
OMH - Suppressing Selfish Behavior in Ad hoc Networks with One More Hop∗

Chengqi Song and Qian Zhang
Hong Kong University of Science and Technology

Email: {lars, qianzh}@cse.ust.hk

Abstract

In ad hoc networks, wireless nodes rely on each other
to transmit data over multi-hops by forwarding packets. A
selfish node may decide not to forward packets for other
nodes to save its own resource but still use the network
to send and receive data. Such a selfish behavior can
degrade network performance significantly. Most existing
work took observation, reputation and token based mecha-
nisms. However observation based mechanism suffers from
mobility and collusion; reputation and token based mecha-
nisms suffer from system complexity and efficiency. In this
paper, we propose One More Hop (OMH) protocol which
suppresses selfish behavior from a totally new angle. Bas-
ing on the fact that the selfish but rational nodes still want
to receive and send packets, if a node can not determine
whether a packet is destined for it or not, it can not drop the
packet. With modified routing protocol and cryptographic
techniques, OMH achieves this design target. It is robust
and efficient. The simulation shows that OMH works well
under different network situations.

1. Introduction
An ad hoc network consists of a group of wireless nodes,

which cooperate with each other by forwarding packets to
enable multi-hop communications. It requires no central-
ized or fixed network infrastructure. Ad hoc networks can
be deployed in crisis applications such as in battlefield and
also in civilian applications such as vehicular systems. In
the former applications, all the nodes of the network belong
to a single authority and have a common goal. But in civil-
ian applications, the nodes may belong to different authori-
ties such as different persons. In such situation, some nodes
may attempt to be selfish; the selfish nodes are unwilling

∗Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Qshine08 July 28-31, 2008, Hong Kong, China

to share their resources like CPU cycles, battery power, or
available network bandwidth to forward packets that are not
of direct interest to them. The problem of selfish behaviors
can be a serious problem to the overall system performance.

Before addressing this problem we need to point out that
selfish behavior is different from malicious behaviors. The
target of the node with selfish behavior is to save its own
resource like battery life and network bandwidth, but not
to disturb other nodes. More importantly, the selfish nodes
are rational in that they want to leverage the other nodes in
the network to send and receive data. In this paper we only
focus on selfish behaviors.

Many works have been conducted on eliminating self-
ish behaviors in the literature. We can classify them into
several categories: observation-based schemes, reputation-
based schemes, and token-based schemes.

The observation-based solution is to detect selfish nodes
and isolate them [1]. If a node behaves selfishly, it can be
overheard by its neighbors and be isolated from the trans-
mission. Although have been well discussed, those solu-
tions have some common disadvantages: they require nodes
to observe each other, thus, if a node colludes with some
other nodes, it will have less chance to be detected. More-
over, when node mobility is taken into consideration, the
efficiency of observation and isolation will become lower.

The reputation-based schemes make use of reputation to
discourage selfish behaviors [2] [3]. Nodes evaluate the rep-
utation of its neighbors basing on the completion of the re-
quested packet forwarding. The nodes with bad reputation
will not be trusted in further route selections. This type
of solution has to make sure the reputation information is
highly secure, which causes high complexity of the system
design. Moreover, this type of solution suffers the same
problem with observation-based solutions: i.e., the selfish
nodes will be isolated and can not be used to help forward
data packets and consequently the network performance is
degraded.

In token-based solutions [4] [5], token is paid for helping
forwarding packets. Token can be virtual money or of other
forms. If a node is selfish, it can not earn enough token to
send out its own packets. Such solutions need to maintain

peri
Typewriter
Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.4256

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter



a trustable virtual token market, which is usually complex
and not always practical.

To solve the problem of selfish behaviors, an elegant so-
lution should be able to handle the following issues effi-
ciently: it needs to work effectively under various network
conditions, such as different traffic patterns, network sizes
and mobility; meanwhile it should not bring too much com-
putation complexity; if possible, it should not target at iso-
lating some nodes, instead it should try to leverage all the
nodes to help packet transmission. In this paper, design-
ing such an elegant scheme to suppress selfish behaviors is
our target. Since the existing schemes have different built-
in problems as we mentioned above, we need to think in a
totally new way.

