
An Autonomic ENUM Implementation in Network
Simulator-2 ∗

Sandoche BALAKRICHENAN
Institut National des Télécommunications

9, rue Charles Fourrier
91000 Evry, France

sandoche.balakrichenan@int-edu.eu

Monique BECKER
Institut National des Télécommunications

9, rue Charles Fourrier
91000 Evry, France

monique.becker@int-edu.eu

ABSTRACT
This paper presents the implementation of an autonomic
ENUM simulation model which is validated with real mea-
surements. It explains the approach used to build the model
and integrate with NS-2. The main objective for this work
is to use this simulation model to use different configura-
tions or algorithms in ENUM system and come up with a
promising solution to reduce the global response time for
an ENUM query. For ENUM to be used for VoIP solu-
tions, their response time should be as compared to the real
time telecommunication systems; otherwise it is not going
to be successful. We are convinced that this model could
also be used to study different implementation models for a
particular ENUM scenario and identify an optimized imple-
mentation.

Categories and Subject Descriptors
D.3.3 [Model Validation and Analysis]:

General Terms
Measurement, Performance, Verification

Keywords
DNS, HMM, Model, ENUM

1. INTRODUCTION
Personal communication identifiers (such as phone number,
fax number, email address, instant messaging etc.) are nor-
mally stored and distributed on business cards. In today’s
anywhere/anytime communication world, it will be more
convenient to have these identifiers on a public database on
the Internet so that it can be accessible at all time without
having the necessity of caring the business card or worrying
losing it. Also if there are any changes in these identifiers,

∗This work was supported by a French National Research
Project : RNRT Numerobis

it can be updated without taking the trouble of reprinting
the cards.

In such cases, one needs an unique identifier which may
never change. All the other identifiers can be placed in a
public database on the Internet, which can be queried by
anyone having the unique identifier. Internet already has a
large public distributed database; the Domain Name System
(DNS), whose main functionality is to translate IP address
to domain names and vice versa. DNS is a database of
host information. If the same database could contain other
information, it will be possible to add the personal commu-
nication identifiers to it.

The new IETF protocol, Electronic NUmber Mapping (ENUM)
[1] is a technology that uses DNS to translate telephone
numbers (telephone numbers are unique) into a set of infor-
mation (email address, SIP phone number etc..), which are
normally used as personal communication identifiers. The
most important application of ENUM is that it enables the
convergence of traditional telephony to IP telephony.

Though ENUM is a very innovative idea of convergence be-
tween the PSTN and the Internet, it has its own drawbacks
which need to be studied. Most important of them are; secu-
rity, privacy and the DNS Resolution Delay (DRD). DRD is
the time taken by the DNS cache server to obtain a response
for a query.

The ENUM architecture is similar to DNS, but a DNS study
cannot be used for ENUM, since it has its own requirements
for the DNS infrastructure. This is partly because of the
volume and type of data and partly due to the service level
expectation of customers used to PSTN performance. A
ENUM deployment is successful only when the DNS services
are capable of scalable performance, availability, reliability
and security that is available to classical voice services. Fur-
thermore the success of the ENUM will depend on the ability
of the DNS to give response times similar to the ones given
by the real time databases in the telecom world. A brief
overview of ENUM is presented in section 2.

As indicated in [2],[3] real world systems are too complex to
be studied automatically, and these models must be studied
by means of simulation. We developed a simulation model
which is based on an empirical French ENUM model. The
measurements done on the empirical model are explained in
section 3. The implementation of the model on an existing

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.2940

simulation tool, NS-2 (Network Simulator-2) [4] is explained
in section 4. Any simulation model is considered erroneous
if it is not close to the actual system [5]. We have validated
the simulation model which is further explained in section
5 and finally in section 6 we give a brief idea of how the
simulation model developed can be autonomous.

2. BACKGROUND
ENUM uses DNS to find available services for a given tele-
phone number. These services are encoded in so called Nam-
ing Authority Pointer Resource Records (NAPTR RRs)[6].
The telephone number is converted to a Uniform Resource
Identifier (URI) [7], which is used to retrieve the NAPTR
RRs. The processing of ENUM query is as follows (Fig:1) .

fr.com.

"."

arpa.

e164.arpa.

4.3.e164.arpa.

(Spain)
4.4

(UK)
3.3

(France)

1.4.6 6.7.0.6.1

1.0.0.0.0.0.1.4.6.3.3.e164.arpa.

keep digits only : 33641000001

(+33)6-41-00-00-01original phone # :

add dots : 1.0.0.0.0.0.1.4.6.3.3

reverse : 100000014633

FQDN (add suffix) : 1.0.0.0.0.0.1.4.6.3.3.e164.arpa.

