
Path Computation Algorithms in NS2

Davide Adami
CNIT Research Unit

Dept. of Information Engineering
University of Pisa (ITALY)

davide.adami@cnit.it

Stefano Giordano
Dept. of Information Engineering

University of Pisa (ITALY)

s.giordano@iet.unipi.it

Christian Callegari
Dept. of Information Engineering

University of Pisa (ITALY)

christian.callegari@iet.unipi.it

Michele Pagano
Dept. of Information Engineering

University of Pisa (ITALY)

m.pagano@iet.unipi.it

ABSTRACT

Originally designed to improve the efficiency of packets

forwarding, MPLS provides support for Traffic Engineering and

network resilience. Constrained-based path computation is a key

building block for Traffic Engineering in MPLS networks, since it

allows to set-up LSPs along paths that satisfy QoS constraints.

This paper deals with two distinct categories of path computation

algorithms: on-line path computation algorithms adn on-line multi

path algorithms. All these algorithms have been implemented in

NS2 as an extension of OSPF-TE\ns and integrated with RSVP-

TE\ns.

Keywords

MPLS-TE, NS2, Path computation, Wang-Crowcroft, CSPF,

DBCTE, EBMP, MPBF

1. INTRODUCTION
In the last years, new advanced network architectures have been

introduced to satisfy the Quality of Service (QoS) requirements of

multimedia applications. In the meantime, Multiprotocol Label

Switching (MPLS) [1], originally developed as a fast packet

forwarding technique, has been deployed by a great number of

Internet Service Providers (ISPs) to exploit, within their network

infrastructures, its Traffic Engineering (MPLS-TE) capabilities

[2][3].

One of the most important “building blocks” of such network

architecture is the Path Computation Element (PCE) [4], which

enables the creation of constraint routed Label Switched Paths

(LSPs) along explicit paths. A PCE can be realized according to

either a centralized or a distributed computation model. The

former refers to a model whereby all paths in a domain are

computed by a single, centralized PCE. This may be a dedicated

server or a designated router in the network. Conversely, the latter

refers to a domain or network that may include multiple PCEs,

and where the computation of paths is shared among the PCEs. A

given path may in turn be computed by a single PCE ("single PCE

path computation") or by multiple PCEs ("multiple PCE path

computation"), but, often, the computation of an individual path is

entirely performed by a single PCE. For example, this is usually

the case within a single IGP area of an MPLS-TE network, where

the ingress LSR node is responsible for computing the path or for

contacting the PCE. A centralized PCE can take into account

global information on network resources and existing connection

paths to implement optimal computation procedures. In the

centralized scenario, off-line path computation algorithms, which

have the knowledge of the entire set of demands and therefore

make more efficient use of network capacity, are typically used.

Since a single centralized PCE may be a performance bottleneck,

a distributed PCE is sometimes preferred. Moreover, the ability to

perform distributed path computation significantly increases

network resilience. Distributed PCEs usually adopt on-line path

computation algorithms. Therefore, the path is computed by the

ingress LSR which determines a single path to the egress LSR

taking into account both links metrics and administrative

constraints.

As powerful and flexible simulation tools may help network

engineers to design MPLS-TE networks, in the last years, the

authors of this paper have developed a new simulation

environment, based on NS2 [5], which enhances an MPLS node

with the control plane capabilities necessary to set-up LSPs with

QoS requirements [6][7][8].

In this framework, the choice among different path computation

algorithms and models is a really difficult issue to address,

because the efficiency of a path computation scheme has to be

evaluated with respect to its ability to satisfy a set of LSPs

allocation requests as well as to optimize the utilization of

network resources.

More specifically, the focus of this paper is on a performance

comparison among two distinct classes of path computation

algorithms: on-line path computation algorithms and multi path

on-line algorithms, that may be used when a single path can not

satisfy the bandwidth requirements The paper is organized as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference name: SIMUTools, March 03 – 07, 2008,

Marseille, France.

ISBN 978-963-9799-20-2

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2008, March 03-07, Marseille, France
Copyright © 2008 ICST 978-963-9799-20-2
DOI 10.4108/ICST.SIMUTOOLS2008.2930

follows. Sections 2 and 3 discuss the different path computation

algorithms we have taken into account in this work: respectively

distributed path computation algorithm and distributed multi path

algorithms. Section 4 provides a short overview about the

implementation of those algorithms in NS2, while section 5

presents the results of the simulations carried out to validate the

proposed algorithms and to compare their performance. Finally,

section 7 concludes the paper with some final remarks.