As we mention above, a selfish node is rational. It needs
to transmit and receive its desired data and meanwhile save
its own resource as much as possible. Basing on this basic
and fundamental observation, we have a totally new view-
point of how to suppress selfish behavior, that is, if a node
can not know whether a packet is destined to it or not, it can
not drop the packet otherwise it may potentially lose data.
However, there are some challenges to make a packet’s real
destination undeterminable. Firstly, in classical routing pro-
tocols, the destination of a packet is the last hop of the
route path therefore easy to be detected. Secondly, destina-
tion can also be estimated by checking a packet’s content.
Thirdly, although we want to hide the real destination of a
packet, the packet should still be able to be transmitted cor-
rectly.

In this paper, considering our basic viewpoint and the
corresponding challenges, we proposed a totally new pro-
tocol named One More Hop (OMH) to suppress selfish be-
havior. At first, a longer path mechanism is used so that the
destination is no longer fixed as the last hop but can be any
intermediate hop. Secondly, encryption is used in a novel
way so that only the upstream node can find out whether a
packet is destined to the node or not, and encryption also
makes the content of a packet can not be observed without a
special key, which is known only to destination node and its
upstream node. As a result intermediate nodes cannot drop
packets because they cannot determine if the packet is des-
tined for them or not. The transmission ends at the upstream
node of destination node, so transmission in OMH always
has one more hop, and that’s why the protocol is named as
One More Hop.

In summary, we have made the following major contri-
butions in this paper:

1. Instead of trying to detect selfish behaviors and reduce
its impact, OMH directly prevents selfish behaviors be-
cause a node’s selfish behaviors will potentially cause
its own data loss in OMH.

2. Instead of trying to isolate and remove selfish nodes

from route path, OMH forces selfish nodes to work
normally and makes use of them to forward packets.

3. Performance of OMH is analyzed with compare to
Watchdog protocol.

The remainder of this paper is organized as follows. In
Section 2 we summarize related works. Our system model
and the detailed design of OMH protocol are presented in
Section 3. Then some further discussions about OMH are
presented in Section 4. In Section 5 we evaluate OMH
protocol in multiple aspects and finally short conclusion is
given in Section 6.

2. Related Work
Mitigating selfish behavior is a challenging topic in ad

hoc networks; many researchers have proposed different
types of schemes to address this issue. Basically their works
can be classified into three different categories.

The first category is based on observation [1] [6] [7]
related mechanism. Watchdog and Pathrater [1] uses
observation-based techniques to detect misbehaving nodes
and report them to the source of the traffic, then allows
nodes to choose better path by avoiding the misbehaving
nodes. This observation and reporting mechanism has also
been used in sensor networks recently [6] [7]. However,
this type of schemes has common drawbacks. At first, be-
cause of nodes mobility, the selfish nodes can move to other
places if its selfish behavior has been reported by its neigh-
bors. Moreover, such scheme may have problem with col-
lusion behavior, as a misbehaving node may not report its
collusion nodes selfish behavior. The weakness on collu-
sion problem is mentioned in [1].

There are some other schemes adopting trust and reputa-
tion mechanism [2] [8] [3] [9] to address the selfish behavior
issue. In CONFIDANT [8], each node in the network hosts
a monitor for observation and reputation records, and a path
manager is used by nodes to adapt their behavior according
to reputation information. The first problem of such trust
and reputation based mechanisms is that they take up con-
siderable resources due to the constant transmission of ob-
servation data, which serves no purpose other than to mon-
itor node behavior. The second problem is that such sys-
tems suffer from vulnerabilities due to exchanging second
hand reputation information. Another problem is that most
reputation-based solutions can not handle collusion. A re-
cent work DARWIN [9] works out a new reputation mecha-
nism to resist collusion, however our OMH can handle this
problem in a more direct way.

Virtual token is another way to mitigate selfish behav-
ior and encourage cooperation in ad hoc networks [4] [10]
[5]. Nuglets [4] is a per-hop payment scheme; the payment
units are called nuglets and reside in a secure tamper-proof



module in each node. They find that given such a mod-
ule, increased cooperation is beneficial not only for the en-
tire network but also for individual nodes. Virtual payment
method is also used in [10] [5] and recent research work
[11] to help enforcing packet forwarding. In [12] the au-
thors pointed out that under the general token mechanism,
a user needs to forward more than it sends and also limits
the amount of information that a user can send at a given
time. Moreover, such solutions generally need to maintain
a complex token system and make it secure.