Figure 1: ENUM Tree

An ENUM compliant device such as phone or VoIP Private
Branch Exchange (PBX) translates the telephone number
into domain name by reversing the digits and putting pe-
riods between each. The resulting string is appended with
.e164.arpa., which is designed specially for providing ENUM
services. For example the telephone number +33 641000001
becomes an Fully Qualified Domain Name (FQDN) 1.0.0.0.0.
0.1.4.6.3.3.e164.arpa. through this process. Next an inquiry
about 1.0.0.0.0.0.1.4.6.3.3.e164.arpa. is submitted to the
DNS. This inquiry retrieves the transcription and resolution
rules, i.e. NAPTR RRs. The output is an URI for accessing
IP-based applications. These addresses can be reached via
Internet.

3. EMPIRICAL MEASUREMENTS
Our research methodology has been structured around three
phases; analysis, simulation and optimization. In this paper
we explain only the first two phases. The analysis phase
is explained briefly in the current section and further ex-
planation of the analysis phase is directed to our previous
paper [8]. Using tools (existing as well as developed) we col-
lect packet level traces of measurements made on a French
ENUM model and analyze them in detail. This analysis
helps us to develop mathematical models based on the em-
pirical measurements. Parameters are obtained from this
mathematical model which are used in the simulation phase,
such that the simulation model resembles the characteristics
of the empirical model.

The French ENUM model taken for our measurements has
a three tiered architecture. In this architecture, Tier0 cor-
responds to the base of the internet domain space that is
designated for ENUM (i.e. e164.arpa). The main function
of Tier0 is the administration and technical management of
ENUM domain. Records at this level contain pointers to
the ENUM Tier1 for an E.164 (E.164 is the international
numbering plan for public telephone systems. E.164 is also
used to indicate telephone number in this paper) Country
Code. Tier1 function is to manage and operate ENUM in
the country identified by the E.164 Country Code (CC),
i.e. <CC>.e164.arpa. Records at this level contain point-
ers to the ENUM Tier2 for a full E.164 number. The French
ENUM model has Tier2 chunk (which has information about
a chunk of numbers; For example if numbers from +33-1-60-
76-00-00 to +33-1-60-76-99-99 are assigned to operator1 and
numbers from +33-6-41-00-00-00 to +33-6-41-99-99-99 are
assigned to operator2, and if there is a query arriving with
a value within the numbers in operator1, then the Tier2
chunk will redirect the query to the Tier2 number server of
operator1) and Tier2 number servers. Records at the Tier2
number level contains the NAPTR RRs associated to an
E.164 number.

Three types of real measurements were made on the French
ENUM model (Fig: 2)in the analysis phase.

1. To measure and model the performance (loss rate and
response time at each of the target servers at a given
query rate and under a given DNS environment (Hard-
ware, DNS software type and DNS database configu-
ration))

2. To measure the global response time of the queries
made on the French ENUM model (i.e. the global
DRD Performance)

3. To measure and model the two important metrics which
impacts the performance of the IP links (i.e. delay and
loss) connecting the different nodes of the ENUM sys-
tem.

3.1 Local DNS server measurements and model

Figure 2: Empirical Measurement Set up

For the first measurement, we modified the tool Queryperf
(which comes with BIND) and used it to stress the local
cache server (Fig: 2). The stress test was done with a wide

range starting from a low (1000 - 2000) Queries per Sec-
ond (QPS) to high (50000 - 80000) QPS rates. For each
QPS rate average response time and loss rate of the target
servers (Tier-0, Tier-1 and Tier-2) were measured. The re-
sults (Fig:3 and Fig:4) showed that each of these parameters
increases with the query rate and we found that the best way
to describe their evolution over the load for all the three tar-
get servers is to use a mathematical function defined in two
parts. The first part of the function shows an exponential
growth, whereas the second part is presented in the form of
a linear growth.

Figure 3: Average response time of Tier-1, Tier-2
bloc and Tier-2 number server

We used censoring techniques to cut the exponential and
linear curve. For each exponential and linear curve, we used
exponential and regression methods to identify how best the
predicted curve fits the observed curve. The goodness of fit
is estimated by the R-square value. The R-square value ob-
tained for each approximation were found closer to ”1”. We
identified parameters, which when applied into the mathe-
matical model, best fit real world measurements. Thus pa-
rameters were calculated for all the three target servers to
be used in the simulation tool.

3.2 Global response time measurements
While the local cache server was stressed, we also calcu-
lated the global response time for each query for the second
measurement. The global response time is the sum of the
response time of all the local DNS servers. We calculated
the cumulative distributive function for a period of 5000 and
36000 different telephone numbers. For an experiment with
5000 telephone numbers, the cache server will be populated
earlier and so the hits in the cache server will be more, which
will result in lesser response time than with 36000 different
telephone numbers. The resulting graph (has both simula-
tion and empirical results) is in shown in section 5(Fig:10)

Figure 4: loss rate of Tier-1, Tier-2 bloc and Tier-2
number server

3.3 IP link measurements and model
For the third measurement we measured and modeled the
real test set up for two metrics (loss and delay) on the links
(connecting the user, the cache server and the target DNS
servers).

