
Auxiliary Channel Diffie-Hellman
Encrypted Key-Exchange Authentication

Dennis K. Nilsson
dennis.nilsson@chalmers.se

Ulf E. Larson
ulf.larson@chalmers.se

Erland Jonsson
erland.jonsson@chalmers.se

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

ABSTRACT
In wireless personal area networks, establishing trust and au-
thentication with previously unknown parties is both neces-
sary and important. We propose an auxiliary channel Diffie-
Hellman encrypted key-exchange authentication scheme to
establish secure authentication between two previously un-
known devices. The key exchange creates a high-entropy
shared key from a low-entropy PIN that is transferred through
an auxiliary channel. The strong shared key is then used
for authentication of exchanged public keys. The scheme
protects against both man-in-the-middle and passive eaves-
dropping attacks, including offline PIN cracking. We focus
on Bluetooth version 2.1 and analyze the Simple Pairing
protocols. We restrict the supported usage scenarios for
the Just Works and Passkey Entry protocols and design a
protocol using our proposed solution to replace both proto-
cols. We recognize that our proposed protocol is substan-
tially more secure than the current Just Works protocol,
achieves the same security level as the Passkey Entry proto-
col while maintaining the usability and convenience level for
the user. In addition, the proposed protocol considerably
reduces the number of messages exchanged compared to the
Passkey Entry protocol.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Security

Keywords
Wireless personal area networks, auxiliary channel, authen-
tication, Bluetooth, Just Works, Passkey Entry

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QShine’08, July 28–31, 2008, Hong Kong, China.
Copyright 2008 ACM TBA ...$5.00.

1. INTRODUCTION
Wireless personal area networks (WPANs) are an emerg-

ing trend, and establishing connections to devices in close
vicinity and accessing services at any time has become in-
creasingly popular. Establishing a WPAN initially involves
connecting a device to previously unknown parties. How-
ever, there is a fundamental security problem when estab-
lishing a communication channel with a previously unknown
party. The problem lies in how a user can establish trust that
his device is communicating with the correct party the first
time communication is established. Several technologies ex-
ist in which this problem is addressed by the use of shared
secrets. For example, nodes in wireless sensor networks are
often preloaded with shared keys [1].

An increasingly popular wireless technology for small mo-
bile devices that currently also relies on shared secrets is
Bluetooth. Bluetooth allows two previously unknown de-
vices to establish a relationship in a procedure known as
pairing. The Bluetooth core 2.0 protocol [2] has been plagued
with weaknesses in the pairing and authentication proce-
dures [3, 4, 5, 6, 7], and the new Simple Pairing procedure
in Bluetooth version 2.1 [8] tries to remedy a number of
those weaknesses. The main focus of the Simple Pairing
procedure is on the protection against passive eavesdrop-
ping and man-in-the-middle (MITM) attacks. The Simple
Pairing procedure uses an auxiliary channel, consisting of a
human user, visual comparison, or an alternative protocol,
to improve the security level.

One particularly challenging scenario for establishing se-
cure pairing is when one of the devices lacks sufficient input
and output capabilities (e.g., devices with only a button
or a LED). The Just Works protocol in Simple Pairing for
this scenario is insufficient for creating high-assurance net-
works since it is vulnerable to simple MITM attacks. To our
knowledge there has not been any specific solution proposed
to solve the MITM attack vulnerability in Just Works.

Pairing between devices can be achieved by different means
depending on the input and output capabilities of the in-
volved devices. There are six basic combinations of de-
vice interfaces for the auxiliary channel: limited input and
output/limited input and output (-/-), limited input and
output/input (-/I), limited input and output/output (-/O),
input/input (I/I), output/input (O/I), and output/output
(O/O). In this paper, we propose an auxiliary channel Diffie-
Hellman encrypted key-exchange (ACDHEKE) scheme for
authentication in -/I, I/I, and O/I device configurations. A

peri
Callout

peri
Typewriter
QShine 2008, July 28-31, 2008, Hong Kong, Hong Kong.
Copyright 2008 ICST ISBN 978-963-9799-26-4
DOI 10.4108/ICST.QSHINE2008.3893

peri
Typewriter

peri
Typewriter

weak secret is transferred over an auxiliary channel and is
then used as a key in an encrypted key-exchange. We show
how ACDHEKE can be used to establish trust and create
a strong shared secret between two previously unknown de-
vices. We focus on Bluetooth as an example and design
an ACDHEKE authentication protocol that can be used to
replace both the Just Works and Passkey Entry protocols.

The main contributions of the paper are as follows.

• We have analyzed the security for key establishment
and authentication in Bluetooth version 2.1, and iden-
tified a number of weaknesses in the current protocols.