We design OMH in a totally different way comparing
with the existing works. It leverages the fact that selfish
nodes are rational and still need to receive their own desired
packets, and works in a very efficient and elegant way. The
details are introduced in the next section.

3. OMH Protocol

In this Section we introduce our assumption about the
network model, then introduce the motivation of OMH, and
at last introduce the design of OMH.

3.1. System Model and Assumptions

Before talking about the design of OMH protocol, we
need to specify the system model and our discussion as-
sumptions.

Firstly, since selfish behavior is a common problem in
ad hoc networks, we consider networks with some selfish
nodes and also some unselfish nodes, but not 100% nodes
are selfish, which is a very extreme situation and we dont
consider it in this work.

Secondly, we focus on selfish behaviors but not mali-
cious behaviors. Selfish nodes drop packets to save their
own resource but are still rational and do want to receive
data transmitted to them. However malicious nodes may
suffer the threat of losing their own data to disturb other
nodes.

Lastly, in this paper we use IEEE 802.11 as MAC pro-
tocol and DSR as route protocol to describe the sample im-
plementation of OMH.

3.2. Design of OMH

In this subsection we present the details of OMH proto-
col. The OMH protocol encrypts packets, makes the real
destination of a packet not equal to the last hop of route
path, and gives nodes acknowledgements from its next hop
if the node is the real destination. To achieve the design
target, we need to follow the 5 important steps.

Step i. Encryption
In this step, we encrypt a packet before sending it. If a

node wants to open a packet, it has to get the key at first.

S ED
FB CA

One More Hop

Ack. Message

Figure 1: One More Hop and Longer Path (D is the destina-
tion, D-F is the one more hop, S to F is the longer path)

When sender S has a packet M to send to destination
D, at first, S generates a random key K. K is used to en-
crypt packet M with symmetric encryption algorithms such
as Data Encryption Standard (DES). In the following steps
the packet body will be the cipher DESK(M), in which
DESK means DES encryption with key K. The cost of
DES key generation and encryption is very low and can be
performed very fast.

Step ii. Route Discovery - Longer Path
In OMH, the last hop of a packet’ route path is not nec-

essarily the same as the destination, because the longer path
mechanism is used.

In OMH we not only need to find the path from source to
destination, but also try to find a longer path. For example,
in Fig. 1, S-A-B-C-D is a path from source node S to desti-
nation node D, while S-A-B-C-D-E-F is a longer path. Such
path can be found basing on route protocols. Take DSR as
an example.

In DSR [13], every node has a local route table to some
other nodes. If no existing path can be found in local route
table, then route discovery is performed. At first route re-
quest (RREQ) message is flooded from the source node to
nearby nodes; then when the destination node or some other
nodes who know the path to destination receive the RREQ,
they send route reply (RREP) messages back to source node
along the reversed path. As a result the source node finds a
new path according to the RREP messages.

With some modification on DSR, longer path can be
found. When the destination node replies route request,
it can find a path in its local route table and attach it in
RREP message. In the sample shown in Fig. 1, when node
D replies S’s route request, it finds a path D-E-F in its route
table and attaches in RREP message. Then S can combine
the new discovered path S-A-B-C-D with it and get a longer
path S-A-B-C-D-E-F.

When an intermediate node replies route request, it can
also find longer path in its local route table. For example,
if node C knows a path C-D-E-F, then when it receives
RREQ, it can attach this path in RREP and send back to
S. In this way a longer path is also found.



If we can find such longer path, go to step iii. Otherwise,
OMH can still work, and the algorithm goes to step v.

Step iii. Sending Packet with Longer Path
In step i we get the message body DESK(M); in this

step we are going to send out the packet through the longer
path found in step ii. Before sending the packet, we need to
add some extra information to the packet header. This extra
information tells every node whether a packet is destined to
its previous node. With such information, a node can only
know a packet is destined to it or not from the node at next
hop, therefore it has to forward received packets to next hop.