Since DNS uses UDP, we used the same transport protocol
for our measurements. A simple utility was developed and
used for performing the active measurements. It comprises
of a ”Client” and a ”Server” program. The client sends UDP
datagrams at a fixed interval (Constant Bit Rate) or using
an exponential (Poisson) distribution. Each packet contains
a unique sequence number. When the packet is sent it is time
stamped and this is recorded in a log file with the sequence
number of the packet. The log file looks as in the table 1
When the server at the receiving end receives the datagrams

Sequence number TimeStamp
61 1094728989.131322
62 1094728989.158886
63 1094728989.187941

Table 1: Packet Format in the Log file

sent by the client, it performs a time stamp of the received
time with the sequence number of the packet in another log
file. After the completion of the active measurements the log
file of the server and the client are collected. The one-way
delay and loss can be identified as follows:

Let us assign

Tc - Timestamp of the packet sent from the client

Ts - Timestamp of the packet received at the server

Ts - Tc of a unique packet sequence number will give the

time taken by the packet to travel from the client end to the
sender end. i.e. the one-way delay. The one-way loss is also
obtained from these log files. We used the libpcap and libnet
libraries for the measures to be more accurate. The errors
due to the famous NTP synchronization problems had to be
eliminated from the obtained trace to get appropriate value.
The explanation of clearing the trace does not come within
the scope of this paper.

Due to space constraints we give a very brief overview of how
we modeled the loss and delay of the IP links and finally how
we validated the model.

S R
HMM Delay

HMM Loss HMM Delay

HMM Loss

Figure 5: IP Link Model

The model developed should reflect the features of an IP
link. So we designed an asymmetric Internet cloud model
(client-server nature of the Internet), where the delay and
loss are not correlated. Since we want the internet cloud
to reflect the dynamicity and long-term dependence of the
internet traffic we decided to use Hidden Markov Models
(HMMs). Our model of an IP link has four HMMs (Fig:5),
one for the delay and one for loss on both direction of the
IP link.

Figure 6: Delay distribution using Simulation

The delay is represented by a Continuous Hidden Markov
process. Two states are used to model this event. A trun-
cated gaussian with average µ and standard deviation σ is
associated with each state of the continuous hidden markov
chain. Since delay cannot be negative the distribution is
truncated to obtain only positive values. We validated the
delay model by simulation in NS-2. The results obtained
by simulation also confirms that the delay distribution ap-
proaches a gaussian. The hidden markov chain comprised
of three states and the three gaussian values were centered
around 0.6, 0.2 and 0.375 seconds (Fig:6).

The loss is modeled by MMPP+M/M/1/N process. The
loss rate measured is segmented on a 5 second window for
the complete trace period. On applying the Expectation

Maximization algorithm procedure [9] for the estimation of
HMM we obtain the following values: where p is the obser-
vation matrix, Γ is the transition matrix and π being the
stationary distribution of the markov chain.

p =
(
0.95 0.206 O.07

)
.

Γ =

 0.937 0.0623 0.0006
0.0026 0.9973 0.0002
0.0000 0.0004 0.9996

 .

π =
(
0.0267 0.6581 0.3152

)
.

Simulation of the loss model was done in NS-2. On applying
the same procedure used for real trace, estimation was also
done on the simulated trace, the values thus obtained are as
follows:

p =
(
0.94 0.204 0.07

)
.

Γ =

0.9431 0.0568 0.0000
0.0022 0.9976 0.0002
0.0000 0.0008 0.9992

 .

By comparing the real and simulated values; which seem to
be identical, the loss model was validated.

4. IMPLEMENTATION OF THE SIMULA-
TION TOOL

Now we move into the second phase the simulation phase.
To design an ENUM simulation model we need information
about the topology, the different modules used and also its
configuration files.

4.1 Simulation Environment

Figure 7: Simulation Topology

The topology (Fig: 7) resembles the empirical French model
that we have used to make the real measurements. Here
we give a brief explanation of all the modules used in the
topology.

ENUM Clients. In the topology we have two ENUM clients.
The functionality of this module is to generate and send
queries of format (1.0.0.0.0.0.1.4.6.3.3.e164.arpa.) to the re-
solver.

Resolver. The resolver module receives requests from ENUM
client and creates a DNS query type packet with the data
obtained from the client. The resolver makes recursive query
to the cache server. The burden of finding the answer to the
query from the resolver is placed on the local cache server.

Cache Server. Most of the DNS resolution is processed by
the cache server module. It receives recursive queries from
the resolver. If the information asked by the query is present
in the cache database, then there’s a cache hit and it can
answer directly to the resolver; otherwise in case of a cache
miss it has to send iterative queries to the authoritative
server before it can answer to the resolver. Since it knows
only the name and place of the root server(s) in the be-
ginning, it has to send a few iterative queries until it finds
the response for the resolve’s query (which yields high num-
ber of hops in the beginning). But the process is shortened
(fewer hops) when the cache get populated over time as data
is stored in the cache database for a TTL(Time To Live)
period. For a deeper understanding of DNS cache server
concepts we refer to book [10]

Authoritative Server. The authoritative server(s) receives
the query from the cache server and searches for the query in
its database. If it has the response, then it replies, otherwise
it responds with information about the server which can
possibly have the requested information.