• We propose an auxiliary channel Diffie-Hellman en-
crypted key-exchange scheme for authentication of two
previously unknown devices that supports -/I, I/I, and
O/I device configurations.

• We have designed a protocol for Bluetooth based on
the proposed scheme that can replace both the Sim-
ple Pairing Just Works and Passkey Entry protocols.
It achieves an equal or better level of security while
maintaining the usability for the user and significantly
reduces the number of messages exchanged over the
wireless channel.

The paper is outlined as follows. Section 2 contains related
work with proposals to secure pairing and authentication
procedures in WPANs. In Section 3, we describe the gen-
eral concept of the ACDHEKE scheme. Section 4 contains
an overview of the Just Works and Passkey Entry protocols
and the weaknesses they contain. In Section 5, we analyze
the usage scenarios for the Just Works and Passkey Entry
protocols to design an improved protocol. Section 6 presents
our ACDHEKE protocol and discusses the protection it of-
fers. In Section 7, an analysis of our proposed protocol is
provided that describes the achieved protection, practical
considerations, and benefits. Section 8 discusses possible
future work directions, and Section 9 concludes the paper.

2. RELATED WORK
There has been extensive research in pairing and authen-

tication protocols for WPANs. Balfanz et al. [9] expand the
idea of the resurrecting duckling protocol [10] to include an
exchange of pre-authentication data over a location-limited
channel during the first phase. The pre-authentication data
is used for subsequent authentication of the involved par-
ties on the wireless link. A proposal to exchange digests
of the involved parties’ public keys is presented, which re-
quires a bidirectional O/I auxiliary channel; however, the
inconvenience level for the user to input such values and
support for devices with limited input and output capabil-
ities are not considered. Cagalj et al. [11] propose meth-
ods for key agreement and authentication by visual com-
parison of commitment values or distance bounds. These
methods require O/O device configurations. Asokan and
Ginzboorg [12] present a solution based on a shared pass-
word, where a user chooses a fresh password and shares it
among the involved parties. The password is then used to
derive a strong shared key. This approach requires I/I de-
vice configurations. Nilsson et al. [13] propose a solution
for key agreement in O/I device configurations using an au-
thenticated challenge-response procedure over an auxiliary
channel. In contrast to [14], the solution requires only a

unidirectional auxiliary channel to achieve mutual authen-
tication. Jakobsson [15] presents two methods to verify a
symmetric key calculated using DH public parameters ex-
changed between two parties. The methods are based on a
temporary shared secret, i.e., a shared PIN. The established
symmetric key is verified using a commitment value calcu-
lated with the key, the shared PIN, and optionally a nonce.
The methods require a bidirectional O/I auxiliary channel.

The IEEE 802.15.4 specification [16] is a low data-rate
WPAN standard and provides basic security mechanisms
but does not include any keying model. In other words, cryp-
tographic techniques for authentication, message integrity,
confidentiality, and freshness check are supported but tech-
niques for generating, distributing, and managing crypto-
graphic keys are not suggested.

The ZigBee Alliance [17] is an association of companies co-
operating to enable reliable, cost-efficient, low-power, wire-
lessly networked monitoring and control products based on
the IEEE 802.15.4 standard. The ZigBee specification [18]
contains security mechanisms for key management, e.g., a
shared key can be established on two devices or transported
from one device to another. Establishing a shared key on
two devices, a so called link key, requires some initial trust
data on both devices, such as a shared preinstalled master
key or a user-entered PIN. If no initial trust data exists, a
device can be loaded with an initial key using an insecure
transport-key procedure.

The Bluetooth standard version 2.1 Simple Pairing pro-
vides four protocols for pairing [19]. In Numeric Compari-
son, both devices calculate a six digit hash of the exchanged
public keys and the user is prompted to do a visual com-
parison and verify that the same values are shown on both
devices (O/O). Just Works is similar to numeric compari-
son except that no number values are shown, and the user
simply has to accept the connection. Just Works provides
the same protection as Numeric Comparison against pas-
sive eavesdropping; however, there is no protection against
MITM attacks Just Works supports all device configura-
tions, including -/-, -/I, and -/O. Out of Band uses, for ex-
ample, a near field communication (NFC) solution where the
user initially touch the two devices together and the crypto-
graphic information is exchanged over the out-of-band chan-
nel. Lastly, for Passkey Entry the user chooses and enters
a six digit number on both devices (I/I). Alternatively, the
user is shown a six digit number on one device and inputs
the same number on the other device (O/I). The number is
used for verifying that the public keys have been exchanged
properly.