In DSR, the route path is stored in the packet header. In
OMH, instead of the original route path, the longer path is
stored in packet header. In the example, it’s S-A-B-C-D-
E-F stored in the packet header but not S-A-B-C-D, even
though the real destination is D but not F. As a result, when
a node receives a packet, it can not read the packet, because
the packet body is encrypted; it also can not know the real
destination, because of the longer path mechanism.

Here comes a problem, since the real destination D can
neither know what the key K is nor the real destination is it-
self, how can it receive the packet successfully? The answer
is the special information stored in packet header. In OMH,
the source node prepares information for each node in the
route path, and encrypts it using asymmetric encryption al-
gorithm RSA with each node’s public key. The information
for each node includes 1) whether the packet’s real destina-
tion is its previous node and 2) if it is, then the key K to
open the packet. The header cipher is shown in Fig. 3:

For A : RSAPK(A)(Real Destination is S? No )
For B : RSAPK(B)(Real Destination is A? No )
For C : RSAPK(C)(Real Destination is B? No )
For D : RSAPK(D)(Real Destination is C? No )
For E : RSAPK(E)(Real Destination is D? Yes, K )
For F : RSAPK(F )(Real Destination is E? No )

Figure 2: OMH Packet Head 1 (D is destination, K is key)

Where RSA is a widely used asymmetric encryption algo-
rithm; PK(A) means public key of node A; RSAPK(A)()
means cipher of RSA encryption with A’s public key. We
can see that node E is told the real destination is its previous
node D, and also told the key K to open the packet.

Step iv. Receiving Packet
In this step we describe what happens when a node re-

ceives a packet. At first it extracts the part of information
encrypted with its own public key, then knows whether the
packet is destined to its previous node; if yes, then send
back an acknowledgement, otherwise the packet may be-
longs to itself or following nodes, to get the answer, it has
to forward the packet to next hop.

In the example, when node B receives this packet, it will
do:
DeRSAPK(B)(RSAPK(A)(Real Destination is A? No ))
In which DeRSAPK(B) means RSA decryption with pri-

vate key of node B. The decryption result is ”Real Destina-
tion is A? No”. Now we can see that node B can only know
this packet’s real destination is not A, but whether the real
destination is B itself, and how to open the packet? B has no
way to know now. So node B can only forward the packet
to the next hop C.

The same thing happens to C, and also to D. Only when
E receives this packet, it can read that ”Real Destination is
D? Yes; K”. Now node E knows the real destination is D,
then it sends an acknowledgement back to D together with
the key K. By now D receives the packet successfully and E
does not need to forward the packet to F anymore. Now the
transmission finishes successfully.

We can see that in OMH, when an intermediate node re-
ceives a packet, it has no choice but to forward it, otherwise
it may lose its own data. This is guaranteed by both longer
path and cryptographic mechanism. And this is also why we
call our protocol ”One More Hop”: the transmission always
reaches the next hop of the real destination. On the other
hands, though the longer path can be much longer than the
path from source to destination, the final transmission can
only be one more hop longer, because when the next hop
node of real destination (node E) needs not to forward the
packet anymore.

The transmission is done by now, and step v is for special
cases.

Step v. Sending and Receiving Packet without Longer
Path

If a longer path can not be found, the source node also
prepares information for each node; the content also in-
cludes two parts, and the second part has a little different
with in step iv: 1) whether this packet’s real destination is
the node’s previous node and 2) if the destination is the node
itself, then the key K to open the packet; the second part is
different with in step iii, now OMH tells the real destination
the key K, but not its next hop node, because we can not
find such node in this situation. Now the cipher is shown in
Fig. 3:

For A : RSAPK(A)(Real Destination is S? No )
For B : RSAPK(B)(Real Destination is A? No )
For C : RSAPK(C)(Real Destination is B? No )
For D : RSAPK(D)(Real Destination is C? No, K )
For E : RSAPK(E)(Real Destination is D? No )
For F : RSAPK(F )(Real Destination is E? No )

Figure 3: OMH Packet Head 2 (D is destination, K is key)



When the intermediate nodes A, B, C receive the packet, the
situation is the same as in step iv, they still have no choice
but to forward the packet. When node D receives the packet,
it can directly use its private key to do decryption and get
the key K. OMH protocol still works.

4. Further Discussions
After introducing the details of the OMH protocol, in this

section we discuss why it can eliminate selfish behavior and
how it can work better.

