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ABSTRACT 

Originally designed to improve the efficiency of packets 

forwarding, MPLS provides support for Traffic Engineering and 

network resilience. Constrained-based path computation is a key 

building block for Traffic Engineering in MPLS networks, since it 

allows to set-up LSPs along paths that satisfy QoS constraints. 

This paper deals with two distinct categories of  path computation 

algorithms: on-line path computation algorithms adn on-line multi 

path algorithms. All these algorithms have been implemented in 

NS2 as an extension of OSPF-TE\ns and integrated with RSVP-

TE\ns.  
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1. INTRODUCTION 
In the last years, new advanced network architectures have been 

introduced to satisfy the Quality of Service (QoS) requirements of 

multimedia applications. In the meantime, Multiprotocol Label 

Switching (MPLS) [1], originally developed as a fast packet 

forwarding technique, has been deployed by a great number of 

Internet Service Providers (ISPs) to exploit, within their network 

infrastructures, its Traffic Engineering (MPLS-TE) capabilities 

[2][3]. 

One of the most important “building blocks” of such network 

architecture is the Path Computation Element (PCE) [4], which 

enables the creation of constraint routed Label Switched Paths 

(LSPs) along explicit paths. A PCE can be realized according to 

either a centralized or a distributed computation model. The 

former refers to a model whereby all paths in a domain are 

computed by a single, centralized PCE. This may be a dedicated 

server or a designated router in the network. Conversely, the latter 

refers to a domain or network that may include multiple PCEs, 

and where the computation of paths is shared among the PCEs. A 

given path may in turn be computed by a single PCE ("single PCE 

path computation") or by multiple PCEs ("multiple PCE path 

computation"), but, often, the computation of an individual path is 

entirely performed by a single PCE. For example, this is usually 

the case within a single IGP area of an MPLS-TE network, where 

the ingress LSR node is responsible for computing the path or for 

contacting the PCE. A centralized PCE can take into account 

global information on network resources and existing connection 

paths to implement optimal computation procedures. In the 

centralized scenario, off-line path computation algorithms, which 

have the knowledge of the entire set of demands and therefore 

make more efficient use of network capacity, are typically used. 

Since a single centralized PCE may be a performance bottleneck, 

a distributed PCE is sometimes preferred. Moreover, the ability to 

perform distributed path computation significantly increases 

network resilience. Distributed PCEs usually adopt on-line path 

computation algorithms. Therefore, the path is computed by the 

ingress LSR which determines a single path to the egress LSR 

taking into account both links metrics and administrative 

constraints. 

As powerful and flexible simulation tools may help network 

engineers to design MPLS-TE networks, in the last years, the 

authors of this paper have developed a new simulation 

environment, based on NS2 [5], which enhances an MPLS node 

with the control plane capabilities necessary to set-up LSPs with 

QoS requirements [6][7][8].  

In this framework, the choice among different path computation 

algorithms and models is a really difficult issue to address, 

because the efficiency of a path computation scheme has to be 

evaluated with respect to its ability to satisfy a set of LSPs 

allocation requests as well as to optimize the utilization of 

network resources.  

More specifically, the focus of this paper is on a performance 

comparison among two distinct classes of path computation 

algorithms: on-line path computation algorithms and multi path 

on-line algorithms, that may be used when a single path can not 

satisfy the bandwidth requirements The paper is organized as 
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follows. Sections 2 and 3 discuss the different path computation 

algorithms we have taken into account in this work: respectively 

distributed path computation algorithm and distributed multi path 

algorithms. Section 4 provides a short overview about the 

implementation of those algorithms in NS2, while section 5 

presents the results of the simulations carried out to validate the 

proposed algorithms and to compare their performance. Finally, 

section 7 concludes the paper with some final remarks. 

 

2. DISTRIBUTED PATH COMPUTATION 

ALGORITHMS 
This section provides a short overview concerning the three 

algorithm for distributed path computation that we have 

implemented in NS2. 

2.1   Constrained Shortest Path First  
Constrained Shortest Path First (CSPF) is the “default” path 

computation algorithm used by OSPF-TE [8]. Every link (i,j) is 

characterized by two attributes: bij (residual bandwidth) and cij 

(cost). The algorithm aims at finding a path with bandwidth B ≥ 

BMIN and minimum cost, taking also into account the 

administrative constraints (link colours).  

CSPF executes the following steps: 

1. set cij = ∞ if bij < BMIN (or whose colour is different 

from the selected colour)  

2. compute the path P with the minimum cost (applying 

the Dijkstra algorithm). 

2.2   Wang Crowcroft  
Unlike CSPF, the Wang-Crowcroft (WC) path computation 

algorithm [9] aims at finding a path which satisfies multiple QoS 

constraints, given in terms of bandwidth (BMIN) and delay 

(DMAX). 

