
TosNet: An easy-to-use, real-time
communications protocol for modular,

distributed robot controllers

Simon Falsig and Anders Stengaard Soerensen, The Maersk Institute, University of Southern Denmark

Abstract-This paper presents the TosNet network, created for
robotics research, education, and prototyping, emphasizing ease
of use, robustness, compactness, flexibility and fast hard real
time response, to allow distribution of all levels of the robot
control system. The current implementation of TosNet supports
up to 15 nodes, with cycle-rates up to 25 kHz, depending on the
configuration. The protocol stack is completely specified as
VHDL code, implemented in an FPGA. The physical layer is
implemented with Toslink fiberoptic links, offering a compact,
robust and highly available link technology. The network uses a
shared memory model, where a block of memory is mirrored
across all attached nodes each cycle, offering a simple, easy-to
use software interface between nodes.

Index Terms-Distributed control, Field programmable gate
arrays, Modular computer systems

I. INTRODUCTION

"l"l JHEN implementing a new robotic system in for instance
VV a factory production line, one of the major costs is the

installation and integration with existing systems. The same is
true for the controller technology used for robotics research in
the laboratory. One of the reasons for this is that many times
the system is built more or less from scratch whenever a new
setup is needed, simply because it is easier to create a new ad
hoc solution than it is to get to know and adapt a previous ad
hoc system. By taking a different approach, and instead using
modular, distributed controllers, it is possible to create the
necessary functionality as reusable modules with a well
defmed interface. However, the long-run advantages of having
a reusable module are more often than not discarded in favor
of getting a solution up and running as fast as possible. This is
only amplified due to the fact that many of the current
technologies for connecting distributed controller modules are
complex to use, and may demand a substantial amount of
hardware resources compared to the actual functionality of the
module. Many research projects also employ short-term team
members, such as masters project students, and it is thus

Manuscript submitted February 11, 2009.
Simon Falsig is with the Maersk Institute at the University of Southern

Denmark, Odense, Denmark. Phone: +45 26 18 03 82; e-mail: sifa@
mmmi.sdu.dk.

Anders Stengaard Soerensen is with the Maersk Institute at the University
of Southern Denmark, Odense, Denmark. Phone: +45 65 50 74 84; e-mail:
anss@ mmmi.sdu.dk.

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

important to mmnnlze the project overhead and tum-over
time, in favor of more progressive work.

II. THE STATE OF ROBOTIC CONTROLLERS AT THE UNIVERSITY

OF SOUTHERN DENMARK

The University of Southern Denmark (SDU) currently does
research into most areas of robotic systems. This includes
such aspects as high-level control, vision systems, electronics,
and mechanical compositions. Much of the practical work is
performed by students in bachelor or master thesis projects,
and is thus often restricted to a time frame of one or two
semesters. Implementing communication between distributed
modules has typically meant fITst spending time researching
the many various network technologies, and then
implementing whatever technology is assumed to be best
suited for that particular project. This usually results in a more
or less fixed amount of work, independent of the scope of the
project, and this is thus not so much of a problem for larger
projects. For the student projects however, implementing a
network interface easily takes up a substantial amount of the
available time. Due to this, a generic communication interface
is very rarely implemented, resulting in interfaces that vary
wildly from project to project. Many interesting
implementations are thus never used in a greater context, due
to these incompatible interfaces.

The reasoning behind the TosNet project has therefore been
to create a communications network and an implementation of
this, which is both easy to use, and generic enough to be
interfaced and used with most of the systems used in robotics
research at the university, such as Field Programmable Gate
Arrays (FPGAs), microcontrollers, personal computers,
discrete electronics, robots, etc.

There has already been some work at SDU into creating
modular, generically usable, distributed controllers using
FPGAs [1]. These are well-suited for the task as they allow
the implementation of a communications protocol alongside
various other advanced functionalities directly in hardware,
while also enabling easy and efficient interfacing to most
electronic devices. This has resulted in the FPGA-based
Generic Embedded Control Node (GEECON) [1], which uses
ARC-net to communicate to other GEECONs. The GEECON
fulfills the need for a generic, distributed controller, but as the
platform consists of several boards and chips, it is too large,

peri
Callout

peri
Typewriter
ROBOCOMM 2009, 31st Mar–2nd Apr 2009, Odense, Denmark.
Copyright © 2011–2012 ICST ISBN 978-963-9799-51-6
DOI 10.4108/ICST.ROBOCOMM2009.5806

peri
Typewriter

peri
Typewriter

I 32 bit I Ox13F
" Segment..7 ..