4.1. Behavior of Last Node

In the OMH protocol, we require the last node to send an
acknowledgement and a key back to its previous node. But
the last node has no incentive to cooperate. It can selfishly
keep quiet to save energy and time. However, from the fol-
lowing discussion we can see that both the motivation and
chance of last node’s selfish behaviors are reduced a lot.

At first, this message is very short. This message is an
acknowledgement together with a key. The energy and time
spent on such a short message is relatively little. From the
incentive point of view, the incentive to act selfishly is rela-
tively low.

Secondly, if the last node is a selfish node; its chance
to drop packets is reduced a lot. Without OMH, the self-
ish node can selfishly drop packets at anytime. But with
OMH, only when it is the last node of a transmission, can it
drop the acknowledgement packet selfishly. Suppose aver-
age path length is n, then without OMH, the chance for the
selfish node to act selfishly can be as much as 1; while with
OMH, the chance is reduced to 1/(n + 1), because a node
has only a chance of 1/(n+1) at average to be the last node
of a path.

Moreover, this problem can be solved by improving the
strategy of construction of longer path. This method is de-
scribed in next subsection.

4.2. Improved Longer Path

Because the last node can drop acknowledgement as it
wish, when the fraction of selfish nodes is very high, the
last nodes become a bottleneck of throughput. So it’s very
useful if we can select a better last node when constructing
a longer path.

In Watchdog and Pathrater protocol [1], when a node in
a route path is observed to be dropping packets, the cur-
rent path breaks and a new route discovery is performed,
in which the nodes marked as selfish will be avoided. This
process is performed iteratively until a stable route path is
found.

Inspired by Watchdog, the longer path can also be im-
proved by observation, but only for the last node and not
for all nodes. In OMH, after a node sends a packet, the

receiving node is supposed to either send back an acknowl-
edgement message or transfer the packet to next hop. Both
actions can be overheard by the sending node. As a result,
when a node sends a packet but does not overhear any reac-
tions from its next hop node, it’s very possible that the next
hop node is a selfish last node. When enough evidence is
observed, a route error message is sent back to source node
and current traffic flow breaks. In the new route discov-
ery, the destination node will choose a path through another
neighbor node which is not marked as selfish yet.

By such improvement, OMH fails only if all neighbors
of a destination node are selfish, probability of which is very
low comparing to random selection on longer path.

A problem of this improvement is that more route dis-
coveries are performed. However, because only the last
node in a flow can drop packets, so the enumeration is only
among destination’s neighbors. Comparing to Watchdog
and Pathrater in which every node in a flow may cause new
route discovery, the iterations needed in improved OMH is
much less.

4.3. Collusion Resistance

Collusive selfish behavior means that several nodes col-
lude with each other to benefit from saving resource. Some
observation-based and reputation-based mechanisms suffer
from such more intelligent selfish behavior, because collu-
sive nodes may report fake observation result or reputation
record to help their partners. But it’s not a problem in OMH
any more.

We can assume the nodes C1, C2, C3, . . . , Cn along a
transmission path collude to try to drop the packets that do
not belong to anyone of them; and the direction of trans-
mission is from C1 to Cn; then C1 will know whether the
packet belongs to its previous node; C2 will know whether
it belongs to C1 etc; at last Cn will know whether it belongs
to Cn−1. But can any one of them know whether the packet
belongs to Cn? In OMH only the next hop of Cn knows, so
Cn has to forward the packet to its next node, which is not
anyone of the collusion group. That’s to say in OMH col-
lusion can not help selfish nodes at all. This sample can be
extended to more general cases and we can find that OMH
is very robust again collusive selfish behavior.

Recent works [9] and [14] resist collusion in reputation
and game theory ways, however, OMH works much more
directly and efficiently than them.

5. Performance Evaluation

In this section we talk about the performance of OMH
protocol from three aspects: the actual path length, the net-
work throughput, and cryptograph.