IP link Module. This module is used to introduce loss and
delay parameters to the different links in the simulation en-
vironment.

4.2 Configuration Files
In this subsection we explain about the data structure that
is used to generate, transfer, process or look up information.
In order to have a simulation model which could be modified
easily, we designed all the data structure to be obtained from
configuration files. This will help any future users to use
the simulation by just modifying the configuration files for
any scenario without understanding the complexity of the
simulation code. The DNS software that we have used for
the empirical measurements (explained in section 3) is BIND
[11]. The BIND DNS parameters is the one that is followed
in the configuration files to develop the ENUM simulation
model. Here we give a brief idea of the configuration files
used by different modules in the topology.

ENUM client. In our initial simulation implementation we
have two enum clients. Each of the enum client will re-
trieve input values from the respective configuration files
”enum1.conf” and ”enum2.conf” to generate traffic. Each of
them will generate different ENUM queries to simulate dif-
ferent users.

Resolver. As we already explained, resolver represent the
module which formulates a DNS query packet type and send
it to the local DNS cache server. The configuration file ”re-
solv.conf” file contains information about the cache servers
connected to the resolver. The resolv.conf for our simula-
tion topology has two cache servers ($n(6) and $n(7) which
represents nodes in NS-2) connected to the resolver. The
algorithm used to identify which cache server to connect is
explained in subsection 4.6

Cache Name Server. In real BIND set up it is a process
called ”named”in the cache name server which answers queries
from resolvers. This application reads its data from a con-
figuration file called ”named.conf” which in turn gets its in-
formation from the zone files. Several zone files can exist

but one zone file in particular keeps a database of records
that supply the named process with most of its answers.

In our simulation set up, when the cache name server gets a
query from the resolver, it searches the named.conf file. The
named.conf file at the cache server looks like following:

zone ”.” in {
type hint;
file ”db.cache”;
};

According to the named.conf configuration file above, the
cache server is of type hint. This type of servers usually will
store a local cache of host name and address mappings. If a
requested address or host name is not in its cache, the hint
server will contact the master name server (in our case it
is Tier-0), get the resolution information and add it to its
cache. The zone file ”db.cache” has information on how to
contact only the root server. So with this configuration at
the beginning all queries are redirected to the root server.

The zone statement identifies the location of the hints files
which contains the name and address of the root servers on
the internet. The zone file db.cache contains the following
lines:

. 360000 NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 360000 A $n(2)

The first line indicates the Name Server (NS) resource records.
This record indicates that there is one NS for the root do-
main ”.” i.e. A.ROOT-SERVERS.NET. The second line rep-
resents the name-to-address mappings. ”A” stands for ad-
dress and the resource record maps the name (A.ROOT-
SERVERS.NET.) to node address ($n(2)). Node address is
used in place of IP address in NS-2 simulations. The real
value of cache name server comes only after it build up its
cache. Each time it queries an authoritative name server
and receives an answer, it caches the records in the answer.
Over time, the cache will grow to include the information
most often requested by the resolvers querying the cache
name server.

Authoritative Name Server. The Authoritative Name Server
in the simulation environment represents Tier0, Tier1, Tier2
chunk and Tier2 number server of the French ENUM model.
The configuration file in this category has either only partly
information (such as the configuration file ”db.0.0.1.4.6.3.3.
e164.arpa”, which contains information on which server to
contact if the first seven E.164 number of the query maps
with .0.0.1.4.6.3.3.e164.arpa.) or complete information (such
as NAPTR RRs in case of the configuration file db.0.0.0.0.0.0.
1.4.6.3.3.e164.arpa).

We will take the example of Tier-1 server for understand-
ing the configuration structure of the authoritative servers.
Similar to the cache server it is the named application which
reads data from ”named.conf” file, which in turn gets its in-
formation from the zone files. The named.conf file at the
authoritative server looks like following:

zone ”numerobis.prd.fr” in {
type master;
file ”db.numerobis.prd.fr”;
};

This servers is of type ”master”. They are the authoritative
servers for their particular zone. They read the data from
the file on its host. For example the file ”db.numerobis.prd.fr”
contains information for all the FQDN which ends with ”nu-
merobis.prd.fr”. The content of the file db.numerobis.prd.fr
is as follows:

$TTL 10800
@ IN SOA ns1.numerobis.prd.fr. admin.ns1.numerobis.prd.fr. (

1 ; serial
10800 ; Refresh after 3 hours
3600 ; Retry after 1 hour
1w ; Expire after 1 week
1h ; Negative caching TTL of 1 hour

)