2. DISTRIBUTED PATH COMPUTATION

ALGORITHMS
This section provides a short overview concerning the three

algorithm for distributed path computation that we have

implemented in NS2.

2.1 Constrained Shortest Path First
Constrained Shortest Path First (CSPF) is the “default” path

computation algorithm used by OSPF-TE [8]. Every link (i,j) is

characterized by two attributes: bij (residual bandwidth) and cij

(cost). The algorithm aims at finding a path with bandwidth B ≥

BMIN and minimum cost, taking also into account the

administrative constraints (link colours).

CSPF executes the following steps:

1. set cij = ∞ if bij < BMIN (or whose colour is different

from the selected colour)

2. compute the path P with the minimum cost (applying

the Dijkstra algorithm).

2.2 Wang Crowcroft
Unlike CSPF, the Wang-Crowcroft (WC) path computation

algorithm [9] aims at finding a path which satisfies multiple QoS

constraints, given in terms of bandwidth (BMIN) and delay

(DMAX).

Every link (i,j) is characterized by two metrics: bij (residual

bandwidth) and dij (propagation delay). Unlike the original

version of the algorithm, which takes into account only the

propagation delay, our implementation considers also the queuing

and transmission delays (see [10] for further details).

The algorithm consists of the following steps:

1. set dij = ∞ if bij < BMIN

2. compute the path P with the minimum delay D*

(applying the Dijkstra algorithm)

3. compare D* with DMAX. If D* < DMAX select the

path, otherwise the request is rejected.

2.3 Delay and Bandwidth Constrained with

TE objectives
The Delay and Bandwidth Constrained with TE objectives

(DBCTE) is a new path computation algorithm, which extends the

WC algorithm with load balancing capabilities. To support such

functionalities, a new metric, BTE, is introduced.

For each link, BTE is defined as the ratio between the link

bandwidth (Bij) and the link residual bandwidth:

bij

Bij
jiBTE =),(

Hence, BTE is a quantity that grows when the residual bandwidth

decreases and is always greater or equal to one.

The algorithm consists of the following steps:

1. set dij = ∞ if bij < BMIN

2. compute the path P with the minimum BTE (applying

the Dijkstra algorithm)

3. calculate the delay D* of P

4. compare the delay D* with DMAX. If D*< DMAX select

the path, otherwise use the WC algorithm.

It is relevant to highlight that whereas CSPF takes into account

only one constraint, WC and DBCTE consider both bandwidth

and delay constraints.

3. DISTRIBUTED MULTI PATH

ALGORITHMS
When a LSP can not be established because the bandwidth

constraint (required bandwidth BMIN) can not be satisfied along

any path, a solution can be represented by the use of a multi path

algorithm. In this case the traffic flow is split in several distinct

traffic flows, which are then forwarded along distinct LSPs.

In the following we will only consider the possibility of splitting

each flow in a maximum of two distinct flows. This assumption is

justified by the need of maintaining a low volume of signaling

traffic over the network when a LSP establishment request has to

be satisfied.

Thus, the problem becomes to find two distinct path P1 and P2

with available bandwidth B1 and B2 , such that B1 +B2 =Bmin.

 In this section we present the two multi path algorithms, that have

been implemented in the simulator. Before providing their

description, in the next subsection we focus on the discussion of a

problem that arises when this kind of algorithm is adopted in a

network.

3.1 Buffer Dimensioning
When a multi path algorithm is used, instead of a “simple” path

computation algorithm, one additional problem should be taken

into account. The use of two distinct paths to forward a single

flow usually takes to a situation where one portion of flow

(forwarded along P1) experiments a delay D1, while the other

portion experiments a delay D2. As it appears clear the difference

between the two delays should be such that packet reordering at

destination is possible without any packet loss. This leads to the

need of a correct dimensioning of the destination node buffer.

To solve this problem we have considered the network delay

difference to dimension the buffer, according to the Network

Calculus theory.

The delay associated to a LSP is computed taking into account all

the three components of the delay [10], thus:

D= Dpropagation + Dtransmission + Dqueueing_max

which represents a worst case upper bound for the delay

experienced along a LSP.