0 10 20 30 40 50
6

8

10

12

14

16

18

20

22

Fraction of Selfish Nodes (%)

A
ve

ra
ge

 P
at

h 
Le

ng
th

 (
ho

ps
)

 

 

Large, OMH
Large, Watchdog
OMH
Watchdog

Figure 4: Path Length

5.1. The One More Hop and the Actual
Path Length

In OMH, transmissions path is one hop longer than origi-
nal DSR. As a result, the extra one hop causes built-in extra
workload. However, on the other hand OMH makes use
of selfish nodes to transmit while other solutions such as
Watchdog and Pathrater try to avoid them. As a result, the
actual paths in Watchdog and Pathrater can be even longer
than in OMH when the fraction of selfish nodes is con-
siderable. Simulation is made to compare the actual path
length in DSR with Watchdog and DSR with OMH. In this
simulation, average path length is tested in two scenes. In
the first scene, 350 nodes are randomly placed in an area
of 2500m × 2500m, and in the second scene, a large net-
work is used, in which 1400 nodes are placed in an area
of 5000m × 5000m. In both scenes, 20 pairs of nodes are
randomly selected and route discoveries are performed be-
tween them. The simulation is repeated for 20 times and
the average path length is calculated. The result is shown
in Fig. 4. The results show that when the fraction of self-
ish nodes is low, OMH causes longer transmission because
of the one more hop mechanism. However, when the frac-
tion increases, OMH advances Watchdog and Pathrater in
shorter path length.

5.2. Network Performance

In this section, at first we analyze the network perfor-
mance of OMH and its related factors, then show our simu-
lation results.

5.2.1. Theoretical Analysis

Since OMH aims on preventing dropping packets, we fo-
cus on the percent of packets receiving (PPR). In a network
using DSR protocol, if there are p percent of selfish nodes,

the average chance for a packet to be transmitted through a
path of n hops is

PPRDSR = (1− p)n−1 (1)

in which n−1 means there are n−1 intermediate nodes
and all of them may be selfish. With OMH implemented,
all nodes can not drop packets except the last one, so the
probability becomes

PPROMH = 1− p (2)

With the improved longer path method, thus the trans-
mission fails only if all neighbors are selfish. So if the
destination node has m neighbors, the chance of success-
ful transmission is

PPROMHi = 1− pm (3)

in which PPROMHi denotes the PPR when OMH
with improved longer path is used. It is much better than
the original PPROMH when the destination node has some
neighbors. However, because of mobility, actual through-
put can not be as good as PPROMHi, because the neigh-
bor nodes are moving and changing and therefore it takes
more iterations to find an unselfish neighbor. The actual
PPR should be between PPROMH and PPROMHi when
mobility exists.

5.2.2. Simulation Results
We observe transmissions through 3 hops, 9 hops and 15

hops and the results are shown in Fig. 5.
At first, the longer the path is, the more it suffers from

selfish behaviors. When there are 10% selfish nodes, flows
through 3 hops have a PPR of 86%, which is still useable;
flows through 9 hops have a PPR of 46%, which is very
poor; flows through 15 hops have a PPR of 21%, which is
almost no useable.

Secondly, both Watchdog and OMH can improve PPR a
lot, and OMH works much better. With 50% selfish nodes,
when path length is 3, PPR with Watchdog is 86% and PPR
with OMH is 91%; when path length is 9, PPR with Watch-
dog is 60% and PPR with OMH is 90%; when path length
is 15, PPR with Watchdog is 47% and PPR with OMH is
still 86%. Obviously OMH very well when path is long and
percentage of selfish nodes is high. In such critical situation
OMH is still very reliable when Watchdog is not suitable.
Thats because Watchdog can mark only one node as self-
ish and avoid it in the future, therefore when there is a lot
of mobile intermediate nodes, Watchdog needs many itera-
tions to find a useable path.

6. Conclusion
In this paper we propose the OMH protocol to suppress

selfish behavior in ad hoc networks. Our aim is to solve



0 10 20 30 40 50
20

30

40

50

60

70

80

90

100

Fraction of Selfish Nodes (%)

P
er

ce
nt

 o
f P

ac
ke

ts
 R

ec
ei

ve
d 

(%
)

 

 

Original DSR
DSR with Watchdog
data3

(a) 3 hops

0 10 20 30 40 50
0

20

40

60

80

100

Fraction of Selfish Nodes (%)

P
er

ce
nt

 o
f P

ac
ke

ts
 R

ec
ei

ve
d 

(%
)

 

 