Their explanation is like this. $TTL 10800 line states that
records looked up and cached in a caching server from this
file have a TTL (Time To Live) of three hours. The cached
entry expires after three hours and is removed from the cache
when that much time has passed. The ”@” sign in the line
refers to the ”origin” for this zone file which is ”numero-
bis.prd.fr.”. ”IN” stands for Internet. SOA refers to ”Start
of Authority”. SOA indicates that this name server is the
best source of information for the data within this domain.
The first name after SOA(ns1.numerobis.prd.fr.) is the pri-
mary name server of the numerobis.prd.fr zone. The second
name (admin.ns1.numerobis.prd.fr.) is the mail address of
the person in charge of the zone. The NS records for the file
”db.numerobis.prd.fr” is as follows:

@ IN NS ns1
sfr IN NS bloc.sfr

These records indicate that there are two name servers for
the zone numerobis.prd.fr. The name servers are the hosts
ns1.numerobis.prd.fr and bloc.sfr.numerobis.prd.fr. Now we
look into the name-to-address mappings of the file ”db.numer
obis.prd.fr”.

ns1 IN A $n(3)
bloc.sfr IN A $n(4)

ns1.numerobis.prd.fr is mapped to node $n(3) and bloc.sfr.nu
merobis.prd.fr is mapped to node $n(4). So the query which
comes under each of these zones are redirected to the re-
spective nodes. This process is followed until the query gets
the full NAPTR RRs.

4.3 Hash Tables
Packet classification is one of the essential tasks of network
processing. In our simulation environment all the incoming
packets have to be processed. For example the cache server
has to separate the header and data from the packet that it

has received from the resolver. The header is used to identify
from which client it has received the query from and also the
packet ID. In turn the data i.e. the domain name is used
to look up in a hash table to check whether the response
for the query is in its cache. Such look ups are done at the
resolver, cache and authoritative servers in our simulation.
The job of look ups had to be done in line speed to decrease
the processing delay.

Figure 8: Hash Table

The primary idea behind a hash table is to establish a map-
ping between a set of all possible keys and positions in the
array using a hash function. A hash function accepts a key
and returns its hash coding or hash value. Keys vary in
type but hash codings are always integers. The hash ta-
bles that we have developed in our simulator is based on the
STL(Standard Template Library) in C++. It uses a chained
hash table technique. The chained hash table fundamentally
consists of an array of linked lists. Each list forms a bucket
in which we place all elements hashing to a specific position
in the array as seen in the figure 8. The bucket number is
computed by taking the hash value modulo the number of
buckets. To insert an element, we first pass its key to a hash
function. This tells us in which bucket the element belongs
to. In figure (Hash Table) hash value of the packet ID 1 (as-
suming the hash value is same as that of the ID) is stored in
bucket 1(Hash value of 1 modulus 21 buckets = bucket 1).
To look up or to remove an element, we hash its key again
to find its bucket, then traverse the appropriate list until we
find the element that we are looking for. In this case since
each bucket is a linked list, the hash table is not fixed to a
number of elements.

4.4 Modifications to NS-2
In NS-2 the procedure is as follows:

• The user creates the topology of the network by means
of an OTcl based interpreter.

• The Internet links are specified in terms of bandwidth
and of scheduling discipline.

• The routing strategy is also specified, through tradi-
tional or user-specific algorithms.

• Traffic generators are also provided or user-specific traf-
fic generation could be used.

The figure (9) illustrates the files that were modified (left
side) and added (the right side) in NS-2 to integrate the

ENUM application. The modifications are done both in
C++ data functions and OTcl control functions and the
additions were done only in C++. The modifications made
are as follows:

Figure 9: Module Implementation in NS-2

common/packet.cc,h. The class ”packet” defines the struc-
ture of a packet and provides member functions to handle a
free list for objects of this type. Since we introduced ENUM
query/response type packet, we had to describe the corre-
sponding packet format in this class.

common/agent.cc,h. The class ”agent” supports packet gen-
eration and reception. To have a new application an agent
running with the NS-2 distribution the agent class is modi-
fied to support the member functions of the new agents.

tcl/lib/ns-default.tcl. Default values for member variables,
those visible in OTcl only and those linked between OTcl
and C++ with bind are initialized in the ns-default.tcl file.
Default values for the newly introduced configurable param-
eters are introduced in ns-default.tcl.

tcl/lib/ns-packet.tcl. To enable the new packet format used
by ENUM we had to add the new packet types to ns-packet.tcl.
This file is executed when the simulator initializes and cre-
ates an array containing a mapping between the class names
and the names of the currently active packet header class.

tcl/lib/ns-lib.tcl. This file interprets node configurations spec-
ified in NS-2 simulation script. In orde to introduce losses
at the node we added an extension to accommodate them

tcl/lib/ns-link.tcl. The modifications in the link that is in-
troducing loss and delay parameters in the queue for the IP
link is done here.

In the forthcoming subsections we will see how new modules
were integrated to NS-2.