I

" Segment..6 ..
I

" Segment..5 ..
I

" Segment..4 .
I

" Segmen.t.3 .
I

" Segment..2 _ Out
I In

I Segment..1 ..
.........

... .. Segment..O ..
...... Ox100

NodelD 14
NodelD 13
NodelD 12
NodelD 11
NodelD 10
NodelD 9
NodelD 8
NodelD 7
NodelD 6
NodelD 5
NodelD 4
NodelD 3
NodelD 2
NodelD 1
NodelD 0

IV. TosNETPROTOCOL

An existing network technology that fulfills all the stated
requirements has thus not been found. Instead, it was decided
to implement a custom protocol, using fiberoptic Toslink
components [9]. These are used widely for digital audio
transfer in consumer electronics, and are thus both cheap and
very accessible, and provide an adequate transfer rate of up to
15 Mbps. They are easy to use, as both Toslink transmitters
and receivers implement the necessary signal conditioning,
and thus simply feature a single, digital, raw serial data pin,
which can be connected directly to an FPGA input/output pin.
Additionally, the optical fibers are immune to noise, meaning
that students will not need to consider EMC issues when
cabling the network.

The rest of the network stack has been written completely
in VHDL code, and implemented in a Xilinx Spartan3 FPGA
[10]. This section describes the further details of the protocol,
which has been named TosNet.

can only manage 1 Mbps, while serial protocols typically need
special care to be taken with regard to signal integrity, if
speeds above a few Mbps are to be obtained.

More specialized networks like ARC-net [7] and Sercos [8]
could also be a possibility, but both these require special,
proprietary controller chips or FPGA cores. This results in
relatively high implementation costs per node, in addition to
their complexity.

-OxOOO
Fig. 1. The layout of the shared memory block.

A. Network operation

TosNet employs a ring topology with an automatically
assigned master node to setup and control the network
operation. A shared memory model is used, where a block of
memory is distributed between the nodes, and updated during
each cycle.

The shared memory block is divided between the attached
nodes, with each node being assigned an equally-sized part,
which is used to handle communication between the master
and that particular node (in the case of the master node, its
part of the memory block can be used for communication with
all slaves). These parts are then further divided into a number
of segments that can be individually enabled or disabled for
each node, see figure 1. The segments have an 'in area' to
carry information from master to slave, and an 'out area' to
carry information from slave to master. Every node can read

-Ox3BF

complex and expensive to use in most simple applications.
The idea of using FPGAs is sound though. Not only due to

their flexibility, but also because FPGAs are in widespread
use at SDU, and many students already are using these in both
courses and semester projects. Implementing the
communications protocol in an FPGA, would thus give the
students a familiar environment and technology to work with,
while also providing the possibility of combining some of the
student projects and the communications protocol stack in a
single FPGA chip.

Flexibility and ease of use has not been the only design
requirement though. To be able to use the network with actual
robotic systems, a certain level of performance needs to be
guaranteed. This includes real-time, isochronous transfer of
data, and network cycle-rates (how often the nodes receive
new sets of data) above 2 kHz. This is enough to control
virtually any industrial robotic system, according to [1].

The requirements for the communications network have
thus been:

• Must be very easy to use, with regard to software
interface, necessary hardware components and design
skills

• Real-time operation with isochronous data transfer
• FPGA implementation
• Must be able to achieve cycle-rates above 2 kHz
• Must be usable for many different types of nodes:

controllers, sensors, motors, etc.
• Must have a reasonably low implementation cost per

node
• Possibility of interfacing to a standard Personal

Computer

III. EXISTING NETWORK TECHNOLOGIES

A lot of network technologies for connecting distributed
controllers already exist, and a number of these have been
investigated, regarding their ability to fulfill the specified
requirements.