Original DSR
DSR with Watchdog
DSR With OMH

(b) 9 hops

0 10 20 30 40 50
0

20

40

60

80

100

P
er

ce
nt

 o
f P

ac
ke

ts
 R

ec
ei

ve
d 

(%
)

 

 

Fraction of Selfish Nodes (%)

Original DSR
DSR with Watchdog
DSR with OMH

(c) 15 hops

Figure 5: Path Length

the problem of selfish behaviors elegantly. Most previous
efforts on this topic focus on observation, reputation and to-
ken based mechanisms. However they suffer from different
weakness. The observation based mechanisms have prob-
lem with mobility and collusion; the reputation and token
based mechanisms have problem with system complexity
and efficiency. We design OMH protocol from a totally new
angle. We notice the fact that the selfish nodes are rational
and also want to receive and send packets. Therefore if one
node can not know whether the packet it received is destined
to itself or not, it can not drop the packet. We achieve this
target by an intelligent way of routing and encryption, and
finally suppress selfish behavior effectively. Simulations are
conducted to evaluate OMH from multiple aspects. The re-
sult shows that OMH can work well in various network con-
ditions.

References
[1] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating rout-

ing misbehavior in mobile ad hoc networks. In MobiCom
’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, pages 255–265, 2000.

[2] J. Hu and M. Burmester. Lars: a locally aware reputation
system for mobile ad hoc networks. In ACM-SE 44: Pro-
ceedings of the 44th annual Southeast regional conference,
pages 119–123, 2006.

[3] S. Buchegger and J.-Y. Le Boudee. Self-policing mobile
ad hoc networks by reputation systems. Communications
Magazine, IEEE, 43(7):101–107, July 2005.

[4] L. Buttyan and J.-P. Hubaux. Nuglets: a virtual currency
to stimulate cooperation in self-organized ad hoc networks.
Technical report, Swiss Federal Institute of Technology,
2001.

[5] M. Jakobsson, J. Hubaux, and L. Buttyan. A micropayment
scheme encouraging collaboration in multi-hop cellular net-
works. pages 15–33, 2003.

[6] D. Djenouri and N. Badache. New approach for selfish
nodes detection in mobile ad hoc networks. Security and
Privacy for Emerging Areas in Communication Networks,

2005. Workshop of the 1st International Conference on,
pages 288–294, 5-9 Sept. 2005.

[7] B. Yu and B. Xiao. Detecting selective forwarding attacks
in wireless sensor networks. Parallel and Distributed Pro-
cessing Symposium, 2006. IPDPS 2006. 20th International,
pages 8 pp.–, 25-29 April 2006.

[8] S. Buchegger and J.-Y. L. Boudec. Performance analysis
of the confidant protocol. In MobiHoc ’02: Proceedings
of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pages 226–236, 2002.

[9] J. J. Jaramillo and R. Srikant. Darwin: distributed and adap-
tive reputation mechanism for wireless ad-hoc networks. In
MobiCom ’07: Proceedings of the 13th annual ACM inter-
national conference on Mobile computing and networking,
pages 87–98, 2007.

[10] H. Tewari and D. O’Mahony. Multiparty micropayments for
ad hoc networks. Wireless Communications and Network-
ing, 2003. WCNC 2003. 2003 IEEE, 3:2033–2040 vol.3, 16-
20 March 2003.

[11] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On design-
ing incentive-compatible routing and forwarding protocols
in wireless ad-hoc networks: an integrated approach using
game theoretical and cryptographic techniques. In MobiCom
’05: Proceedings of the 11th annual international confer-
ence on Mobile computing and networking, pages 117–131,
2005.

[12] E. Huang, J. Crowcroft, and I. Wassell. Rethinking incen-
tives for mobile ad hoc networks. In PINS ’04: Proceedings
of the ACM SIGCOMM workshop on Practice and theory of
incentives in networked systems, pages 191–196, 2004.

[13] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic
Source Routing Protocol for Multihop Wireless Ad Hoc Net-
works.

[14] S. Zhong and F. Wu. On designing collusion-resistant rout-
ing schemes for non-cooperative wireless ad hoc networks.
In MobiCom ’07: Proceedings of the 13th annual ACM in-
ternational conference on Mobile computing and network-
ing, pages 278–289, 2007.