Moreover we also have considered a lower bound, which is the

case in which the packets do not experience any queuing delay:

D*= Dpropagation + Dtransmission

Thus, the network delay variation is given by

∆= max (|D1- D2*|, |D2- D1*|)

At this point, considering a traffic flow, with cumulative function

R(t), we can say that, to avoid packet loss, at the destination node,

the dimension of its buffer should be at least R(2∆). In particular

for a Constant Bit Rate (CBR) flow, with cumulative function

R(T)=rt, the buffer size should be at least 2∆r.

3.2 Modified Equal Bandwidth Multi Path
In this subsection we present a modified version of a classical

multi path routing algorithm, the Equal Bandwidth Multi Path

(EBMP) [11], that has been implemented in the simulator.

The version we have implemented differs from the original one,

because the maximum number of paths that can be used by a

single traffic flow is equal to two, while in the original EBMP a

single flow can be forwarded on an arbitrary number of paths.

Another difference is that in the original version bandwidth

should be divided equally among the different LSPs, while in our

version we split the bandwidth in different portion between the

two LSPs.

In this case each network link is described by three metrics: bij

(residual bandwidth), dij (propagation delay), and Uij (link

utilization). This last metric is computed as:

Bij

BrequestBallocated
Uij

+
=

The algorithm imposes that the link utilization should not exceed

a threshold UMAX, set by the network administrator.

The algorithm consists of the following steps:

1. set dij = ∞ if Uij > UMAX

2. set dij = ∞ if Bij < BMIN

3. compute the path P with the minimum delay D*

(applying the Dijkstra algorithm)

4. if D* < DMAX select the path

5. else for i=2;10

a. set BMIN_1 = BMIN/i and BMIN_2 = 1-

BMIN/i

b. set dij = ∞ if Uij < BMIN_2

c. compute the path P2 with the minimum delay

D2* (applying the Dijkstra algorithm)

d. set dij = ∞ if Uij < BMIN_1

e. compute the path P1 with the minimum delay

D1* (applying the Dijkstra algorithm)

f. if D1* < DMAX and D2* < DMAX select the

paths

6. end;

The algorithm ends when the for cycle ends without any result

(the request can not be satisfied) or when the paths are selected.

To be noted that we have decided to stop the cycle after nine

iterations so as to avoid an excessive execution time.

3.3 Modified Maximum Path Bandwidth

First
The maximum path bandwidth first (MPBF) [11] algorithm is a

multi path algorithm, which aims at maximizing the resource

utilization in a network. As in the previous case we have

implemented a modified version of the classical algorithm, so that

the maximum number of paths, that can be used by a single traffic

flow, is equal to two.

Each network link is described by two metrics: bij (residual

bandwidth) and dij (propagation delay).

The algorithm consists of the following steps:

1. compute the path P with the minimum delay D*

(applying the Dijkstra algorithm)

2. compute the available path bandwidth B*

3. if D* < DMAX and B*>BMIN select the path

4. else if D* < DMAX

a. set BMIN_2 = BMIN-B*

b. compute the path P2 with the minimum delay

D2* (applying the Dijkstra algorithm)

c. compute the available path bandwidth B2*

d. if D2* < DMAX and B2*>BMIN_2, select the

paths P and P2

5. else the request can not be satisfied

As it appears clear, differently from the previous algorithm the

MPBF aims at allocating the maximum quantity of available

resources along the computed path instead of splitting the

requested resources in an arbitrary fashion.

4. NS2 SOFTWARE MODULES
In this section, we shortly describe the new features added to the

NS2 simulator. The main enhancement concerns the possibility of

establishing a constraint routed LSP along the path computed by

one of the algorithms described in the previous subsections.

These functionalities are enabled by inserting the following

command in the simulation script:

• <Ingress-LER> create-crlsp <Algorithm> <Source>
<Egress-LER> <SessionID> <FlowID> <TunnelID>
<Bandwidth> <MaxDelay> <Buffer> <TTL>

The command is inserted in the simulation script when a

distributed path computation approach is adopted. In this case, the

ingress node uses the selected <Algorithm> to compute a path (or

two paths in the case of multi path algorithm) which satisfies the

constraints (BMIN = <Bandwidth>, DMAX = <MaxDelay>). If a

path is found, the nodes list is passed to the RSVP-TE agent,

which inserts it in the Explicit Route Object (ERO) of the Path

message. Then, an LSP, with reserved bandwidth <Bandwidth>

and identified by the tunnel ID <TID>, is created between the

<Ingress-LER> and the <Egress-LER>. If a multi path algorithm

has been used the LSPs are established only if the destination

node respects the constraint on the buffer dimension (section 3.1).