A plethora of Ethernet-based real-time protocols are
available, such as Ethernet PowerLink [2], Ethernet IP [3] and
EtherCat [4]. These all provide at least 100 Mbps operation
and various synchronization features, but all require an
external Ethernet physical layer chip coupled with either
further specialized protocol chips, and/or a TCP/IP stack
implementation. Even though the necessary chips can be
easily interfaced to an FPGA, and a TCP/IP stack can also be
implemented, this will almost certainly require advanced skills
in Printed Circuit Board (PCB) design and FPGA coding,
even when just using an existing implementation with a
custom design. These protocols thus fulfill the performance
requirements, but not those regarding ease of use.

CAN-bus [5] and serial protocols like RS485 [6] and
others, typically do at most require a single transceiver, and a
UART implementation in a microcontroller or FPGA. Both
chip and implementation are much simpler than their Ethernet
counterparts, but sadly the performance is lacking. CAN-bus

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

MII interface

Protocol interface

Network interface hardware

Fig. 2. The network operation shown for a single cycle.

I I ...
t6 t7 time

I I
t4 t5

Packet, updated by 1 and 2

t3

Packet, updated by 1

Packet, updated by 1 and 2

Original packet

Packet, updated by 1

t2

Original packet

t1to

Master
receive

Node1
receive

Node2
receive

Master
transmit

Node2
transmit

Node1
transmit

Datalink layer

Physical layer

Memory interface
- FPGA . -

Electrical signal

Optical signal

Application layer

Fig. 3. The structure of the TosNet protocol stack.

sampling the 6.25 MHz data signal at 50 MHz.

D. Datalink layer

The datalink layer handles the CRC error detection,
synchronization between nodes, watchdog timer, and setup of
the TosNet network.

The implemented CRC check uses an 8 bit CRC polynomial
to calculate a checksum for every packet. This checksum is
appended to the packet, and the receiver can then use it to
detect transmission errors. As the isochronous nature of the
network makes it impractical to retransmit erroneous data, the
data in the packet is simply discarded if an error is discovered,
and an error is signaled to the application attached to the
protocol stack. The erroneous packet is still transmitted on to
the next node though, to maintain network operation. As each
node recalculates the CRC checksum for each packet it
transmits, the last four bits of the checksum are inverted if an
error is detected, thus forcing a CRC error in the next node,
and thereby preventing the remaining nodes in the ring from

the entire block, but only the master is allowed to write to the
'in areas' and each slave can only write to its own allocated
'out areas'. Every node can thus tap into all communication,
thereby making it possible for slaves to communicate directly
with each other, while also preventing them from interfering
with communication that do not regard them. Only those
segments that are enabled are transmitted over the network,
thereby increasing performance.

The master node initiates the memory block update by
sending out a packet containing its own current, local version
of the shared memory block. The fITst slave node in the ring
then receives this, and uses it to update its own local copy of
the memory block. The received packet is then updated with
the current state of the slave node, and transmitted to the next
node in the ring, and so forth. To obtain better performance,
the slave nodes start transmitting the packet as soon as it is
received, updating the contents on the fly.

When the master receives the packet after it has traversed
the ring, it uses the packet contents to update its own shared
memory block. The next cycle is started as soon as the packet
is completely received.

The network operation can be seen in figure 2.

B. Architectural overview

The protocol is structured after the OSI model [11], with a
physical-, a datalink-, and an application-layer. Except for the
network interface hardware (the Toslink transmitter and
receiver), all functionality of the protocol stack is
implemented as VHDL code in a Xilinx Spartan3 FPGA. This
structure is depicted in figure 3.

Each of the layers is implemented as one or more VHDL
modules, using synchronous state machines.

c. Physical layer

The physical layer handles the low-level en- and decoding
of data, and transmission between two directly connected
nodes. It communicates with upper layers using a Medium
Independent Interface (MIl), as specified in IEEE802.3 [12].
This allows both the physical and the upper layers to be
exchanged with other layers using this interface, for instance
Ethernet physical layer ICs. The interface specification
restricts the data rate of the physical layer to either 10 Mbps or
100 Mbps. As the used Toslink components have a maximum
transfer rate of 15 Mbps, 10 Mbps is chosen.