Every link (i,j) is characterized by two metrics: bij (residual 

bandwidth) and dij (propagation delay). Unlike the original 

version of the algorithm, which takes into account only the 

propagation delay, our implementation considers also the queuing 

and transmission delays (see [10] for further details). 

The algorithm consists of the following steps: 

1. set dij = ∞ if bij < BMIN 

2. compute the path P with the minimum delay D* 

(applying the Dijkstra algorithm) 

3. compare D* with DMAX. If D* < DMAX select the 

path, otherwise the request is rejected. 

2.3   Delay and Bandwidth Constrained with 

TE objectives  
The Delay and Bandwidth Constrained with TE objectives  

(DBCTE) is a new path computation algorithm, which extends the 

WC algorithm with load balancing capabilities. To support such 

functionalities, a new metric, BTE, is introduced.  

 

 

For each link, BTE is defined as the ratio between the link 

bandwidth (Bij) and the link residual bandwidth: 

bij

Bij
jiBTE =),(  

Hence, BTE is a quantity that grows when the residual bandwidth 

decreases and is always greater or equal to one. 

The algorithm consists of the following steps: 

1. set dij = ∞ if bij < BMIN 

2. compute the path P with the minimum BTE (applying 

the Dijkstra algorithm) 

3. calculate the delay D* of P 

4. compare the delay D* with DMAX. If D*< DMAX select 

the path, otherwise use the WC algorithm.  

 

It is relevant to highlight that whereas CSPF takes into account 

only one constraint, WC and DBCTE consider both bandwidth 

and delay constraints. 

3. DISTRIBUTED MULTI PATH 

ALGORITHMS  
When a LSP can not be established because the bandwidth 

constraint (required bandwidth BMIN) can not be satisfied along 

any path, a solution can be represented by the use of a multi path 

algorithm. In this case the traffic flow is split in several distinct 

traffic flows, which are then forwarded along distinct LSPs.  

In the following we will only consider the possibility of splitting 

each flow in a maximum of two distinct flows. This assumption is 

justified by the need of maintaining a low volume of signaling 

traffic over the network when a LSP establishment request has to 

be satisfied. 

Thus, the problem becomes to find two distinct path P1 and P2 

with available bandwidth B1 and B2 , such that B1 +B2 =Bmin. 

 In this section we present the two multi path algorithms, that have 

been implemented in the simulator. Before providing their 

description, in the next subsection we focus on the discussion of a 

problem that arises when this kind of algorithm is adopted in a 

network. 

3.1   Buffer Dimensioning  
When a multi path algorithm is used, instead of a “simple” path 

computation algorithm, one additional problem should be taken 

into account. The use of two distinct paths to forward a single 

flow usually takes to a situation where one portion of flow 

(forwarded along P1) experiments a delay  D1, while the other 

portion experiments a delay D2. As it appears clear the difference 

between the two delays should be such that packet reordering at 

destination is possible without any packet loss. This leads to the 

need of a correct dimensioning of the destination node buffer. 

To solve this problem we have considered the network delay 

difference to dimension the buffer, according to the Network 

Calculus theory. 

 

 



The delay associated to a LSP is computed taking into account all 

the three components of the delay  [10], thus: 

D= Dpropagation + Dtransmission + Dqueueing_max 

which represents a worst case upper bound for the delay 

experienced along a LSP. 

Moreover we also have considered a lower bound, which is the 

case in which the packets do not experience any queuing delay: 

D*= Dpropagation + Dtransmission 

Thus, the network delay variation is given by 

∆= max (|D1- D2*|, |D2- D1*|) 

At this point, considering a traffic flow, with cumulative function 

R(t), we can say that, to avoid packet loss, at the destination node, 

the dimension of its buffer should be at least R(2∆). In particular 

for a Constant Bit Rate (CBR) flow, with cumulative function 

R(T)=rt, the buffer size should be at least 2∆r. 

3.2   Modified Equal Bandwidth Multi Path 
In this subsection we present a modified version of a classical 

multi path routing algorithm, the Equal Bandwidth Multi Path 

(EBMP) [11], that has been implemented in the simulator. 

The version we have implemented differs from the original one, 

because the maximum number of paths that can be used by a 

single traffic flow is equal to two, while in the original EBMP a 

single flow can be forwarded on an arbitrary number of paths. 

Another difference is that in the original version bandwidth 

should be divided equally among the different LSPs, while in our 

version we split the bandwidth in different portion between the 

two LSPs.  

In this case each network link is described by three metrics: bij 

(residual bandwidth), dij (propagation delay), and Uij (link 

utilization). This last metric is computed as: 

Bij

BrequestBallocated
Uij

+
=  

The algorithm imposes that the link utilization should not exceed 

a threshold UMAX, set by the network administrator. 