4.5 ENUM Client Implementation
The Enum client application inherits the NS-2 Application
class. There are two basic types of applications in NS-2:
traffic generators and simulated applications. The Enum
client falls into the traffic generators category. This module
accesses the configuration file (enum.*.conf) to generate a
sequence of ENUM type queries. The configuration file is of
the format ”336 41000000 5000 500” where

• 336 41000000 represents Starting Number

• 5000 represents Size and

• 500 represents Average Inter arrival Time

From the ”starting number” enum client generates 5000 dif-
ferent E.164 queries and add e164.arpa with each query. Fi-
nally ”.” are introduced between each number such that a
complete FQDN is generated. A packet is created to add
this generated data. Since, we did not have real traces of
ENUM, these requests were sent to the resolver at a ran-
dom interval. At present this random interval is fixed to
the same interval that we used in the testing of real ENUM
model. The distribution chosen for traffic generation in the
simulated model may not quite adhere to the real ENUM
scenarios of traffic generation.

4.6 Resolver Implementation
In NS-2, an application is attached to an agent and the
application sends data through the underlying agent or by
calling a set of methods defined in the agent. Enum client is
the application which generates the traffic and it needs an
agent to carry the traffic to its appropriate destination as
well as to receive data. Since DNS uses UDP, the simulation
model also uses the same as the transport agent. UDP is
already present as a library routine in NS-2.

To perform the resolver operations, a new dns resolver agent
is created as the sub class of the UDP agent. dns resolver
agent is necessary to create a DNS type query from the data
received from the application (enum client) and also facili-
tate in receiving a DNS-type response from the local cache
DNS server. It is necessary to explain the different hash
tables used for this module before going into the implemen-
tation details.

The hash tables are necessary to store and do the look up
of corresponding information to the queries. Two different
hash tables were used in this module:

• The first hash table (htable1) contains the packet se-
quence number as ”key”and complete DNS query packet
information as ”value”. The value information is packed
as a structure which contains the following fields:

– The timeout value (At what time the same query
will be called again)

– Type of the packet (Whether it is a query or re-
sponse)

– The string (e.164 string format)

– The number of iteration (explained in the ”Timer
algorithm”)

• The second hash table (htable2) contains the packet se-
quence number as ”key” and the time when the packet
is send to the cache server as ”value”.

The procedure that is followed at the resolver agent is as
follows:

A new Packet arrives. On receiving a packet, the type of
the packet is identified to check, whether it is a ”response
type” or ”query type” packet.

Response type packet. In this case the packet contains a
response for the query it requested. The sequence number
of the packet is parsed from the received packet and the
sequence number is searched in the htable1.

• If it is found then the global response time is calculated
from subtracting the value of the received time - send
time. The send time data is obtained by looking at the
second hash table (htable2) with the sequence number
of the received packet.

• If the sequence number is not found, packet is ignored
since the response has been received already and the
values are deleted from the hash tables.

Query type. If the packet received is not response type, then
it is from the enum client. In this case, a new packet is for-
mulated with the packet id as increasing sequence number
(which is unique), the ENUM query and a field for calculat-
ing the number of hops. The hop value increases with every
new node the particular packet traverses. The time that the
packet is sent is updated in htable2. The formulated packet
is sent to the corresponding cache server.

While instantiating the dns resolver object, the number of
cache servers (nb cacheservers) that is accessible by the re-
solver is obtained from the resolv.conf configuration file. If
a new cache server is added, the resolv.conf file is updated.

Once the query is sent to the cache server a timeout is calcu-
lated for the query (in case the packet gets lost or delayed).
After the timeout if a response for the query is not received,
the query is resent to the same or different cache server. The
timeout is calculated by the Timer Algorithm.

Timer Algorithm. Every time a request is sent from the
resolver to the cache server, it is calculated as iteration
(nb iteration). If there are two cache servers and when a
new query is generated from the resolver, it is the first iter-
ation. Once the same query is sent to all the different ac-
cessible cache servers it is calculated as one cycle (nb cycle).
We used the BIND configurations for fixing the number of
maximum servers (NB MAX SERVERS) to 3 and number
of maximum cycles (NB MAX CYCLES) to 4.

By using the algorithm, timeouts and the target server to
which the query packet is to be sent are calculated depending

input : TIMEOUT SINGLE = 5 (in seconds);
TIMEOUT MULTIPLE = 10 (in seconds);
NB MAX CYCLES = 3;
NB MAX SERVERS = 4;
output: The TTL value and the target local cache

server to send the data

nb cycle = iteration/nb cacheservers (Convert the
result to Integer Value);
if nb cycle == 0 then

Timeout = TIMEOUT SINGLE;
Target Server = Iteration mod nb cacheservers;

if nb cycles > NB MAX CYCLES then
The packet is considered lost;

if nb cycle > 0 then
if nb cacheservers == 1 then

TIMEOUT = 2∗nb cycle*TIMEOUT SINGLE;
Target Server = Iteration mod nb cacheservers;

else
TIMEOUT =
nb cycle*TIMEOUT MULTI*nb cacheservers;
Target Server = Iteration mod nb cacheservers;

end

Algorithm 1: Algorithm for calculating Timeout

on the number of cache servers, iterations and number of
cycles. After every time the timer algorithm is called the
nb iteration is updated in the hash table (htable1) for the
particular packet.

