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ABSTRACT

We present a theoretical analysis of a perceptual coding
approach for networked telepresence and teleaction. Our so
called Weber quantizer is based on Weber’s Law and can
be used in haptic data communication to eliminate changes
which can not be perceived by the human operator. The
main advantage of the Weber quantizer is that it minimizes
the number of samples or packets to be transmitted. Basic
properties like the resulting sample rate and the MSE of the
proposed Weber quantizer are derived analytically and proven
correct by simulation for the case of a uniformly distributed
input sequence. The contributions in this paper provide the
basis for the analysis of more realistic signal models and con-
stitute a first step towards the understanding of the relation-
ship between the Weber quantizer, statistical error measures
and actual human distortion perception.

Index Terms— Quantization, perceptual coding, teleoper-
ation, telepresence, teleaction

1. INTRODUCTION

Extensive studies performed by experimental psychologists
and physiologists have unveiled a great number of limitations,
properties and dependencies in human perception. Modern
signal processing makes it possible to use these findings for
the optimization of perceptual signal coding. In this work we
study perception-based data reduction for haptic data streams
in networked telepresence and teleaction systems.

Quantization is the lossy step in the conversion of analog
data into its digital representation. It introduces noise into the
signal and makes it impossible, even for band limited signals
sampled above the Nyquist-rate, to reconstruct the original
signal perfectly.

This work has been supported by the DFG Collaborative Research Cen-
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The Weber quantizer presented in this work is different to
other quantizers in many ways as will be explained later. It ex-
ploits one very basic property of human perception which is
known as Weber’s Law. We analyze the signal behavior of the
Weber quantizer in order to derive metrics for the parameters
it uses. Our goal is to find connections between the analyti-
cal signal distortion it causes and the distortion perceived by
humans.

The remainder of this paper is organized as follows. In
Section 2 we present previous work on this topic. Section 3
presents the basis for the presented approach followed by a
detailed description of the approach itself in Section 4. Some
basic properties of the approach are presented in Section 5
and confirmed by simulation results in Section 6. Section 7
concludes this paper.

2. PREVIOUS WORK

Quantization is omnipresent in today’s digital technology. For
example, Pulse Code Modulation (PCM) as the basic type
of digital media signal representation is used with different
quantizers depending on the application. For instance, on a
Compact Disk (CD) it is used with a uniform scalar quan-
tizer with 16bit resolution. In ISDN it is used with non-linear
quantizers (A-law,µ-law, [1]) with 8-bit resolution for tele-
phone speech data. Those two quantizers use a logarithmic
scale to match human distortion perception and to optimize
signal to noise behavior in speech communication. For this
kind of scalar quantization, every sample value is quantized
individually. There is no delay introduced by the quantization
step. For storage or transmission over a circuit switched con-
nection this approach works fine. For block-based or packet-
based transmission typically multiple quantized samples are
sent en bloc. The delay encountered corresponds to the block-
size used. More recent work on multidimensional logarithmic
quantizers which is closely related to the multidimensional
extension of the Weber quantizer was presented in [2]. The
quantizer in [2] targets at very low delay and hence very small
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blocks of samples are quantized jointly. If the delay constraint
is so strict that every new sample has to be quantized and
transmitted immediately, the quantizer in [2] becomes a tradi-
tional logarithmic scalar quantizer.

In comparison to these quantizers the quantizer studied in
this work introduces no delay and minimizes the number of
samples to be sent from a transmitter to a receiver. This prop-
erty is particularly attractive if every sample has to be sent in
a separate packet as it is typically done in networked telep-
resence and teleaction systems. In such a scenario, the Weber
quantizer minimizes the number of packets being generated.

The Weber quantizer presented in this work has already
been used for the transmission of haptic data in telepres-
ence and teleaction systems and has been proven to work
efficiently [3, 4, 5]. Stability implications and passivation
methods for the presented approach have been presented in
[6, 7, 8]. In this paper we concentrate on a theoretical analy-
sis of its properties.

3. WEBERS LAW

Human perception has undergone thorough research during
the last century. The respective perceptual threshold values
for all kinds of stimuli put on the human body have been stud-
ied. Apart from very detailed information for every modality
a human being can perceive, one major conclusion emerged
from these studies: Human perception often follows Weber’s
Law. Ernst Weber was an experimental physiologist who in
1834 first discovered the following implication

∆I

I
= k or ∆I = kI (1)

where ∆I is the so called Difference Threshold or the
Just Noticeable Difference (JND). It describes the smallest
amount of change of an (arbitrary) stimulus which can be
detected just as often as it cannot be detected.I is the ini-
tial stimulus which is altered by the JND and the constantk,
which we call the threshold parameter from now on, describes
the linear relationship between the JND and the initial stimu-
lus.

4. THE WEBER QUANTIZER

Generally, a scalar quantizer defines intervals of possible in-
put values and maps them to one output value for each inter-
val, the so called representative value. The time discrete input
signal can either be continuous in amplitude or already quan-
tized. The output signal of a quantizer normally consists of2n

possible representative values for an-bit quantizer. The We-
ber quantizer differs from standard quantizers as is explained
in the following.