Data to be transmitted over the network are fITst scrambled
using a linear feedback shift register (LFSR), and then
encoded fITst using 4B5B encoding (increasing the actual data
rate to 12.5 Mbps) and then with non-return-to-zero-inverted
(NRZI) encoding (giving a data clock of 6.25 MHz). This
encoding ensures that at most nine consecutive bit cells
without a level change will occur on the electrical interface
between the physical layer and the Toslink transmission
components. This is important for the ability of the receiver to
perform clock extraction on the received signal, and thus
correctly decode the data.

Clock extraction is performed using oversampling,

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

falsely accepting the data as being valid.
The node synchronization is performed using a simple timer

and a static delay depending on the position of the node in the
ring. This delay is automatically calculated for each node
during network setup. The timers in the slave nodes are started
whenever a packet is completely transmitted, and due to the
individually calculated delay, they fITe at approximately the
same time in all nodes (looking at figure 2, the delay for node
1 is t7-t5, the delay for node 2 is t7-t6, while the master node
synchronization signal fITes when it is done receiving a
packet).

The watchdog timer is reset whenever a new packet is
received. If no packets are received for a set amount of time,
the watchdog times out, and restarts the network setup
procedure. This is for instance used when new nodes are
added to the ring during operation.

The setup process includes determining which node to use
as master, fmding out how many nodes are connected, and
fmally what registers are enabled in what nodes. This is done
through a series of configuration packets.

E. Application layer

The application layer handles the shared memory model,
and the transmission and receiving of the register contents.
The shared memory is implemented in a dual-port BlockRAM
[13] in the FPGA, and is double buffered to prevent problems
with both the application layer and an external application
accessing the same locations simultaneously.

Additionally, the application layer holds a few status
counters that count the number of detected errors, resets and
packets sent since powerup.

The interface presented to external applications is simply
one of the ports to the BlockRAM, enhanced with a few
commit signals to control the double-buffer functionality.
External applications assert the commit signals (one for the in
area and one for the out area), when they have fmished
accessing the specified area for that cycle. The application
layer detects this, and switches the buffers if new data is
available.

F. Deployment and use

To ensure that people wanting to use TosNet are not
burdened with such things as having to setup internal FPGA
time constraints for the protocol implementation, the protocol
has been compiled into so-called Relationally Placed Macros
(RPM), using the Floorplanner tool from Xilinx [14]. This
makes it possible to create a single, completely placed and
routed module in a binary file, which can then be distributed
and instantiated as a black-box in new designs. This also
prevents access to and accidental modification of the source
code of the protocol.

To provide a direct interface to a PC, the TosNet RPMs
have been implemented on a Xilinx Spartan3 PCI Express
Starter Kit [15]. This starter kit comes with a Spartan3 1000
FPGA, and a Ix PCI Express interface. Simple device drivers
have been created for both Windows and Linux, which allow

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

access directly to the TosNet shared memory block from
usermode applications on either operating system.

The PCI-express interface allows a PC to act as a (master)
node in TosNet, thus including the PC in the real-time domain
of the network. By using real-time software on the PC, real
time performance of a complete robotic system can be
guaranteed.

The major drawback of the PCI-express solution is that it
requires a relatively expensive hardware-board, along with
device drivers and APls for the relevant operating systems and
programming languages. As these factors will inhibit the
usefulness of TosNet, a TosNet to Ethernet bridge has also
been developed, using an Ethernet-enabled microcontroller,
the Digi Connect ME [16]. This is connected to a Spartan3
TosNet node through an RS232 serial link running at 115200
bps, and allows an Ethernet enabled computer to access a
TosNet network, using for instance UDP packets to
communicate the contents of the shared memory block. The
low speed of the RS232 link may be an issue for more
demanding applications, but in many cases it will be perfectly
adequate. In the future the Connect ME may be exchanged
with the more powerful Connect ME 9210, which has a 16
Mbps Serial Peripheral Interface (SPI), to overcome this
limitation.

The received data is asynchronously injected into a
dedicated port of the dual port shared memory block, and does
thus not interfere with the isochronous, real-time operation of
TosNet itself. However, by using this bridge, real-time
operation of the complete system cannot be guaranteed. For
most simpler applications this is not an issue though,
compared to the advantages of allowing any PC application to
access TosNet, using only a few lines of code.

