
Simulating Process Chain Models with OMNeT++

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag
Technische Universität Dortmund, Informatik IV

D-44221 Dortmund, Germany
{falko.bause,peter.buchholz,jan.kriege,sebastian.vastag}@udo.edu ∗

ABSTRACT

This paper presents an approach to simulate complex hierar-
chical process chains resulting from large logistics networks
in OMNeT++, a discrete event simulation environment de-
signed for communication networks. For this purpose OM-
NeT++ has been integrated as a new simulation engine into
the ProC/B toolset which is designed for the analysis and
optimization of large logistics networks. The paper high-
lights the main steps of the automatic transformation of a
hierarchical process chain model into a hierarchical model in
OMNeT++. Furthermore it shows how the transformation
has been validated and how detailed performance figures can
be evaluated with OMNeT++.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: [model development]

General Terms

Design, Performance

Keywords

OMNeT++, DES, ProC/B , Logistics

1. INTRODUCTION
For the development and operation of contemporary net-

works in logistics, model based analysis and in particular the
use of discrete event simulation is becoming an important
factor to ensure that the networks meet the requirements
concerning technical measures like delivery times or service
levels and, on the other hand, are also cost effective. In the
past the different workflows in a logistics network have been
specified with process chains as a poorly descriptive tool
that does not allow one to derive simulation models from
∗This research was supported by the Deutsche Forschungs-
gemeinschaft as part of the Collaborative Research Center
“Modelling of Large Logistics Networks”(559).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2008 March 3-7, 2008, Marseille, France.
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

the description. This, however, implies that required simu-
lation models have to be specified on their own without any
formal relation to the process chain model. Of course, this
approach has the disadvantage that different models have
to be created for one system with all the known problems
of additional modeling effort or inconsistencies between the
models. Thus, the use of the entire process chain model as
a base model for a detailed simulation model of a logistics
network is highly recommendable.

To realize this approach partially informal process chain
models have to be enhanced by formal information necessary
to build a simulation model and adequate software tools for
simulation have to be available. Of course, simulation of
process chains is not a new idea [18], but a general approach
which allows one to refine a high level process chain into
a detailed simulation model and which can cope with the
complexity and size of models of today’s logistics networks
is still missing. Available simulation tools for this purpose
are either restricted prototypes [17] or extensions of business
process modeling tools [11]. In both cases the capabilities of
representing and analyzing more complex models is limited.
Available simulation tools for manufacturing systems [15,
16] that have been developed for large systems lack basic
features which are necessary to model logistics networks and
general simulation frameworks are too low level such that an
adequate modeling of complex process chain models requires
too much effort.

In the past we developed a class of hierarchical process
chain models which include the necessary information to
map them onto discrete event simulation models [1]. The
model class, denoted as ProC/B , is based on a hierarchical
description where activities of a process chain are performed
by some function unit which itself can be a complex pro-
cess chain or some basic unit describing the consumption
of space or time. The resulting models may include an ar-
bitrary number of hierarchical levels which form an acyclic
graph. Originally, ProC/B models have been mapped onto
simulation models using the tool HIT [3] which has been
developed in the mid eighties for modeling complex com-
puter and communication systems. HIT perfectly supports
the hierarchical structure of ProC/B models and allows the
analysis of results according to arbitrary paths through the
hierarchy which is an important feature, in particular, if eco-
nomic measures where cost drivers become important should
be evaluated via simulation. However, the use of HIT also
introduces some serious limitations. Since HIT generates a
simulation model in the language SIMULA, a runtime en-
vironment for SIMULA has to be available to run a sim-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.2978

create-net
Typewritten Text

ulation. Unfortunately, the number of available SIMULA
compilers is rather limited. Furthermore, HIT as a nearly
20 year old tool does not support several modern features
of an object oriented simulation environment like animation
or interfaces to software tools for post-processing of results
or for the administration of models. For these reasons we
decided to integrate a new simulation tool in our modeling
environment and to support a mapping of ProC/B models
onto the corresponding models.

An adequate simulation platform has to observe the fol-
lowing requirements:

• The full ProC/B model world has to be mapped in the
simulation model.

• The hierarchy of the process chain models has to be
adequately represented in the simulation model.

• Detailed measures that are definable in ProC/B should
be analyzable in the resulting simulation models.

• The simulation tool has to be driven by the ProC/B
interface.

• Simulation should be easily made interoperable with
other tools of the ProC/B environment like the opti-
mization tool OPEDo [5] or the trace analyzer Tra-
viando [13].

• The simulation environment should be stable, should
allow the definition and simulation of large models and
it should support modern features of object oriented
simulation.

• The simulation environment should be freely available
for research according to some adequate open source
license.

The last two points restricted the number of available
tools significantly since most available open source simu-
lation tools where not adequate to really simulate, in an
efficient and error-free way, large models as they result from
large logistics networks. After a more detailed look on the
remaining tools, our choice was OMNeT++ [14], a simula-
tion environment generating simulations in C++. Although
OMNeT++ had been developed and used for communica-
tion systems, it is well suited for the mapping of hierarchi-
cal process chain models and it also fulfills almost all of the
above requirements. Nevertheless, the mapping of ProC/B
models onto OMNeT++ is far from being trivial since com-
plex hierarchies have to be transferred from one view into
the other.

This paper introduces the combination of ProC/B and
OMNeT++ to build a new and powerful simulation envi-
ronment for process models of logistics networks. The work
presented is partly based on [10, 20]. In the following section
we briefly present the basic tools ProC/B and OMNeT++.
Afterwards, in section 3 it is shown how the hierarchical
structure of ProC/B is mapped onto a module structure of
OMNeT++. Then we show how the behavior of ProC/B
processes is performed in OMNeT++. Section 5 is devoted
to the validation of the mapping, followed by a first compar-
ison of OMNeT++ and HIT by means of small examples.
The paper ends with the conclusions.

