage
analysis [14, 10, 17]. Here, the strong decrease in PER compared
to direct transmission clearly indicates the high diversity gain in-
troduced by 2-phase SD&F cooperation protocols. This behavior,
well-known from theory, and the close match to the analytic results
clearly justify the simulation results of the ◦-marked protocol.

However, this is not the case for the O-marked protocol, which was
our first design step. The results obtained for this protocol show
that the progression beyond 0 dBm deviates from theoretical anal-
ysis, as the slope declines. This can be explained by understand-
ing what happens upon successful transmission in the first phase.
In this case, the source uses the second phase to transmit succes-
sive data. Retransmission by a relay is not possible then because
the protocol defines that the relay only overhears data during the
first phase and retransmits it in the second phase. Therefore, the
source’s transmission in the second phase does not benefit from
user cooperation diversity. If, however, the protocol is changed
such that the source refrains from transmitting in the second phase,
we achieve the ◦-results. Now, every transmission can be possibly
overheard and retransmitted by the partner.

While the two-step design iteration could have been avoided for
this simple protocol, it clearly demonstrates the power of our ap-
proach for more complex protocol designs where the implications
of the design may not be as obvious beforehand. If simulation re-
sults turn out to be other than expected, the cause is likely due to the

−20 −15 −10 −5 0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Transmission power P
tx

 [dBm]

P
ac

ke
t e

rr
or

 r
at

e

Direct (simulation)
Direct (analysis)
Cooperative / own data in ph. 2 (simulation)
Cooperative / relay only in ph. 2 (simulation)
Cooperative (analysis)

Figure 13: Comparing simulation and analytic results for di-
rect and cooperative transmission in a symmetrical three-users
scenario. The curves for direct transmission are identical.

specification. For any specification, the generated code is correct in
the sense that it obeys the semantics of the specification (assuming
the translation phase of the compiler has been shown to be correct).
Only the subsequent fine-tuning by hand remains error-prone, but
to a less extensive degree. By carefully observing the results, devel-
opers can then adequately change the specification, generate a new
simulator, and re-run simulations in the same scenario to analyze
the consequences of their changes. Thus, this section showed that
the compiler-assisted approach suggested in this paper is justifiable
in practice.

6. CONCLUSIONS
In this paper we showed a new methodology for developing coop-
erative relaying systems. Our approach consists of suitable channel
and PHY models, a new specification language to formalize sys-
tem design, which then enabled us to develop a compiler for the
generation of robust implementations. We hope that our approach
allows developers to evaluate specific designs for cooperative re-
laying systems easier and faster.

Of course, there is a trade-off associated with the compiler-assisted
approach that we suggest in this paper. The development of a new
specification language and a suitable compiler comes at a cost. De-
velopers must firstly learn how to use the language, and secondly
they must develop a backend for their target platform. However,
these costs will pay off since a myriad of factors and methods ex-
ist and affect system design, e.g., relating to partner selection, rate
adaptation, or traffic awareness. By using a specification language,
evaluation not only becomes faster and more convenient, it also
becomes more comprehensible by the community. When new pat-
terns for cooperative relaying are invented and specified in a com-
monly used specification language, performance results can be eas-
ily transferred to other environments, e.g., from a simulator to an
SDR. Developers are not forced to use a particular environment,
but can simply generate a pattern’s code for the environment that
they are fond to use. In conclusion, the compiler-assisted approach
can provide a solid basis for the spread and growth of cooperative
communications.

7. REFERENCES
[1] J. Cavers. Mobile Channel Characteristics. Kluwer

Academic, 2000.
[2] Y. Chen, S. Kishore, and J. Li. Wireless diversity through

network coding. In Proc. IEEE Wireless Communications
and Networking Conference (WCNC), volume 3, pages
1681–1686, Apr. 2006.

[3] W. Drytkiewicz, S. Sroka, V. Handziski, A. Köpke, and
H. Karl. A mobility framework for OMNeT++. 3rd
International OMNeT++ Workshop, Budapest University of
Technology and Economics, Department of
Telecommunications, Jan. 2003.

[4] R. W. Gray, S. P. Levi, V. P. Heuring, A. M. Sloane, and
W. M. Waite. Eli: a complete, flexible compiler construction
system. Commun. ACM, 35(2):121–130, 1992.

[5] D. Gunduz and E. Erkip. Joint source-channel cooperation:
diversity versus spectral efficiency. In Proc. IEEE
International Symposium on Information Theory (ISIT),
pages 392–392, June 2004.