The algorithm consists of the following steps: 

1. set dij = ∞ if Uij > UMAX  

2. set dij = ∞ if Bij < BMIN 

3. compute the path P with the minimum delay D* 

(applying the Dijkstra algorithm) 

4. if D* < DMAX select the path 

5. else for i=2;10 

 

a. set BMIN_1 = BMIN/i and BMIN_2 = 1-

BMIN/i  

b. set dij = ∞ if Uij < BMIN_2 

c. compute the path P2 with the minimum delay 

D2* (applying the Dijkstra algorithm) 

d. set dij = ∞ if Uij < BMIN_1 

e. compute the path P1 with the minimum delay 

D1* (applying the Dijkstra algorithm) 

f. if D1* < DMAX and D2* < DMAX  select the 

paths 

 

6. end; 

The algorithm ends when the for cycle ends without any result 

(the request can not be satisfied) or when the paths are selected. 

To be noted that we have decided to stop the cycle after nine 

iterations so as to avoid  an excessive execution time. 

3.3   Modified Maximum Path Bandwidth 

First 
The maximum path bandwidth first (MPBF) [11] algorithm is a 

multi path algorithm, which aims at maximizing the resource 

utilization in a network. As in the previous case we have 

implemented a modified version of the classical algorithm, so that 

the maximum number of paths, that can be used by a single traffic 

flow, is equal to two. 

Each network link is described by two metrics: bij (residual 

bandwidth) and dij (propagation delay). 

The algorithm consists of the following steps: 

1. compute the path P with the minimum delay D* 

(applying the Dijkstra algorithm) 

2. compute the available path bandwidth B* 

3. if D* < DMAX and B*>BMIN select the path 

4. else if D* < DMAX   

a. set BMIN_2 = BMIN-B* 

b. compute the path P2 with the minimum delay 

D2* (applying the Dijkstra algorithm) 

c. compute the available path bandwidth B2* 

d. if D2* < DMAX and B2*>BMIN_2, select the 

paths P and P2 

5. else the request can  not be satisfied 

As it appears clear, differently from the previous algorithm the 

MPBF aims at allocating the maximum quantity of available 

resources along the computed path instead of splitting the 

requested resources in an arbitrary fashion.  

4. NS2 SOFTWARE MODULES 
In this section, we shortly describe the new features added to the 

NS2 simulator. The main enhancement concerns the possibility of 

establishing a constraint routed LSP along the path computed by 

one of the algorithms described in the previous subsections. 

These functionalities are enabled by inserting the following 

command in the simulation script: 

• <Ingress-LER> create-crlsp <Algorithm> <Source> 
<Egress-LER> <SessionID> <FlowID> <TunnelID> 
<Bandwidth> <MaxDelay> <Buffer> <TTL> 

The command is inserted in the simulation script when a 

distributed path computation approach is adopted. In this case, the 

ingress node uses the selected <Algorithm> to compute a path (or 

two paths in the case of multi path algorithm) which satisfies the 

constraints (BMIN = <Bandwidth>, DMAX  = <MaxDelay>). If a 

path is found, the nodes list is passed to the RSVP-TE agent, 



which inserts it in the Explicit Route Object (ERO) of the Path 

message. Then, an LSP, with reserved bandwidth <Bandwidth>  

and identified by the tunnel ID <TID>, is created between the 

<Ingress-LER>  and the <Egress-LER>.  If a multi path algorithm 

has been used the LSPs are established only if the destination 

node respects the constraint on the buffer dimension (section 3.1). 

5. PERFORMANCE COMPARISON 
This section describes the simulation tests carried out to validate 

the considered path computation algorithms and to compare their 

performance.  

A random topology has been generated by means of BRITE, a 

public domain universal topology generator  downloadable from 

[12]. The considered topology consists of 20 nodes and the 

generation model for interconnecting the nodes is based on the 

Waxman's probability model, given by the following formula: 

L

d

evuP βα
−

=),(
 

where P(u, v) is the probability that a link between the nodes u 

and v is created, α (0 < α ≤ 1) and β (0 < β ≤  1) are Waxman 

specific parameters, d is the Euclidean distance between the 

nodes, and L is the maximum distance between any two nodes (in 

our simulations α=0.15, β=0.2, d and L assume their default 

values). Moreover, the link propagation delay has been modeled 

as a random variable uniformly distributed in [1, 30] ms, whereas 

the link capacity may assume one of the following values: 155 

Mbps, 622 Mbps, 2.5 Gbps, and 10 Gbps. The resulting topology 

is described in table I. 