G. Features andperformance

The main features of the network are listed below:

• 10 Mbps data rate
• Ring topology with up to 15 nodes
• Each node can use up to eight 32 byte memory

segments (each with 16 bytes in, 16 bytes out)

• Cycle rates from ---320 Hz (15 nodes, all segments
enabled) to ---25 kHz (2 nodes, 1 segment enabled)

• 8 bit CRC error detection
• Protocol stack completely implemented in an FPGA
• Uses a single 50 MHz clock
• Synchronization between nodes with microsecond

accuracy
• Optical Toslink transmission lines for noise immunity
• Automatic network setup and master node assignment

The cycle rate of the network varies with the number of
attached nodes, and enabled memory segments. It can be
found using the formula:

frycle = (1 J32bit + (256bit x r) + i x 5.46
lOMb% J1S

In the formula, r is the total number of enabled segments
(each 256 bits large), and i is the total number of nodes, which
is multiplied by the node-to-node delay of 5.46 J.ls (this value
has been experimentally measured, and takes into account
both the delay in the protocol stack, and the time taken to
physically transmit the data). The added 32 bit are due to
overhead (CRC checksum, and packet headers and trailers).

For a network consisting of 4 nodes, each with 2 segments
enabled, the result is thus:

1

V. ApPLICATION EXAMPLE: MINIVGT

To demonstrate the advantages of using distributed
controllers in general, and the functionality of TosNet in

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

Fig. 4. The MiniVGT in its current state, with the TosNet based
distributed controller.

particular, it has been used to implement a distributed
controller for a Variable Geometry Truss (VGT) robot.

The skeleton of the MiniVGT was originally designed by
NASA as a low-cost demonstration of the mechanical concept
of VGT robots. In 1998 it was acquired and upgraded by
SDU, and several projects have worked on various parts of it
since then. It consists of three similar sections, each controlled
by three DC motors with encoders, and is thus both easy to
control, and also an obvious target for a distributed controller.

The MiniVGT can be seen in figure 4.

A. The previous, monolithic controller

In its previous incarnation a team of bachelor project
students equipped it with a single monolithic controller. This
connected all three sections together with large ribbon cables,
and long power cables running from a single motor driver
board at the top of the robot, to the nine motors. The
controller was a combination of an Atmel AtMega128
microcontroller [18], and a Xilinx Spartan3 FPGA. Although
this worked, it clearly illustrated some of the disadvantages of
using a monolithic controller:

• No flexibility with regard to adding new functionality
to the robot (tools, extra sections, etc), as the
complete controller would need to be redesigned

• Encoder signals need to travel a long way through the
ribbon cables, making them susceptible to noise

• Bulky, inelegant cabling

B. The current, distributed controller

The PCBs, along with the controller and the motor drivers,
were removed, and instead a distributed system, using TosNet
for communication, was installed. The new controller uses one
node for each section, and a fourth master node to interface to

Joystick

TosNet Node I
Motorcontroller

Fig. 5. The MiniVGT controller system.

a Local Area Network (LAN) using an Ethernet interface. A
block diagram of the controller system can be seen in figure 5.

Each of the three section nodes consists of:
• Simple-Solutions Zefant LC3E board [19], with a

Xilinx Spartan3E 250 FPGA
• Three PWM based motor drivers
• TosNet interface

The FPGA holds the TosNet protocol stack, and a motor
controller for each of the three motors. The motor controller
takes a desired motion speed and target position as input, and
emits a PWM signal for the motor drivers as output. It uses
the encoder signals from the motors as feedback, in a simple
P-regulation loop.

The master node is a TosNet to Ethernet bridge, and
consists of:

• Simple-Solutions Zefant LC3E board, with a Xilinx
Spartan3E 250 FPGA

• Digi Connect ME ARM? based embedded module
[16] with an Ethernet and an RS232 interface

• An LCD display for outputting information such as the
assigned IP address to the operator

• TosNet interface
The Digi Connect ME simply forwards data received in

UDP packets over its Ethernet connection directly to the
FPGA, through the RS232 interface. The FPGA receives these
and stores the data in the appropriate positions in the TosNet
shared memory block.