4.1. Principle

The Weber quantizer generates a constant output signalq as
long as the input signal does not exceed the perception thresh-
old q± kq. Once this threshold is exceeded, the output signal
is updated to the current signal value and this value is held at
the output until the new perception threshold is exceeded.

t

Fig. 1. Principle of the Weber quantizer.

The principle of the Weber quantizer is illustrated in Fig-
ure 1. Values in black are the output of the Weber quantizer.
Values shown in grey do not violate the threshold and are dis-
carded. The grey zone around the black output signal, the so
called deadband, marks the perception threshold. Once it is
violated by a new input sample, this input sample becomes
the output.
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Fig. 2. A haptic signal before and after applying the We-
ber quantizer. The signal represents the velocity of a haptic
device in a telepresence and teleaction experiment [3]. The
velocity signal is sampled with 1kHz and represented with 16
bit before quantization with the Weber quantizer.

Figure 2 shows the quantization of a signal in a telepres-
ence and teleaction experiment [3]. In this experiment, the
sender is a human operator attached to a human-machine-
interface and the receiver is a telerobot. The recorded velocity
signal is the noisy signal shown in grey. The quantized signal
is the step-shaped signal drawn in black. Note the variable
step size depending on the signal magnitude, which corre-
sponds to the JND. As can be seen from Figure 2, the Weber
quantizer generates only a very small number of different out-
put samples that are to be signaled between the sender and re-
ceiver. In case of a perceivable change it modifies the output
without any algorithmic delay.

Whereas other quantizers like scalar and vector quantizers
reduce the output alphabet and thereby the sample resolution
of the signal, the Weber quantizer adapts the temporal resolu-
tion of a signal.



4.2. Input-Output Relationship

The main rule, how the output signal is generated is described
in the following. The discrete input signal is defined as:

xi ∈ [−∞,+∞] (2)

wherei is the sequence number of a sequence of input sam-
ples.

The output signal of the quantizerqi is generated by the
following rules:

qi =

{
xi−m if |xi−xi−m|

|xi−m| < k

xi else
(3)

and
qi−1 . . . qi−m = xi−m (4)

wherem samples back in the signal the last threshold vio-
lation took place.k is the perception threshold from Equa-
tion (1). For human perceptionk is in most cases in the range
from 0.05 to 0.15. We callxi−m the reference value from
now on.

5. ANALYSIS

At first we determine the amount of distortion the Weber
quantizer introduces. We do this in order to gain a first re-
lationship between measured distortion and perceived dis-
tortion. As in other fields of perceptual coding (like video
coding) perceptual models are very complex. So although
perceived distortion may deviate from measured distortion
greatly, simple distortion measures are commonly used to
evaluate the performance of coding techniques. In upcom-
ing work, we plan to utilize the knowledge gained from MSE
computazion to find metrics that describe how the parameters
of the Weber quantizer affect human distortion perception.

5.1. MSE Calculation

5.1.1. Definition of MSE

The MSE of the Weber quantizer introduced up to samplexi

is defined as:

MSE = e =

∑i
j=0(xj − qj)2

i + 1
(5)

When the input signal is stationary, we can write the MSE as
the expected value:

e = E[(xi − qi)2] (6)

qi depends on the last reference valuexi−m (the current out-
put value). This value liesm steps back in the input signal.
So we have to consider all possible values ofm and multiply
each respective expected value with the probability thatxi−m

was the last reference value. This probability is denoted as
δm in the following. Hence,

e =
∞∑

m=1

δmE[(xi − qi−m)2] (7)

m = 0 is left out because no error is introduced whenxi

becomes the new reference value.

5.1.2. MSE for Uniformly Distributed Input Signals

We assumexi to be uniformly distributed from−a to a:

xi ∈ U(−a, a) (8)

and signal values are independent:

P{xi|xi−m} = P{xi} ∈ U(−a, a) (9)

Admittedly, this is quite a simple signal model. However,
it provides a first step to the theoretical analysis of this novel
quantizer to see how it behaves for very basic signals. In
upcoming work, we will provide analysis for signal mod-
els which more adequately match the encountered signals in
bilateral telepresence and teleaction like a Wiener process
model or an autoregressive model.

5.1.3. Calculation

Form = 1:

e = Exi−1

[
Exi [(xi − qi−1)2|xi−1]

]
(10)

This means that the MSE in the casem = 1 is the expected
value of the squared error given the previous value was the
reference value.