2. BASIC SOFTWARE TOOLS
The approach we present in this paper uses ProC/B as

input format, maps the models to OMNeT++ and simu-
lates the resulting model using OMNeT++. In this sec-
tion we briefly present the main features of the ProC/B ap-
proach and give afterwards a very brief introduction into
OMNeT++. For further details about both tools we refer
to the literature [1, 14].

2.1 Introduction to ProC/B
ProC/B [1] is a process chain-based modeling approach

which is used in the collaborative research center “Modelling
of Large Logistics Networks”559 (CRC 559;[7]) for modeling
and performance evaluation of logistics networks. ProC/B
accounts for the specifics of the application area by captur-
ing the structure in form of function units (FUs) and the
behavior by process chains (PCs). In ProC/B , FUs might
offer services, which can be used by activities of process
chains. Each service is again described by a process chain.

EVERY negexp(1.0/6)

1
(randint(0,2):INT) truck

(load:INT)

()

EVERY negexp(1.0/60)

1
(randint(30,50):INT) train

(load:INT)

()

Terminal.
truck_handling

handle_truck
(data.load)-->(data.load)

DELAY

drive_to_terminal
(uniform(4,6))

Terminal.
train_handling

handle_train
(data.load)-->(data.load)

Terminal

train_handling
(load:INT)-->(new_load:INT)

truck_handling
(load:INT)-->(new_load:INT)

DELAY

leave_freight_village
(uniform(4,6))

DELAY

drive_to_terminal
(uniform(4,6))

DELAY

leave_freight_village
(uniform(4,6))

Freight_Village

Figure 1: ProC/B top level model “Freight Village”

Figs. 1 and 2 present an example of a ProC/B model rep-
resenting a simplified freight village. A freight village is a
node of a logistics network which provides facilities for stor-
ing goods temporarily and transshipment between several
type of carriers.

The top level of the model (see Fig. 1) is specified by FU
Freight_Village whose behavioral part is described by two
PCs: truck and train. The structure part consists of a
single (user defined) FU, named Terminal, which offers two
services: truck_handling and train_handling. Services
can be compared to functions in programming languages. In
the example both services have an input parameter (load)
and an output parameter (new_load). Behavior and struc-
ture part of a FU specification are interrelated by expressing
which service of which FU performs an activity. In Fig. 1
the two PCs truck and train consist of three process chain
elements (PCEs) each, and in both cases the second activity
calls a service of FU Terminal. The inner view of FU Ter-

minal is shown in Fig. 2. The offered services are specified
by PCs and some of their activities use the services of two
so-called standard function units which offer predefined ser-
vices (e.g. request and change). ProC/B offers two kinds
of standard FUs: servers and storages. Servers (see fork-

train_handling
(load:INT)

-->
(new_load:INT)

()

storage.
change

unload
([data.load])

forklifts.
request

use_forklifts
(2 * data.load)

DELAY

drive_to_load_position
(uniform(1,3))

forklifts.
request

use_forklifts
(2 * data.new_load)

CODE

determine_load
(data.new_load := randint(1,3);)

storage.
change

load
([-data.new_load])

storage.
change

unload
([data.load])

storage.
alter_or_skip

load
(1,-data.new_load,0)-->(data.new_load)

forklifts.
request

use_forklifts
(2 * data.load)

DELAY

shunt
(uniform(4,6))

forklifts.
request

use_forklifts
(2 * data.new_load)

CODE

determine_load
(data.new_load := randint(30,50);)

forklifts

CAP=25

request

(amount:REAL)

truck_handling
(load:INT)

-->
(new_load:INT)

()

storage

MAX=[300]

change

(amount:INT[])

alter

(position:INT,by_value:INT)

alter_or_skip

(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content

(position:INT)->(content_value:INT)

Terminal

Figure 2: Function Unit “Terminal”

lifts in Fig. 2) capture the familiar behavior of traditional
queues describing the consumption of time and storages de-
scribe the consumption of space (see storage in Fig. 2) and
support the manipulation of passive resources. A simplified
version of a storage is a so called counter, which is a stan-
dard FU often used for modelling synchronization aspects.
A change to a counter or a storage is immediately granted
iff the result respects specified upper and lower bound vec-
tors; otherwise the requesting process gets blocked until the
change becomes possible.

Process chains directly visualize behavior. The freight vil-
lage model of Figs. 1 and 2 reads as follows: Incarnations
of process chain train are generated according to a Poisson
distribution (with a mean of 60 time units). Each train has a
load which is initially chosen by random according to an uni-
form distribution (between 30 and 50). After incarnation,
the train “drives” to the terminal which is modeled here by a
delay of the process for a uniformly distributed duration. Af-
terwards the train “is handled” by service train_handling

of Terminal. This might result in a change of the train’s
load. Finally the train “leaves” the freight village and the
process terminates at the sink. Considering Fig. 2 we see
that handling a train means first to unload the train, which
is possible if the storage’s capacity of 300 units is not ex-
ceeded, otherwise the train has to wait until unloading is
possible. Afterwards the server forklifts is called, which
is a multi-server queue with 25 servers and a (default) FIFO
service strategy. The service time for the requesting process
is determined by the expression 2 * data.load thus model-

ing the time for unloading a loaded train 1. Afterwards the
train “shunts” to a new position (which is again modeled by
a delay of the process) and determines the new load. The
new load is removed from the storage if possible, otherwise
the available number of units are removed from the storage
(which is the semantics of service alter_or_skip). Finally
service request of the server forklifts is called again be-
fore the process “leaves” the terminal. The behavior of PC
truck and service truck_handling reads similarly. In the
sequel we will use the term process for the process descrip-
tion and its incarnations.

In the course of the CRC 559 a toolset has been developed
which provides a graphical user interface to specify ProC/B
models and transformer modules which map ProC/B models
to the input languages of existing analysis tools, so that
ProC/B models can be analyzed automatically (cf. [1] and
Fig. 3).