5. PERFORMANCE COMPARISON
This section describes the simulation tests carried out to validate

the considered path computation algorithms and to compare their

performance.

A random topology has been generated by means of BRITE, a

public domain universal topology generator downloadable from

[12]. The considered topology consists of 20 nodes and the

generation model for interconnecting the nodes is based on the

Waxman's probability model, given by the following formula:

L

d

evuP βα
−

=),(

where P(u, v) is the probability that a link between the nodes u

and v is created, α (0 < α ≤ 1) and β (0 < β ≤ 1) are Waxman

specific parameters, d is the Euclidean distance between the

nodes, and L is the maximum distance between any two nodes (in

our simulations α=0.15, β=0.2, d and L assume their default

values). Moreover, the link propagation delay has been modeled

as a random variable uniformly distributed in [1, 30] ms, whereas

the link capacity may assume one of the following values: 155

Mbps, 622 Mbps, 2.5 Gbps, and 10 Gbps. The resulting topology

is described in table I.

Table 1. Network topology

From node To node Bandwidth Delay

1 9 155 Mbps 10 ms

2 0 155 Mbps 5 ms

3 0 10 Gbps 18 ms

4 1 622 Mbps 21 ms

5 3 155 Mbps 11 ms

6 1 2.5 Gbps 11 ms

7 6 622 Mbps 10 ms

7 2 622 Mbps 8 ms

8 6 622 Mbps 20 ms

9 3 622 Mbps 4 ms

10 5 155 Mbps 4 ms

10 0 622 Mbps 21 ms

11 8 622 Mbps 8 ms

12 11 155 Mbps 6 ms

12 8 622 Mbps 6 ms

13 3 622 Mbps 6 ms

13 4 622 Mbps 6 ms

14 4 622 Mbps 19 ms

14 6 155 Mbps 4 ms

15 4 2.5 Gbps 12 ms

15 11 622 Mbps 25 ms

16 13 622 Mbps 10 ms

The number of LSPs set-up requests has been varied between 3

and 11 and a set of 250 simulations has been carried out for each

LSP set-up requests value.

Moreover, in each simulation:

• the egress and the ingress LSRs have been chosen

randomly among the network nodes

• for each LSP, the requested bandwidth has been

assumed as a random variable uniformly distributed in

[5,50] Mbps

• for each LSP, the maximum delay has been assumed as

a random variable uniformly distributed in [150, 400]

ms

The following parameters have been considered to compare the

different algorithms:

• mean number of allocated LSPs

• success probability, defined as the probability that there

are enough available resources to accept a new LSP set-

up request

• resource utilization, defined as the ratio of the allocated

bandwidth and the total link bandwidth

• execution time, defined as the time necessary for an

algorithm to compute all the requested paths

• bandwidth rejection ratio, defined as the ratio of the

overall bandwidth of the rejected LSP set-up requests

and the total required bandwidth

Figures 1 to 7 show the results of such comparison, to be noted

that, in fact, EBMP and MBPF respectively refer to the modified

version of the two algorithms, we have implemented in the

simulator.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9

Number of requests

m
e
a
n

L
S

P
s

CSPF

W-C

DBCTE

EBMP

MPBF

Figura 1: Mean number of allocated LSP

It’s worth noticing that, as expected, the overall performance are

improved in the case of multi path algorithms, with respect to

“simple” path computation algorithms. Indeed we achieve

improvements of at least 10% in all the parameters used for the

performance comparison.

In more detail, concerning the success probability and the

bandwidth rejection ratio, with the multi path algorithms, we

respectively achieve about 10% and about 20% of improvements.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

Number of requests

m
e
a
n

L
S

P
s
 p

e
r

re
q

u
e
s
t

EBMP

MPBF

Figura 2: Mean number of allocated LSPs per request (Multi

Path case)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

Number of requests

N
u

m
b

e
r

o
d

 a
c
c
e
p

te
d

 r
e
q

u
e
s
ts

CSPF

W-C

DBCTE

EBMP

MPBF

Figura 3: Mean number of accepted requests

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

Number of requests

S
u

c
c
e
s
s
 P

ro
b

a
b

il
it

y

CSPF

W-C

DBCTE

EBMP

MPBF

Figura 4: Success probability

To be noted that the use of a multi path approach leads to some

apparently ambiguous results. In figure 1, we can see that the

mean number of established LSPs is, in some cases, bigger than

the number of LSP requests (figure 1) , despite of a success

probability which is much lower than one (see figure 4).