To feed the VGT with information, a PC with Microsoft
Robotics Studio (MSRS) [20] was used (2.5 GHz Intel Core 2
Duo, 2 GB RAM, Windows XP SP3). A custom MSRS
service was developed, to tum input from a standard joystick
(a Saitek Cyborg Evo Wireless [21]) attached through the
Universal Serial Bus (USB) interface, into target positions for
the robot, and transmit these over the LAN connection. The
kinematics model implemented is very simplified, but still
manages to demonstrate the functionality of the TosNet
protocol.

The robot reacts as good as instantly to the movement of

Digital Object Identifier: 10.41081ICST.ROBOCOMM2009.5806
http://dx.doi.orgl10.41081ICST.ROBOCOMM2009. 5806

the joystick.

VI. CONCLUSION AND FUTURE WORK

The TosNet protocol works as intended, and obvious
advantages over previous monolithic controllers are evident
from the MiniVGT application example. In its current state
the protocol fulfills all the listed requirements, making TosNet
a valuable tool for research and student projects.

Even though the TosNet protocol is more or less complete,
SDU has further plans for research into real-time
communications for distributed controllers. This includes
creating a generic FPGA implementation of the Decentralized
Software Services Protocol (DSSP) [22] used in MSRS, and
attempts at mapping this onto a real-time Ethernet network.
This is not intended to have the same accessibility as TosNet,
but instead for use as a general interface between all kinds of
nodes in a loosely-coupled, distributed system, that can be
used for industrial applications and long-term research
projects, outside the scope of TosNet.

REFERENCES

[I] A. Soerensen, "Modular control of industrial mechanics" Ph.D.
dissertation, The Maersk Mc-Kinney Moeller Institute for Production
Technology, University of Southern Denmark, Odense, Denmark, 2003,
pp. 57-68 and pp. 49-54. Available: http://www.stengaard.net/anders
s/Research/publications.html

[2] Ethernet Powerlink [Online]. Available: http://www.ethernet-
powerlink.org

[3] Ethernet liP [Online]. Available: http://www.odva.org/
[4] EtherCat [Online]. Available: http://www.ethercat.org/
[5] CAN-bus [Online]. Available: http://www.can-cia.org/
[6] Electrical Characteristics of Generators and Receivers for Use in

Balanced Digital Multipoint Systems, ANSIITIA/EIA Standard 485-A,
1998.

[7] ARC-Net [Online]. Available: http://www.arcnet.com!
[8] Sercos [Online]. Available: http://www.sercos.com!
[9] Toshiba Fiberoptic Module TOTXI47PL / TORXI47PL datasheets
[10] Xilinx datasheet DS099, "Spartan-3 FPGA Family Data Sheet", 2008
[II] Information technology - Open Systems Interconnection - Basic

Reference Model: The Basic Model, ISO/IEC Standard 7498-1, 1994, pp
28-31.

[12] Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
access method andphysical layer specifications,IEEE Standard 802.3,
2005, Section 2, pp I-58.

[13] Xilinx datasheet DS444, "Block RAM (BRAM) Block(v1.00a)", 2004
[14] Xilinx Application note XAPP422, "Creating RPMs Using 6.2i

Floorplanner", 2004
[15] Xilinx Spartan-3 PCI Express Starter Kit [Online]. Available:

http://www.xilinx.com!s3pcie
[16] Digi Connect ME [Online]. Available:

http://www.digi.com!products/embeddedsolutions/digiconnectme.jsp
[17] Simple Solutions Zefant XS3 [Online]. Available:

http://simple-solutions.de/shop/product_info.php?info=p1_Zefant-XS3
Micromodule.html

[18] Atmel ATmegal28 microcontroller [Online]. Available:
http://www.atmel.com!dyn/products/product_card.asp?part_id=2018

[19] Zefant LC3E [Online]. Available:
http://www.simple-
solutions.de/catalog/product_info.php?products_id=5I

[20] Microsoft Robotics Studio [Online]. Available:
http://www.microsoft.com!robotics

[21] Saitek Cyborg EVO Wireless [Online]. Available:
http://www.saitek.com!uk/prod/evowireless.htm

[22] H. F. Nielsen and G. Chrysanthakopoulos, "Decentralized Software
Services Protocol- DSSPIl.O"