Simulation is often applied for a detailed analysis, since
it is applicable to all ProC/B models. In the past, simula-
tion was only supported by HIT [3, 4]. HIT is a modeling
environment which does not only provide a simulator, but
also offers efficient non-simulative analysis algorithms being
based on product-form queueing networks. HIT is basically
tailored to steady-state analysis, based on a single replica-
tion approach. Time Series Analysis techniques are applied
to individual streams of data produced by the simulation.
A key feature of HIT is that these streams may be itemized
in detailed ways. E.g., in Fig. 2 it might be of interest to
measure separately the number of service calls of FU stor-

age caused by trucks and trains. HIT provides facilities
to describe and to evaluate measures for such activities at
a lower level which are caused by some higher level origi-
nator and to itemize corresponding results with respect to
the originators. As mentioned, HIT is nearly 20 years old
and needs a SIMULA compiler for execution. Therefore we
recently integrated OMNeT++ into the ProC/B toolset try-
ing to benefit from the features of a modern object-oriented
simulation environment.

2.2 OMNeT++
OMNeT++ is a public-source simulation environment that

has been developed for the modeling of communication pro-
tocols and has been extensively used in this area. Although
it is mentioned on the web page [14] that OMNeT++ has
also been used for the analysis of business processes there is
nothing available about this application and it does not seem
that a complete mapping of hierarchical business processes
onto OMNeT++ models has been done before. The whole
tool environment includes a graphical front end and several
other tools that support the modeling and simulative anal-
ysis of complex systems. Of particular interest is the sim-
ulation kernel which is written in C++ and offers several
classes to support the specification of complex hierarchical
models. Furthermore, the resulting simulation models are
known to be rather efficient.

The basic entities of an OMNeT++ simulation are mod-
ules. Modules can be simple, which means that they are
implemented as C++ classes, or compound modules which
means that they are composed of other simple or compound

1Access notations to parameters and variables of processes
are prefixed with keyword data for technical reasons in order
to distinguish them from global variables. Global variables
are not shown in Figs. 1 and 2.

HIT
− Simulation
− QN Analysis

− Modelling

− Measure Specification

− Result Visualisation

ProC/B GUI

 & Measures & Measures & Measures

ProC/B Model

− Simulation
− Animation

APNN Toolbox
− CTMC Analysis
− Invariant Analysis
− Model Checking

QN Model GSPN Model

OMNeT++

Simulation Model

Traviando OPEDo
− numerical analysis

− optimisation
of CTMCs

− trace
visualisation

 & Measures

Transformer

Figure 3: ProC/B toolset

modules. In this way OMNeT++ models are hierarchical.
The complete model containing the overall hierarchy is de-
noted as the system module. Modules communicate via
gates using messages. Gates can be input or output and
a module may have an arbitrary number of gates. Messages
are sent either directly to a gate or along a path. Basically
paths are used to describe the transfer of messages over some
medium. Therefore they offer parameters to specify e.g. the
bandwidth or loss rate. The connection of modules via paths
is specified in the *.ned file which includes the structure of
the model and can be defined with the help of a graphical
interface. The graphical interface can also be used for the
animation of the running model by visualizing messages that
are sent along a path from one module to another.

An arriving message is interpreted in a module as an event
and the user has to specify a routine handleMessage() for
each arriving message type. Messages themselves can be
structured data types and may include information that is
used in the corresponding handleMessage() routine. In the
routines new messages may be generated immediately or
after some delay and already scheduled messages may be
deleted. Thus, the basic event driven approach is realized
by the processing and sending of messages. Apart from this
general mechanism, the simulation kernel of OMNeT++ of-
fers a lot of support to realize complex simulation models like
up to date random number generators, support for statisti-
cal evaluation of results or support for parallel replications.

From this very brief description it should become clear
that both, ProC/B and OMNeT++ use a hierarchical struc-
ture to describe models. However, at a second view it be-
comes clear that the model views differ in several yet impor-
tant details. OMNeT++ has been designed with commu-
nication systems in mind such that messages have a physi-
cal meaning whereas in ProC/B hierarchy is introduced by
calling services of FUs without explicit messaging. Another
important aspect is, as already mentioned, the definition of

detailed and origin dependent measures which are not di-
rectly supported by OMNeT++ and therefore have to be
implemented separately.

The challenge is to get a correct mapping from ProC/B
onto OMNeT++. Since correctness of the mapping cannot
be formally defined because only a subset of ProC/B has
a formal semantics in form of a Petri-net mapping [6], we
define correctness by comparing the simulation using HIT
and OMNeT++. The HIT simulation is usually taken as
the correct behavior, since we defined an operational seman-
tics of the whole ProC/B paradigm via HIT [2], and thus
the OMNeT++ model has to show the same behavior. Of
course, a detailed comparison implies that the model is com-
pletely deterministic since otherwise different random num-
ber streams will necessarily result in different behaviors such
that only statistical results can be compared using adequate
statistical methods [12]. We used both, simple determinis-
tic models to show that the basic behavior is the same and
more complex stochastic models to compare statistically the
result measures.

In the following two section we first describe how the hi-
erarchical structure of a ProC/B model is mapped onto a
corresponding structure of an OMNeT++ model. In the
subsequent section the mapping of the behavior is presented.
Both steps are accompanied by small examples showing the
basic ideas.

3. MAPPING OF STRUCTURE
Our implementation of mapping ProC/B to OMNeT++

consists of two main components: The converter procb2ned
and a library named Osimu containing implementations of
ProC/B ’s behavior as modules for OMNeT++.

ProC/B models are specified graphically in the ProC/B
editor and are stored in files. Next to the model itself the
editor allows for saving experiment descriptions in separate
files. As stated above, these general model/experiment de-
scription files can be used in different analyzers, either nu-
meric or simulative. Thus, the generic model descriptions
generated by the editor have to be translated to specific
input formats. For our simulative analyzer based on OM-
NeT++ the converter procb2ned reads process chain mod-
els and outputs OMNeT++ network descriptions (*.ned -
files) as a direct input format for the OMNeT++ simulation
system. As OMNeT++ supports hierarchical modeling of
modules, ProC/B ’s structure is preserved and included in
*.ned -files by procb2ned .