4.7 Cache Server Implementation
As discussed in the previous subsection here also it is neces-
sary to explain the hash tables present in this module before
going into the implementation part. There are three hash
tables used by the cache server module:

• Name server (NS) Hash table - to give information
about a segment of the database

• Authoritative server (AS) Hash table - to store the in-
formation pertaining to a particular domain, exclusive
of any sub domains that have been delegated to their
own authoritative servers and

• NAPTR hash table - to store NAPTR RRs correspond-
ing to E.164 number.

The cache agent module is also developed as the sub class of
the NS-2 UDP agent. On instantiation of the cache object,
it updates all the three hash tables with the data from the
configuration file ”db.cache”. The cache agent on receiving
the query packet from the resolver, have to follow successive
referrals querying the different authoritative server until it
receives a response for the query. The cache Agent module
works as follows:

A Packet Arrives. In this case the cache node can either re-
ceive packets from the resolver (as query) or from the server
(as response).

Query type packet. When it is a query type packet, the cache
server looks up its NAPTR hash table (which contains RRs)

to verify whether it has response for the particular query. If
it is a cache hit, then it updates the hash table, formulates
the response type packet and sends it back to the resolver.
On the contrary if it is a cache miss, then it searches in
the NS hash table to find the authoritative server. Finally
from the authoritative server hash table it gets the address
of the AS node which can provide some information about
the received request. For every data processing done, the
corresponding hash tables have to be updated.

Response type packet. In this case the cache server receives
packet from any of the AS. If the packet that has been re-
ceived contains the NAPTR value then it means that the re-
sponse for the query is obtained. Then the response packet is
formulated and send it back to the resolver. On the contrary
if the packet contains information about another AS which
might have information about the query, the cache server
ask the AS for the address for the query and this process
is continued until it gets an answer. For every transaction
done in the cache server, the stipulated hash table have to
be updated.

4.8 Authoritative Server Implementation
Similar to the cache agent here also three hash tables are
used:

• NS Hash table

• AS Hash table and

• NAPTR hash table

The server agent is also created as the sub class of the UDP
agent.

A Packet Arrives. When the AS receives the packet, it uses
a mechanism to determine whether the packet should be lost
or not. The loss rate value for determining this process is got
from the empirical measurements(from the analysis phase)
and the agent retrieves this data from the configuration file.

If the packet is not lost. Here a processing delay is intro-
duced into the server. This information is also obtained
from the empirical measurements (from the analysis phase).
A Gaussian distribution function is used to calculate the de-
lay. Then it looks into its hash table either to send the server
address for the query or a response which will be used by
the cache server to identify the destination which can either
give more details or the address of the server.

4.9 IP link Model Implementation
In NS-2, Connector class is used to link two nodes (for e.g.
a resolver and the cache server). In our simulation model
we created a new class called HMMLink which inherits the
Connector class. This class contains the attributes for the
observation and transition matrix. The methods in this class
enables to make the hidden Markov chain transitions. Two
class inherits the HMMLink class: HMMdelay and HMM-
loss. Usage of this module is in two stages; the first stage
is to create the HMMLink object and then bind the object
with the existing link object present between two nodes in

NS-2. This object thus instantiated is placed between the
objects head and enqT of the link class in Ns-2

A packet arrives. When a packet arrives in the link, the
method ”recv” in the HMMLink class uses the configuration
parameters explained below to determine whether the re-
ceived packet is lost or not, and if not, how much the delay
is.

HMMdelay. This object calculates the delay for the packet
using a configuration file as shown below:
1
10 5
1000
Poisson
The first line indicates the number of states for the transi-
tion matrix while the parameters in the second line are for
average and standard deviation delay. The third line is the
time between each state in milliseconds and final line is used
for identifying the distribution type.

HMMloss. This object will calculate whether an arriving
packet should be lost or not. The loss configuration file is
as shown below:
1
0
1000
CBR
All the parameters in the loss configuration do the same op-
eration as that of loss, except the second line which indicates
the loss rate.

5. VALIDATION
As explained in section 3 our research methodology had
three phases namely: analysis, simulation and optimiza-
tion. The goal of the simulator is not to stop within this
three phases. The promising solutions obtained from the
simulation should be used in a fourth phase which is imple-
mentation. The results obtained from the simulation models
should be implemented as real solutions in real world ENUM
scenarios.

In order to use the simulation solutions in the implemen-
tation phase one should be confident enough that the ob-
tained simulation results are accurate and meaningful. Vali-
dation of a simulation model with real measurements should
be done to understand how accurately does the simulation
model reflect the operations of a real system [12],[5].

As discussed in this book by Harry Perros [12] one of the
most powerful validation methods is called output validity.
If actual data are available regarding the system under study
(empirical measurements), then these data can be compared
with the output obtained from the simulation model. Obvi-
ously is it true that if they do not compare well, the simu-
lation model is not valid.