Exi
[(xi − qi−1)2|xi−1] =

=
∫ xi−1(1+k)

xi−1(1−k)

(xi − xi−1)2 · P{xi|xi−1}dxi (11)

To simplify we introducev = xi−1:

1
2a

∫ v(1+k)

v(1−k)

(xi − v)2dxi =
1
2a

∫ kv

−kv

x2
i dxi =

k3

3a
v3 (12)

Exi−1

[
k3

3a
v3

]
=

1
2a

k3

3a

∫ a

−a

v3dv =
k3a2

12
(13)

Under the same assumptions and the same signal model, espe-
cially because of the independence of subsequent signal val-
ues, we can also say for generalm:

Exi
[(xi − qi−m)2|xi−m] =

k3

3a
x3

i−m (14)

and

Exi−m

[
Exi

[(xi − qi−m)2|xi−m]
]

=
k3a2

12
(15)



Therefore the MSE is:

e =
∞∑

m=1

δmE[(xi − qi−m)2] =
k3a2

12

∞∑
m=1

δm (16)

Because one of the preceding input values is certainly the ref-
erence value, the sum over the probabilitiesδm is 1. Conclud-
ing, we can say:

e = MSE =
k3a2

12
(17)

for the given signal model.

5.2. Update Rate

Since the output signal of the Weber quantizer does not
change as long as the input signal stays within the perception
bound, no information passes through the quantizer during
those times. This property can be used to reduce update rates
because only in case of threshold violation updates are neces-
sary. In applications like the transmission of data streams this
can be used to significantly lower packet transmission rates as
shown in [3, 4, 5] in the context of haptic data communication
in telepresence and teleaction systems.

5.2.1. Savings in Update Rate

In general, the savings in update rate can be expressed as the
probabilityα that a new input value does not violate the cur-
rent threshold.

α = P{xi does not violate threshold} =

=
∞∑

m=1

P{−k <
xi − xi−m

xi−m
< k}δm (18)

The probability that a new input valuexi does not violate the
thresholdxi−m ± kxi−m multiplied with the probability that
the valuexi−m is the respective reference value is summed
up over all possible values ofm.

5.2.2. Savings for Uniformly Distributed Input Signals

If we again assumexi to be uniformly distributed from−a to
a, we can calculate the update rate saving as follows.

α =
∞∑

m=1

P{−k <
xi − xi−m

xi−m
< k}δm

=
∞∑

m=1

γδm = γ
∞∑

m=1

δm =

= γ (19)

Now we have to calculateγ.

γ = P{−k <
xi − xi−m

xi−m
< k} (20)

Unfortunately this is not trivial. The PDF of the term

β =
xi − xi−m

xi−m
(21)

can be seen in Figure 3. Note that the distribution does not
depend ona.
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Fig. 3. Probability distribution ofβ.

The integral under this distribution from−k to k yieldsγ.
Figure 4 shows the curve forγ from k = 0 to k = 1.
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Fig. 4. The update rate savingsγ overk.

6. SIMULATION RESULTS

6.1. Calculated MSE

In order to verify the analytical calculations in the last section
simulations were conducted. The left plot in Figure 5 shows
the MSE as calculated in Equation (17) as a function of the
width of the uniform distributiona and the threshold param-
eterk. Values ofa range from 0 to 10,k ranges from 0 to
0.5.

6.2. Simulated MSE

The simulation was done by taking every possible combina-
tion of a andk and generating a uniformly distributed random
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Fig. 5. The calculated (left) and simulated (right) MSE results.

sequence of 1000 samples with the respectivea, quantizing
this sequence with a Weber quantizer with the threshold pa-
rameterk and measuring the resulting MSE. The measure-
ment plot is shown on the right side of Figure 5.

We can see that the plots match very well which indicates
that the analytical derivations were correct. However, due to
the simplicity of the signal model, implications for real appli-
cations are hard to derive.

6.3. Simulated Savings in Update Rate

During the same simulation run a measurement of update rate
savings was made. The results of this measurement are shown
in Figure 6.
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Fig. 6. Simulated savings in update rate.

It can be seen that the savings in update rate are indepen-
dent from the width of the uniform distribution. And the in-
crease withk matches exactly the calculations from Figure 4.
What we can see from this result is that for the given signal
model packet rate savings are almost linearly dependent on

k, with a saving rate of about 5% fork = 10% (an empiri-
cally reasonable value). Experiments with real telepresence
and teleaction systems have shown that fork = 10% packet
rate savings of 90% and more are possible. This leads to the
conclusion that a more correlated signal model (like Wiener
or autoregressive process) would yield much more realistic
results.

7. DISCUSSION AND FUTURE WORK

A new way of perceptual coding is presented in this work.
The so called Weber quantizer is introduced. In comparison to
well known approaches like scalar- and vector-quantization,
the Weber quantizer does not quantize the samples of a signal
but its temporal behavior. It can be used to remove impercep-
tible samples from a signal and, by doing so, adaptively down-
sample the signal. This work concentrates on the theoretical
background of the approach: We present a way of comput-
ing the achievable update rate saving along with the analysis
of the distortion (MSE) introduced by it for uniformly dis-
tributed input sequences both analytically and by simulation.

Since the Weber quantizer gives us the possibility to only
update the output signal when a perceivable change of the in-
put signal takes place, it can be used in the packetized trans-
mission of multimedia data as has been shown in earlier work
of the authors where haptic data in telepresence and teleaction
systems was transmitted. The perception threshold parameter
k has to be determined individually for every application. Our
experiments with haptic data showedk to be mostly between
0.05 and 0.15.

The multidimensional extension of the Weber quantizer has
already been presented in [4] and will be further analyzed in
the near future.
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