OMNeT++ requires behavior to be located in atomic enti-
ties called ”simple modules”. They are written in C++ and
handle arriving messages in order to trigger specific reac-
tions. The sources are combined with *.ned -files with an
identical naming scheme, describing module interfaces to
OMNeT++’s simulation system. For model design these
basic modules are instantiated and related by connections
in another *.ned file, forming a ”compound module”. Non-
basic models can be used similar to basic modules, making
it easy to form hierarchical models.

As ProC/B also supports hierarchical modeling, procb2ned ’s
primary task is to map given hierarchies. For every language
element in ProC/B exists a corresponding implementation
as a basic module in OMNeT++. PCEs only form linear
structures at the same model level, so procb2ned simply in-
serts them as basic modules into its output *.ned files. Of
course, synchronization and event driven generation of new

processes are also possible in ProC/B using available lan-
guage elements (see [1]) which are realized as C++-imple-
mentations in OMNeT++. Following the rule of one module
per ProC/B language element, Standard-FUs like ServerFU,
StorageFU and CounterFU are also inserted directly into the
model.

Hierarchies in ProC/B are the domain of constructed FUs,
usually including at least one process chain offered as a ser-
vice by the FU. To model these FUs in OMNeT++, com-
pound modules are formed by *.ned files, one for each con-
structed function unit. If the converter reads a constructed
FU on input, it goes one level down in the recursion, ap-
plying the above mapping rules to a new *.ned file named
after its FU in ProC/B . After returning from recursion, the
compound module representing a constructed function unit
can be used like any other basic module.

The subsequent step is to map process flow through a
process chain by establishing connections between modules.
The acting entities of ProC/B are all processes within a
module. While processes are no specific object-types in HIT,
it was a natural choice to map exactly one process type to
exactly one message type in OMNeT++. Hence, ProC/B ’s
connections between process chain elements are mapped to
module connections in OMNeT++.

As shown in Fig. 1, connections in ProC/B only exist
within a PC specification, there are no explicit connections
from PCEs to FUs or the other way round. Only implicit
relations between PCEs and FUs exist by specifying param-
eters in PCEs denoting which FU and offered service they
call.

We transferred this idea to OMNeT++ by using tradi-
tional message passing through gateways and direct mes-
sage sending as two separate forms of connections. The first
task is done straightforwardly by procb2ned . Basic modules
act as PCEs (excluding sinks) and obtain one connection to
their successor, forming a structure similar to process chains
in ProC/B . For this purpose, every PCE module has at least
one set of input/output gateways acting as a socket for OM-
NeT++’s connections.

Again, relationships between modules of PCEs and FUs
exist only implicitly in OMNeT++. Two parameters are
given in the *.ned file for every instance of a PCE using a
function unit: The identifier of the FU and the name of the
offered service (keeping in mind that FUs can offer multiple
services). This information is used in the PCE initializa-
tion phase to find the reference to their loosely bound func-
tion unit. Requesting a service in the simulation phase is
done by transferring messages directly using OMNeT++’s
sendDirect() method to the function unit bound to the ser-
vice. Finishing a FU’s service is also signalized by returning
the message.

Using OMNeT++’s alternative way to transfer messages
has some advantages compared to the traditional way of
using module connections:

1. As FUs can be used by possibly infinitely many PCEs,
omitting explicit connections helps to keep models con-
cise. The target to which direct messages are sent to
is determined during the initialization phase by OM-
NeT++ and saved as a reference, so no extra time is
consumed when analyzing the model.

2. Messages sent directly keep track of their senders on
a stack, so returning a process message to its sender

after performing a service is a simple task in the FU’s
implementation.

3. The visual appearance in the ProC/B editor and OM-
NeT++/TKenv is kept similar.

Function units need one input gate per offered service.
Output gates are redundant here, as the virtual sink termi-
nating the service’s process chain will return the message
via direct transfer to the calling PCE. The ability to send
and receive direct messages requires some preconditions for
modules in OMNeT++: Direct messages can only be deliv-
ered to dedicated input gates without any other incoming
connection. Therefore, PCE modules calling FUs need an
additional input gate reserved for callbacks of their associ-
ated FUs. By convention, new processes arrive at the first,
status messages from FUs at the second input gateway.

3.1 Animation
An important additional benefit of using OMNeT++ for

simulating ProC/B models is the animation capability of
OMNeT++’s graphical workbench OMNeT++/Tkenv. Ex-
isting ProC/B analyzers are tuned according to efficiency
and performance of the solution and are consequently batch
processing systems, making it difficult to explain the dy-
namic behavior of processes from the model. However, such
an explanation is often important in teaching and also in
real projects as we noticed when modeling large systems
in cooperation with real users. Using OMNeT++/Tkenv,
messages moving between modules can be animated by a
moving red dot as an adequate visualization for processes
moving through process chains and making use of FUs. In
this way, the dynamics of a system is clearly visible.

ProC/B ’s graphical representation was carried to OM-
NeT++, using OMNeT++’s feature to define pictograms
for modules. procb2ned assigns bitmaps to every instance of
the basic module matching its type in ProC/B .

Figure 4: Animation of PCMessages

When setting OMNeT++ to a ”slow” running mode in
OMNeT++/Tkenv, the user can trace processes created by
a source as a red dot moving along the process chain ele-
ment’s outgoing connection (see Fig. 4). Arriving at a PCE,
the dot is delayed until the PCE ends its call to an FU. Since
no permanent connection exists between PCEs and FUs, a
temporary connection is drawn acting as a path for messages
performing a request by being sent directly to the module of
the FU (Fig. 5). When the request is served, a message can
be seen moving backward to the calling PCE on a reverse
connection. Furthermore, different windows can be opened

to view the animation simultaneously at different levels, i.e.
in different FUs.