In order to satisfy the output validity validation method,
we first compared the global response time of the real and
the simulation model. For the validation purpose we again
state the reference [12] which explains about the need for
a method called Relationship Validity. It defines that in
order to have the structure of a system under study, fully

reflected down to its very detail in a simulation model, the
models assumptions should be credible.

Assumptions like topology, bandwidth, generation of ENUM
queries and DNS database have been verified by logical checks
and also by the NS-2 visualizing tool NAM. Other parame-
ters like the ENUM servers (Tier-0,Tier-1, Tier-2 and Tier-
3) loss rate and response time has been taken as input from
the real measurements. Also the IP link delay and loss values
are obtained from real measurements. So to our knowledge
Relationship Validity has been done.

For output validity, we used parameters obtained from real
measurements into the simulator and compared two kinds
of results; for a lower number of request (5000) and a higher
number of requests (36000). We compared the cumulative
frequency distribution of real measurements and simulated
results for validating the simulation model as shown in Fig:
10.

Figure 10: Comparison of real and simulation results

In this paper [5] Averil M. Law suggests that a null hypoth-
esis of saying that the real system and the simulation model
are same is clearly false, since the model is only an approx-
imation of the real system. So the question we have to ask
is whether the differences between the model and the real
system are significant enough to affect any conclusions de-
rived from the model. To answer the question, statistical
procedures such as confidence intervals can be used.

The confidence interval at 95% interval can be calculated
by the formula: Mean± (2 ∗ StandardDeviation√

N
) The stan-

dard rate error i.e. StandardDeviation√
N

is calculated as 1.047226.

So in order to have the confidence interval at 95% inter-
val the mean global response time of the simulation results
should should be ± 2*1.047226(i.e.2.0944452) of the real
global response time measurements. The mean global re-
sponse time of real measurements for 5000 queries estimated
at the local cache server is 10.53116667. The global response
time calculated for 5000 queries by simulation is 10.717. So
this proves that the conclusions arrived from the simulation
model can be significant in real implementations.

6. HOW THE SIMULATION MODEL IS AU-
TONOMOUS

If systems can manage themselves given high level objectives
from administrators they are considered as autonomous. As
discussed previously (subsection 4.2) the simulation model

is designed to get all its values from the configuration files.
At its present state the simulation model do not have inte-
grated into it the two of the four requirements of autonomic
computing envisioned by IBM [13] namely; self-healing and
self-protecting. The other two requirements namely; Self-
Configuring (adaptive TTL at the cache server on the ba-
sis of the global response time) and Self-Optimizing (load
balancing of the cache servers) are implemented. The case
studies are not explained here due to space constraints.

7. CONCLUSION
A new approach is followed to build an autonomous simu-
lation tool. The tool is validated with real measurements.
The simulator tool that we have developed can be used to
study an optimized delegation model for a particular sce-
nario. The tool can also be used to study the feasibility
of different ENUM enabled services with minimal modifi-
cations. We are convinced that our work could influence
different metrics (such as Time to Live for different types
of Resource Records in Tiers-(0...2) DNS Servers)) which
will lead to recommendations of the new ENUM protocol to
achieve better performance.

8. REFERENCES
[1] P. Faltstrom. E.164 number and dns.rfc-2916,

September 2000.

[2] Monique Becker and André-Luc Beylot. Simulation
des Réseaux. Hermés, 2006.

[3] Averill M. Law and David Kelton. Simulation
Modeling and Analysis. Mc-Graw Hill, 1991.

[4] Vint : Virtual internetwork testbed,
http://www.isi.edu/nsnam/vint/index.html.

[5] Averil M. Law. How to build valid and credible
simulation models. In Proceedings of the Winter
Simulation Conference, 2005.

[6] M. Mealling and R. Daniel. The naming authority
pointer (naptr) dns resource record. rfc-2915,
September 2000.

[7] T. Berners-Lee. Uniform resource identifiers (uri):
Generic syntax. rfc-2396, August 1998.

[8] Thomas BUGNAZET Sandoche BALAKRICHENAN
and Monique BECKER. Studying enum performance
with modeling and simulation. In Proceeding os the
Asian Modeling Symposium, 2007.

[9] Kavé Salamatian and Sandrine Vaton. Hidden markov
modeling for network communication channels. In
ACM SIGMETRICS Performance Evaluation Review,
2001.

[10] C. Liui and P. Albitz. DNS and BIND. Oreilly, 4th
edition, April 2001.

[11] Bind (berkeley internet name domain) a dns server
implementation from isc (internet systems
consortium) http://www.isc.org/index.pl?/sw/bind/.

[12] Harry Perros. Computer Simulation Techniques : The
definitive introduction! NC State University, 2007.

[13] J. Kephart and D. Chess. The vision of autonomic
computing. Computer Magazine, IEEE:41–50, 2003.