[6] T. E. Hunter, S. Sanayei, and A. Nosratinia. Outage analysis
of coded cooperation. IEEE Trans. Inf. Theory,
52(2):375–391, Feb. 2006.

[7] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia.
Coded cooperation in wireless communications: space-time
transmission and iterative decoding. IEEE Transactions on
Signal Processing, 52(2):362–371, Feb. 2004.

[8] U. Kastens, A. M. Sloane, and W. M. Waite. Generating
Software from Specifications. Jones and Bartlett Publishers,
2007.

[9] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. K.
Haneveld, T. Parker, O. Visser, H. S. Lichte, and S. Valentin.
Simulating wireless and mobile networks in OMNeT++: The
MiXiM vision. In Proc. Intl. Workshop on OMNeT++
(co-located with SIMUTools ’08), Mar. 2008.

[10] J. N. Laneman, G. W. Wornell, and D. N. C. Tse.
Cooperative diversity in wireless networks: Efficient
protocols and outage behavior. IEEE Trans. Inf. Theory,
50(12):3062–3080, Dec. 2004.

[11] B. O’Hara and A. Petrick. IEEE 802.11 Handbook: A
designers companion. IEEE Press, 1999.

[12] T. Pawlak and S. Valentin. Chsim – A wireless channel
simulator for OMNeT++. Project website:
http://wwwcs.upb.de/cs/chsim, 2006.

[13] J. G. Proakis. Digital Communications. McGraw-Hill, 4
edition, 2000.

[14] A. Sendonaris, E. Erkip, and B. Aazhang. Increasing uplink
capacity via user cooperation diversity. In Proc. IEEE
International Symposium on Information Theory (ISIT), page
156, Aug. 1998.

[15] M. K. Simon and M.-S. Alouini. Digital Communications
over Fading Channels. John Wiley & Sons, Inc., 2 edition,
2004.

[16] S. Valentin and H. Karl. Analyzing the effect of asymmetric
mobility and channel configurations on the outage
performance of coded cooperative systems. In Proc. of the
European Wireless Conference (EW), Apr. 2007. Invited
Paper.

[17] S. Valentin and H. Karl. Effect of user mobility in coded
cooperative systems with joint partner and cooperation level
selection. In Proc. IEEE Wireless Communications and
Networking Conference (WCNC), Mar. 2007.

[18] A. Varga. The OMNeT++ discrete event simulation system.
In Proc. of the European Simulation Multiconference
(ESM’2001), 2001.

[19] S. A. Zummo. Performance analysis of coded cooperation
diversity in wireless networks. Wireless Communications and
Mobile Computing, July 2006.

APPENDIX
EBNF Specification of MPDL
This section formally specifies the version of the domain-specific
language MPDL used in this paper in an Eli-compatible Extended
Backus-Naur Form (EBNF). The starting production is MPDLSpec.
Terminal symbols of the grammar are Numeric for Pascal-like inte-
gers, and Identifier for Ada-like identifiers. This grammar only
allows for lexical and syntactic analysis of specifications in MPDL.
In addition, transformation requires an attributed grammar which is
not shown here.

MPDLSpec: Dcls.

Dcls: Dcls ’;’ Dcl / Dcl.

Dcl: DclRole / DclFrame / DclPattern / DclSpacing.

DclRole: ’role’ (RoleId // ’,’).

DclFrame: ’frame’ (FrameId // ’,’) FrameBody.

DclPattern: ’pattern’ PatternId ’at’ RoleId Stmt.

DclSpacing: ’spacing’ SpacingId Numeric.

FrameBody: ’like’ FrameId / ’{’ (Prop // ’,’) ’}’.

Prop: PropertyName ’=’ PropertyValue.

PropertyName: Identifier.

PropertyValue: Identifier / Length.

Length: BitsValue / BytesValue.

BitsValue: Numeric ’bits’.

BytesValue: Numeric ’bytes’.

HBody: ’{’ Handlers ’}’.

Handlers: Handlers ’;’ Handler / Handler.

Handler: ’on’ FrameId ’at’ RoleId Stmt

[’else’ Stmt].

After: ’after’ SpacingId.

Stmt: ’send’ FrameId ’to’ RoleId [After] HBody /

’waitfor’ FrameId [HBody] /

NoHBodyStmt [After].

NoHBodyStmt: ’done’ / ’reset’ / ’retry’.

FrameId: Identifier.

RoleId: Identifier.

PatternId: Identifier.

SpacingId: Identifier.