Figure 5: PCMessage moving over temporary con-
nection

4. MAPPING OF BEHAVIOR
The second component of our framework is the mapping of

the behavior of ProC/B language elements onto modules in
OMNeT++. These modules are completely configurable by
passing parameters, so we were able to compile a library Os-
imu containing generic implementations for PCEs and FUs.
Every element of ProC/B ’s language is mapped onto exactly
one module implementation, inheriting into OMNeT++’s
modeling interface by subclassing cSimpleModule directly.

OMNeT++ offers two different programming styles, light-
weight processes and a transaction based programming para-
digm. We decided to follow the latter as it matches the basic
ideas of process chain models and it scales much better for
large models. Since process chains are characterized by the
interval of time consumed by a process between entering and
leaving a chain, a transaction based discrete event approach
makes it natural to map these intervals to arrivals and de-
partures of messages to/from modules in OMNeT++.

The dynamic part of ProC/B models are processes follow-
ing the route defined by process chains. Analogously, pro-
cesses are represented by messages in OMNeT++. The map-
ping to OMNeT++ is done by subclassing cMessage only
once to PCMessage (short for ”process chain message”). In
ProC/B , transitions of processes between PCEs are instan-
taneous, time is consumed by requesting services at function
units or by dedicated delay PCEs. This idea is reproduced
in OMNeT++ by messages of type PCMessage that use con-
nections in zero time, leaving progress of model time to the
modules.

Now we will describe two examples to explain our mapping
of behavior more explicitly.

Figure 6: ProC/B ’s symbol for a delaying PCE

Figure 6 shows the symbol of a Delay PCE as a simple lan-
guage element of ProC/B . It has the task to delay arriving
processes by some amount of time, either deterministic or by

Listing 1: Source of DelayPCE.ned
simple DelayPCE

parameters:
delay : string

gates:
in: in;
out: out;

endsimple

Listing 2: Source of DelayPCE.cc
#include "DelayPCE.h"

void DelayPCE :: handleMessage(cMessage* msg) {
double delay = (double) param("delay");
sendDelayed(msg , delay , "out");

}

a random number from some predefined distribution. List-
ing 1 is the according *.ned -file used by OMNeT++ to pass
parameters to modules and define gateways where messages
arrive and leave.

A process chain element DelayPCE is defined with just
one pair of gates because it is connected to only two other
process chain elements. Parameter delay is set by the *.ned -
file instantiating this module as specified in the original
ProC/B model. Implementations of DelayPCE subclass-
ing cSimpleModule have to respect the fact that a second or
third or an arbitrary number of processes can arrive while
the first process is still delayed.
The concrete implementation in listing 2 is short, overload-
ing the function handleMessage(cMessage* msg) and im-
plementing the specific reaction on an arrival of messages.

The delay time is generated from the predefined distribu-
tion, the following line in the code delays the incoming mes-
sage by the amount of time using OMNeT++’s sendDelayed()
method. Please note that no messages are stored inside the
module, allowing the module to accept an infinite number
of processes. Method param() reassembles the well known
method par() to fetch parameters stored in *.ned files. The
new method parses expressions used in ProC/B models,
which can be either arithmetic expressions or a ProC/B spe-
cific naming of random distributions.

Figure 7: Server Function Unit in ProC/B

As an advanced example ServerFU is shown in Fig. 7.
It represents a set of limited and identical resources which
processes can request and use. ServerFU offers the service
”request” to PCEs, a parameter for the requested amount of
service has to be passed with the calling message.

Listing 3: ServerFU.ned
simple ServerFU

parameters:
inPath: bool ,
speed: numeric ,
capacity: numeric ,
discipline: string;

gates:
in: in;
out: out;

endsimple

Listing 3 contains the definition of ServerFUs in OM-
NeT++’s modeling language. Three parameters are passed
to the module by OMNeT++ at runtime:

capacity number of resources offered by the server

speed of a resource to execute service calls. This means
that calling PCEs request an amount of service ac-
cording to some average resource. The concrete FU
can be faster (speed > 1), slower (speed < 1) or an
average resource (speed = 1).

discipline the resource scheduling the server uses.

By offering a single service, ServerFU only needs one pair
of gates. As stated before, messages are delivered to these
gates by direct send calls, making it unnecessary to connect
this module with other elements in the model.

The parameter discipline plays an important role in ProC/B
models, as the behavior of function units are matched to the
way resources are shared in the real system. Currently three
scheduling disciplines can be mapped from ProC/B to OM-
NeT++:

FCFS queues serve requests for resources by the rule ”first
come, first served”. Processes which obtained a re-
source, allocate it according to the amount defined by
the constant or distribution of the service call and pa-
rameter ”speed”.

IS ”Infinite Server”, every request is immediately granted
and takes the time specified by the service call and
parameter ”speed”.

PS ”Processor Sharing”, all requests are immediately granted.
Every process makes use of the full set of resources (ac-
celerating service time by the number of resources),
but has to share resources with other process using
the server at the same time. Capacity is distributed
uniformly among all processes (slowing down execu-
tion time by the reciprocal value of the number of pro-
cesses).

It is possible to interpret these three types of schedul-
ing as different kinds of servers, yet their implementation in
OMNeT++ uses only one module to simplify the structure
mapping by procb2ned . Internally ServerFU makes use of
the strategy pattern [9] to vary it’s behavior according to
parameter ”discipline”.

An excerpt of ServerFU’s source is shown in listing 4. The
handleMessage() method is divided into two parts by an if
clause, newly arriving process messages with selfMessage set
to false are served in the lower part.