Table 1. Network topology 

From node To node Bandwidth Delay 

1 9 155 Mbps 10 ms 

2 0 155 Mbps 5 ms 

3 0 10 Gbps 18 ms 

4 1 622 Mbps 21 ms 

5 3 155 Mbps 11 ms 

6 1 2.5 Gbps 11 ms 

7 6 622 Mbps 10 ms 

7 2 622 Mbps 8 ms 

8 6 622 Mbps 20 ms 

9 3 622 Mbps 4 ms 

10 5 155 Mbps 4 ms 

10 0 622 Mbps 21 ms 

11 8 622 Mbps 8 ms 

12 11 155 Mbps 6 ms 

12 8 622 Mbps 6 ms 

13 3 622 Mbps 6 ms 

13 4 622 Mbps 6 ms 

14 4 622 Mbps 19 ms 

14 6 155 Mbps 4 ms 

15 4 2.5 Gbps 12 ms 

15 11 622 Mbps 25 ms 

16 13 622 Mbps 10 ms 

The number of LSPs set-up requests has been varied between 3 

and 11 and a set of 250 simulations has been carried out for each 

LSP set-up requests value.  

Moreover, in each simulation: 

• the egress and the ingress LSRs have been chosen 

randomly among the network nodes 

• for each LSP, the requested bandwidth has been 

assumed as a random variable uniformly distributed in 

[5,50] Mbps 

• for each LSP, the maximum delay has been assumed as 

a random variable uniformly distributed in [150, 400] 

ms 

The following parameters have been considered to compare the 

different algorithms:  

• mean number of allocated LSPs  

• success probability, defined as the probability that there 

are enough available resources to accept a new LSP set-

up request  

• resource utilization, defined as the ratio of the allocated 

bandwidth and the total link bandwidth  

• execution time, defined as the time necessary for an 

algorithm to compute all the requested paths  

• bandwidth rejection ratio, defined as the ratio of the 

overall bandwidth of the rejected LSP set-up requests 

and the total required bandwidth 

Figures 1 to 7 show the results of such comparison, to be noted 

that, in fact, EBMP and MBPF respectively refer to the modified 

version of the two algorithms, we have implemented in the 

simulator. 
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Figura 1: Mean number of allocated LSP  

 

It’s worth noticing that, as expected, the overall performance are 

improved in the case of multi path algorithms, with respect to 

“simple” path computation algorithms. Indeed we achieve 



improvements of at least 10% in all the parameters used for the 

performance comparison. 

In more detail, concerning the success probability and the 

bandwidth rejection ratio, with the multi path algorithms, we 

respectively achieve about 10% and about 20% of improvements.  
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Figura 2: Mean number of allocated LSPs per request (Multi 

Path case) 
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Figura 3: Mean number of accepted requests  
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Figura 4: Success probability 

 

 

 

To be noted that the use of a multi path approach leads to some 

apparently ambiguous results. In figure 1, we can see that the 

mean number of established LSPs is, in some cases, bigger than 

the number of LSP requests (figure 1) , despite of a success 

probability which is much lower than one (see figure 4). 

These behaviors are justified by the fact that for each required 

LSP one or two LSPs are allocated so as to satisfy the required 

constraints, as shown in figure 2, where the mean number of 

allocated LSP per request is shown.  

Hence to produce a more fair comparison we can consider figure 

3, where we show the mean number of accepted requests. 
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Figura 5: Resource utilization  
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Figura 6: Execution time 

 

Moreover, regarding the execution time of each algorithm, we can 

notice that, in general, multi-path algorithms have higher 

computational times, even though BMPF has an execution time 

which is much lower than EBMP and is comparable with the three 

“simple” distributed path computation algorithms.  
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Figura 7: Bandwidth rejection ratio (Multi Path case) 

 

It is worth noticing that the three single path computation 

algorithms almost achieve the same performance.  

Regarding a comparison between the two distinct multi path 

routing algorithms, we can easily verify that the use of the MBPF 

algorithms leads to better performance. Indeed it achieves higher 

values for success probability (about 5% more), and resource 

utilization (about 5% more).  These results are justified by the fact 

that the BMPF tends to maximize the resource utilization 

allocating all the available resources along the optimum path P, 

while the EBMP, arbitrarily splitting the required resources on the 

two paths, tends to waste resources along the path P1 (see section 

3.2 and 3.3). 

6. CONCLUSIONS 
Constraint-based path computation is a key function in MPLS and 

GMPLS networks. Several algorithms have been proposed in 

literature to satisfy the QoS requirements of LSPs allocation 

requests based on traffic engineering strategies.  

The paper describes several path computation algorithms: 

“simple” distributed path computation algorithms and multi path 

distributed path computation algorithms. 

Such algorithms have been implemented as new modules for the 

Network Simulator (NS2), so as to provide a new  powerful and 

flexible simulation tool to help in their work network designers 

and administrators. 

Finally, the paper reports the results of the simulations, performed 

in a network with randomly generated topology, to validate and 

compare the effectiveness of the described algorithms. 
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