These behaviors are justified by the fact that for each required

LSP one or two LSPs are allocated so as to satisfy the required

constraints, as shown in figure 2, where the mean number of

allocated LSP per request is shown.

Hence to produce a more fair comparison we can consider figure

3, where we show the mean number of accepted requests.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

Number of requests

U
ti

li
z
a
ti

o
n

CSPF

W-C

DBCTE

EBMP

MPBF

Figura 5: Resource utilization

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Number of requests

E
x
e
c
u

ti
o

n
 t

im
e CSPF

W-C

DBCTE

EBMP

MPBF

Figura 6: Execution time

Moreover, regarding the execution time of each algorithm, we can

notice that, in general, multi-path algorithms have higher

computational times, even though BMPF has an execution time

which is much lower than EBMP and is comparable with the three

“simple” distributed path computation algorithms.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

Number of requests

B
a
n

d
w

id
th

 R
e
je

c
ti

o
n

 R
a
ti

o

CSPF

W-C

DBCTE

EBMP

MPBF

Figura 7: Bandwidth rejection ratio (Multi Path case)

It is worth noticing that the three single path computation

algorithms almost achieve the same performance.

Regarding a comparison between the two distinct multi path

routing algorithms, we can easily verify that the use of the MBPF

algorithms leads to better performance. Indeed it achieves higher

values for success probability (about 5% more), and resource

utilization (about 5% more). These results are justified by the fact

that the BMPF tends to maximize the resource utilization

allocating all the available resources along the optimum path P,

while the EBMP, arbitrarily splitting the required resources on the

two paths, tends to waste resources along the path P1 (see section

3.2 and 3.3).

6. CONCLUSIONS
Constraint-based path computation is a key function in MPLS and

GMPLS networks. Several algorithms have been proposed in

literature to satisfy the QoS requirements of LSPs allocation

requests based on traffic engineering strategies.

The paper describes several path computation algorithms:

“simple” distributed path computation algorithms and multi path

distributed path computation algorithms.

Such algorithms have been implemented as new modules for the

Network Simulator (NS2), so as to provide a new powerful and

flexible simulation tool to help in their work network designers

and administrators.

Finally, the paper reports the results of the simulations, performed

in a network with randomly generated topology, to validate and

compare the effectiveness of the described algorithms.

7. ACKNOWLEDGMENTS
The authors would like to thank Aldo Bizzarri for his work in

support of the development activities related to the simulator.

8. REFERENCES
[1] E. Rosen et al., Multiprotocol Label Switching Architecture,

IETF RFC 3031, January 2001

[2] Awduche, D., et al.: Requirements for Traffic Engineering

over MPLS. IETF RFC 2702, September 1999

[3] W. Lai, Traffic Engineering for MPLS, Internet Performance

and Control of Network Systems III Conference, Boston,

Massachusetts, USA, July 2002

[4] A. Farrell, J.P. Vasseur, j. Ash A Path Computation Element

(PCE)-Based Architecture, IETF RFC 4655, August 2006

[5] The Network Simulator vers.2.26 (NS2) Home Page

www.isi.edu/nsnam/dist/

[6] The RSVP-TE Network Simulator Home Page:

http://netgroup-serv.iet.unipi.it/rsvp-te_ns/

[7] The OSPF-TE Network Simulator Home Page:

http://netgroup-serv.iet.unipi.it/ospf-te_ns/

[8] D. Adami, C. Callegari, D. Ceccarelli, S. Giordano, M.

Pagano, Design and implementation of the OSPF-TE

Network Simulator. IPS-MoMe 2006 Proceedings

[9] Z. Wang and J. Crowcroft, Quality of Service Routing for

Supporting Multimedia Applications, IEEE Journal on

Selected Areas in Communication, September 1996

[10] Adami, D., Callegari, C.. Giordano, S., and Pagano, M., A

New Path Computation Algorithm and its Implementation in

NS2, IEEE International Conference on Communications

(ICC 2007)

[11] Lee, J., Kim, B., Multi-Path Constraint-based Routing

Algorithms for MPLS Traffic Engineering. IEEE Network

2003

[12] BRITE, available at http://www.cs.bu.edu/brite/