Listing 4: Excerpt from ServerFU.cc
void ServerFU :: handleMessage(cMessage* msg) {

PCMessage* message = (PCMessage *) msg;

if (message ->isSelfMessage ()) {
// message was scheduled by handleProcess ()
discipline ->handleSelfMessage(message);
finishService(message);
dismissMessage(message);
return;

}

welcomeMessage(message);
writeNameInPath(message);

discipline ->handleProcess(message);
}

void ServerFU :: FCFSDiscipline:: handleProcess(
PCMessage* message) {

if (parent ->numberMsgInSystem <= parent ->
serverCapacity) {

parent ->scheduleAt(simulation.simTime() +
serviceTime(message), message);

}
else fcfsQueue.insert(message);

}

void ServerFU :: FCFSDiscipline:: handleSelfMessage(
PCMessage* message) {

if (fcfsQueue.empty()) return;

PCMessage* msgFromQueue = (PKMessage *) fcfsQueue.
pop();

parent ->scheduleAt(simulation.simTime() +
serviceTime(msgFromQueue), msgFromQueue);

}

double ServerFU :: FCFSDiscipline:: serviceTime(
PKMessage* message) {

return parent ->getTaskTime(message) / parent ->
stdSpeed;

}

void ServerFU :: ISDiscipline:: handleProcess(PCMessage*
message) {

parent ->scheduleAt(simulation.simTime() +
serviceTime(message), message);

}

At the beginning, welcomeMessage computes some basic
statistics of arriving processes as described in section 4 and
increments numberMsgInSystem. Additionally, the ServerFU
pushes its name in writeNameInPath on the stack keeping
track of every process chain element the message passed
through. The next line is part of the strategy pattern,
discipline holds objects of type ServerFU::Discipline

encapsulating FCFS, Infinite Server or Processor Sharing
as described above. Those strategies are instantiated de-
pending on parameter discipline in listing 3 on module’s
initialization. Their behavior on newly arrived processes is
specified in handleProcess(). Here we present the meth-
ods of FCFS and IS as examples: In FCFS, time is granted
to processes as long as the servers capacity is not exceeded.
Otherwise the process is enqueued until more resources be-
come available. The Infinite Server is even more simple, it
just accepts every process.

In both examples, time consumption is modeled by schedul-
ing process messages to the function unit itself, adding the
amount of time the service will take before sending. When

the message returns, selfMessage is true and the upper part
of handleMessage() is executed. Again, an object of type
ServerFU::Discipline handles processes a second time. In
FCFS, the first process message waiting for free resources
is removed from the queue and immediately scheduled for
completion of the service. The corresponding method for
Infinite Server is not shown here, it equals to an empty im-
plementation since this discipline does not need any further
action after completing a service.

4.1 Translation of Result Measures
The main focus when analyzing a simulation model is on

determining quantitative results for the model, like for ex-
ample throughputs or response times. ProC/B offers the
possibility to measure properties at every FU, though de-
pending on the type of the FU the available properties may
differ: Throughput, response time and population can be
measured at any FU. Additionally, for every server the uti-
lization and for every storage the state can be examined.
For composed FUs the modeler may define further measures
(called rewards in ProC/B). ProC/B allows for three differ-
ent types of rewards: Count, event and state. Rewards of the
type event can be used for serially collecting values, rewards
of the type count for estimating rates and rewards of the
type state for the description of trajectories. Those types
are used for the realization of the standard measures like
throughput or response time as well. While the user-defined
measures have to be updated manually (ProC/B provides
a model element for updating those rewards), the standard
measures are updated automatically whenever a process en-
ters or leaves a FU.

As already mentioned ProC/B allows for streams to be
itemized in detailed ways. This enables for example the
measurement of the train population at the terminal in Fig. 2
without counting trucks. To achieve this, the modeler can
specify a path consisting of elements in the ProC/B model.
Only processes, that have moved through all of the specified
elements will be considered when updating the stream. Most
of the described features available in ProC/B are derived
from the measures that HIT offers, thus allowing an easy
transformation from ProC/B to HIT .

Currently when analyzing the model with HIT , during
simulation streams of data are generated, which are basically
lists of pairs consisting of a time stamp and some associated
value. This data is used to calculate the usual characteristics
like mean, standard deviation and confidence intervals for
the different measures. The ProC/B toolset contains a tool,
that generates plots and visualizes the simulation results.

When using OMNeT++ for simulation the key features
like itemizing streams as well as the output data of the sim-
ulation should be preserved, so that this new simulation en-
vironment fits into our existing toolset. While OMNeT++
offers basic facilities for measurement in e.g. communication
protocols, they need to be extended to meet the demands
for the simulation of logistics networks.

In the remainder of this section it is shown how the mea-
surement is implemented for Standard-FUs like servers or
storages. Measuring properties at composed FUs requires
some additional effort and is presented afterwards. Finally
the itemizing of streams is explained.

For Standard-FUs the measurement streams have to be
updated when a process enters (which means a service of
the FU has been requested by a process) or leaves the FU.

In the OMNeT++ representation of the model a service re-
quest is indicated by a message sent to the FU. The pop-
ulation is updated whenever a process enters or leaves the
FU, throughput and response time are updated when a pro-
cess leaves the FU. For Standard-FUs (like server or storage)
the data collection and evaluation is implemented as C++-
Code within the corresponding simple modules. This brings
up problems for composed FUs: When the ProC/B model is
translated to an OMNeT++ representation, composed FUs
are represented as compound modules, thus only a NED de-
scription exists that lacks the ability to implement code for
measurements. Therefore the module of every composed FU
contains a specific simple module called FUMeasures (see
Fig. 8) to realize measurements in composed FUs.

Figure 8: Message flow for the measurement in com-
posed FUs

Fig. 8 shows the message flow that is necessary for mea-
surements in composed FUs. Starting at the source a mes-
sage is sent to the Process-ID (Process-IDs are used for the
identification of a process chain and the declaration of lo-
cal variables and are always connected with the source of a
process chain). From there a message is sent to the special
module FUMeasures. This module has no counterpart in
ProC/B and its sole purpose is to enable the measurement
in composed FUs. After the message is returned to the
Process-ID, further elements of the process chain are pro-
cessed (denoted by three dots in Fig. 8). When the process
has reached the sink, messages to the module FUMeasures
and back to the sink are sent again. All update operations
of streams for a FU are performed within FUMeasures. The
first message (sent by the Process-ID) means that a process
has entered the FU (and thus the population is updated for
example), the second message (sent by the sink) means that
a process is leaving the FU again.

As already mentioned before, ProC/B allows one to spec-
ify a path consisting of elements, so that only processes,
that moved along that path through the model will be con-
sidered when updating measures. Those paths are part of
the ProC/B experiment description and need to be trans-
lated to the OMNeT++ model and taken into account when
updating the measurement streams. When mapping to OM-
NeT++ the ProC/B experiment description is saved in an
*.ini-file, that is loaded when the simulation starts. Addi-
tionally, a parameter is set for each element appearing in one
of the paths in the corresponding *.ned -file when the model
structure is mapped. During the simulation run the path
a message took through the model is saved and compared
with the paths, that have been specified in the ProC/B ex-

periment. To store this information a new message class is
used, that can carry the path information. Updates of the
measurement streams are only performed when the path of
the message matches one of those paths from the ProC/B
experiment.

OMNeT++ provides several classes for the collection of
data and the generation of statistical measures like mean or
standard deviation which are derived from the abstract class
CStatistic. Because the calculation of means does not match
the specification of the streams in ProC/B , our ProC/B to
OMNeT++ implementation provides its own classes (de-
rived from CStatistic) to generate statistics (one for each
of the stream types event, state and count mentioned be-
fore). For the estimation of confidence intervals the batch
means-method [8] is used. The generated output is saved in
the same format as the output of HIT , so that our existing
tools can parse the data for result presentation.

5. VALIDATION OF THE TRANSFORMA-

TION
If different tools are used to simulate a model, then it is

necessary that the semantics of the model is the same in ev-
ery simulation tool. Ideally, identity of semantics should be
proved formally. Such a formal proof would require a formal
semantics such that formal analysis techniques are applica-
ble to check equivalence. Unfortunately, simulation models
are much too complex to be described in simple languages
that allow a formal analysis. This implies that identical be-
havior of models cannot be strictly verified, it can only be
validated.

ProC/B was designed to introduce a well defined seman-
tics and an automated analysis to hierarchical process chain
models. A specification was laid down in [2], describing the
semantics of PCEs and FUs in an operational form. Many
aspects of the operational semantics are implicitly defined
by the HIT runtime environment. Thus, the behavior of the
HIT simulation model is the behavior which should be ob-
served when OMNeT++ executes the model. However, the
operational semantics depends on several aspects like execu-
tion order of simultaneous events, the order of initialization
which are generally not well defined in discrete event simu-
lation and, additionally, the realization of random processes
that depend on the random number generator.

We distinguish between the validation using models with
and without random numbers. The former will be named de-
terministic models, although this is not strictly correct since
simultaneous events may yield a non deterministic behavior.
For the deterministic models behavior can be compared us-
ing traces. Although, HIT and OMNeT++ both have a
trace function it is not recommended to use these functions
for comparisons since the format differs and cannot be eas-
ily transformed from one to another. Instead models are
augmented with code PCEs including output statements.
Such PCEs can be added to every PC. Thus, HIT and OM-
NeT++ generate the same trace output which can be easily
compared.

To prove equality of traces we developed an automated
testing environment to compare output of ProC/B models
analyzed with HIT and OMNeT++. It is based on a set of
simple and deterministic ProC/B models, designed to test
the behavior of exactly one element of ProC/B ’s language.
Driven by our batch testing environment, identically for-

mated output of HIT and OMNeT++ is compared by an
awk script, highlighting differences in measurement results
and event traces. Additionally, a selection of deterministic
models taken from former projects is also subject to com-
parison, making sure that our ProC/B language elements
implemented in modules interact correctly.

Testing nondeterministic models is limited since different
random number generators are used in HIT (actually imple-
mentations of SIMULA) and OMNeT++. So, even starting
with same seeds, results and event orders will differ. Con-
sequently, we can only check in a statistical sense whether
the implementation is correct, i.e., the different language
elements behave identically. For this purpose, animations
can be compared, traces can be visualized and results can
be compared using statistical test. A typical approach is to
estimate the same measure with both simulators, HIT and
OMNeT++, and then statistically evaluate a random vari-
able describing the difference between both measures. This
can be done by comparing confidence intervals or using sta-
tistical tests (for details see e.g. [12][chap. 10]).
Table 1 shows simulation results of an M/M/1 system (ρ =
0.5) as an example of simple nondeterministic system in-
cluded in our testing environment. Results are sufficiently
close to assume an equivalent behavior for this model with a
high significance probability. We additionally compared sev-
eral simulation results of larger models and obtained similar
minor differences (cf. Sect. 6)

Table 1: M/M/1 system simulation results (90%
confidence interval)

Population Throughput Response time
HIT 1.00202 1.00023 1.001789

±0.18% ±0.05% ±0.16%
OMNeT++ 1.00126 0.99964 1.000905

±0.33% ±0.14% ±0.22%

6. COMPARISON OF PERFORMANCE AND

SIMULATION RESULTS
Though our implementation of ProC/B on OMNeT++ is

not as mature as the one on HIT , we achieved promising
runtime results. Times in table 2 were taken for analyzing
a model over 10.000.000 time units omitting model initial-
ization and output.

Table 2: Runtime comparison
Model HIT OMNeT++
M/M/1 9min. 22sec. 3min. 30 sec.

Freight Village 7min. 01sec. 2min. 16sec.

OMNeT++ beats HIT by saving approximately 50 to 60%
execution time.

The values given for OMNeT++ are preliminary as we
focussed on correct mapping of behavior and ignored per-
formance issues for the time being. Performance bottle-
necks still exist in statistical methods and dynamic search
of matching function units to PCEs.

Table 3 shows some simulation results for the model of the
freight village from section 2.1: The table contains popula-
tion, throughput and response time for the server forklifts
(see Fig. 2) estimated with HIT and OMNeT++. As one
can see the results are quite similar aside from minor differ-
ences caused by different random number generators used in
HIT and OMNeT++.

Table 3: Comparison of simulation results for the
server forklifts (90% confidence interval)

Population Throughput Response time
HIT 3.33275 0.36656 9.09204

±0.2846% ±0.1257% ±0.2266%
OMNeT++ 3.32575 0.36667 9.07027

±0.3501% ±0.1251% ±0.3179%

7. CONCLUSIONS
Although OMNeT++ has mainly been designed for the

simulation of communication protocols, it can be used also
in other areas. In this paper we demonstrated how process
chain descriptions specified by ProC/B models can be sim-
ulated with OMNeT++. Since the world views of ProC/B
and OMNeT++ differ, the transformation is not straight-
forward and has to respect several special features of ProC/B .
For example: Elements of the behavior description, like
PCEs, are mapped to nodes, i.e. structural components, in
the OMNeT++ description in order to exploit OMNeT++’s
animation capabilities. Furthermore additional elements for
measurements are created, like node FUMeasures.

The“correctness”of the transformation has been validated
by several test models where we inserted special output com-
mands, so that discrepancies from the execution via OM-
NeT++ and the reference simulator HIT can be detected
automatically.

The current implementation is a first prototype and fu-
ture work will concentrate on further improvements of the
simulation efficiency and the connection to existing ProC/B
tools. As visual aspects, positioning of ProC/B language
elements in OMNeT++/TKenv will be enhanced to match
ProC/B-editor layout and animation could include the num-
ber of requests to function units.

One of the next steps will be the utilization of Akaroa par-
allel simulation libraries to reduce runtimes by using multi-
ple computers in parallel.

8. REFERENCES

[1] F. Bause, H. Beilner, M. Fischer, P. Kemper, and
M. Völker. The ProC/B Toolset for the Modelling and
Analysis of Process Chains. In T. Field, P. G.
Harrison, J. T. Bradley, and U. Harder, editors,
Computer Performance Evaluation / TOOLS, volume
2324 of Lecture Notes in Computer Science, pages
51–70. Springer, 2002.

[2] F. Bause, H. Beilner, and M. Schwenke. Semantik des
ProC/B-Paradigmas. Technical Report 03001, ISSN
1612-1376, Sonderforschungsbereich 559 “Modellierung
großer Netze in der Logistik”, 2003.

[3] H. Beilner, J. Mäter, and N. Weißenberg. Towards a
performance modelling environment: News on HIT. In
R. Puigjaner and D. Potier, editors, Modeling
techniques and tools for computer performance
evaluation, pages 57–75, 1989.

[4] H. Beilner, J. Mäter, and C. Wysocki. The
Hierarchical Evaluation Tool HIT. In Short Papers
and Tool Descriptions of the 7th
InternationalConference on Modelling Techniques and
Tools for Computer Performance Evaluation, 1994.

[5] P. Buchholz, D. Müller, P. Kemper, and
A. Thümmler. OPEDo: a tool framework for modeling
and optimization of stochastic models. In L. Lenzini
and R. L. Cruz, editors, VALUETOOLS, page 61.
ACM, 2006.

[6] P. Buchholz and C. Tepper. Functional Analysis of
Process Oriented Systems. In H. Fleuren, D. den
Hertog, and P. Kort, editors, Operations Research
Proceedings, pages 127–135. Springer, 2005.

[7] Collaborative Research Center 559 “Modelling of
Large Logistics Networks”.
http://www.sfb559.uni-dortmund.de.

[8] G.S. Fishman. Discrete-Event Simulation Modeling,
Programming and Analysis. Springer, 2001.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[10] J. Huang. Simulative Bewertung von
ProC/B-Modellen. Master’s thesis, Universität
Dortmund, Fachbereich Informatik, Lehrstuhl 4,
Dortmund, 2006.

[11] ARIS business simulator, 2007.
URL:http://www.ids-scheer.de/.

[12] W. D. Kelton and A. Law. Simulation Modeling and
Analysis. McGraw Hill, 2000.

[13] P. Kemper and C. Tepper. Traviando - Debugging
Simulation Traces with Message Sequence Charts. In
QEST, pages 135–136. IEEE Computer Society, 2006.

[14] Omnet++ community side.
URL:http//www.omnetpp.org/.

[15] J. Rathmell and D. T. Sturrock. Arena: the arena
product family: enterprise modeling solutions. In
Snowdon and Charnes [19], pages 165–172.

[16] M. W. Rohrer and I. McGregor. AutoMod: simulating
reality using AutoMod. In Snowdon and Charnes [19],
pages 173–181.

[17] M. D. Rossetti and H.-T. Chan. Supply chain
management simulation: a prototype object-oriented
supply chain simulation framework. In S. E. Chick,
P. J. Sanchez, D. M. Ferrin, and D. J. Morrice,
editors, Winter Simulation Conference, pages
1612–1620. ACM, 2003.

[18] D. W. Schunk and B. M. Plott. Using simulation to
analyze supply chains. In Winter Simulation
Conference, pages 1095–1100, 2000.

[19] J. L. Snowdon and J. M. Charnes, editors. Proceedings
of the 34th Winter Simulation Conference: Exploring
New Frontiers, San Diego, California, USA, December
8-11, 2002. ACM, 2002.

[20] Q. Zhu. Beschreibung von ProC/B-Modellen zur
simulativen Bewertung. Master’s thesis, Universität
Dortmund, Fachbereich Informatik, Lehrstuhl 4,
Dortmund, 2006.