In this paper, we focus on -/I device configurations and
propose a solution that could also be used for I/I and O/I
device configurations. We use Bluetooth as an example to
provide a lightweight secure pairing protocol.

3. AUXILIARY CHANNEL DHEKE
We extend the Diffie-Hellman encrypted key exchange [20]

(DHEKE)by sending a PIN, inputted, generated, or stored
in one device, over an auxiliary channel to the other de-
vice. The PIN is then used to establish an encrypted and
authenticated key-exchange. We denote this key exchange
as auxiliary channel Diffie-Hellman encrypted key-exchange
(ACDHEKE). A brief and general description follows be-
low, and a detailed description of an ACDHEKE protocol
designed for Bluetooth is found in Section 6.

Table 1: Overview of Protocols
Protocol Required Device Pairing Authentication PIN Protection No. of Message Exchange (bytes)

Configuration Revealed PE MITM Msgs Sent Received Total

Just Works None/None None N/A X 5 56 40 96

Passkey Entry Input/Input Variable PIN (self-selected) X X X1 82 664 664 1328
Output/Input Variable PIN (generated) X X X 82 664 664 1328

ACDHEKE None/Input Fixed PIN X X 6 64 64 128
Input/Input Variable PIN (self-selected) X X 6 64 64 128
Output/Input Variable PIN (generated) X X 6 64 64 128

We propose using an auxiliary channel to output and in-
put the PIN to and from the involved devices. This channel
can consist of various elements, and in this example, it con-
sists of a human user, a keypad on one device, and a display
on the other device. We assume that a network attacker can-
not affect the auxiliary channel but can read, modify, and
inject traffic in the wireless channel according to the Dolev-
Yao model [21]. To preserve the usability for the user, the
auxiliary channel can be used to transfer only low-entropy
secrets. For O/I and -/I device configurations the auxiliary
channel is unidirectional while for I/I device configurations
the auxiliary channel is bidirectional. With support from
Laur et al. [22] we state that the auxiliary channel for I/I
and O/I device configurations must provide both authenti-
cation and confidentiality for mutual authentication of the
devices. We expand this requirement to include authenti-
cation and confidentiality of the auxiliary channel for -/I
device configurations.

The principle for ACDHEKE is shown in Figure 1. A PIN
is transferred over the auxiliary channel from device B to de-
vice A. The rest of the protocol is based on DHEKE [20,
23] with the modification that ECDH [24] is used. A tem-
porary public key is encrypted with the PIN and sent over
the wireless channel from A to B. B replies with another
temporary public key and a hash of the public key and the
established DH key. The PIN is used for authentication of
the two devices during the key establishment.

The major benefits of the ACDHEKE scheme are:

• Unidirectional auxiliary channel for O/I and -/I device
configurations to preserve the usability for the user.

• Provides mutual authentication of exchanged public
values.

• Supports -/I, I/I, and O/I device configurations with-
out revealing the PIN used.

• Low number of exchanged messages over the wireless
channel (encrypted temporary public key, temporary
public key, and two commitments).

In the next section, we briefly describe the Just Works
and Passkey Entry protocols and the shortcomings that ex-
ist. We then analyze the supported usage scenarios for Just
Works and Passkey Entry and apply the ACDHEKE scheme
to design a new authentication protocol in Section 6.

4. OVERVIEW OF PROTOCOLS
We present an overview of the Just Works, Passkey Entry,

and our proposed ACDHEKE protocols that shows the re-
quirements, shortcomings, and security levels achieved. The
overview is summarized in Table 1. The Required Device

Temporary public key,
hash of temporary public key and DH key

Auxiliary
channel User inputs PIN on device A

Device A
Input

Device B
Input/Output/

None

Temporary public key encrypted with PIN
Wireless
channel

PIN

Inputted,
generated,
or stored

Hash of DH key

Figure 1: Auxiliary channel Diffie-Hellman en-
crypted key-exchange principle.

Configuration column state which input and output capa-
bilities are required by the two involved devices: Input re-
quires a keypad to enter six digits, Output requires a display
to show six digits, and None does not require any input or
output capabilities beyond one bit, i.e., pressing a button or
blinking a LED. Pairing Authentication specifies the value
used for authentication during the initial relationship estab-
lishment. PIN Revealed shows if the PIN used in the pairing
procedure can be calculated by a passive attacker after the
procedure (marked with an X). Protection indicates whether
protection against passive eavesdropping (PE) and MITM
attacks are fulfilled (marked with an X). No. of Msgs reveals
the number of messages exchanged over the wireless chan-
nel, and Message Exchange contains the Sent, Received, and
Total number of bytes.

4.1 Just Works Protocol
The Just Works protocol is similar to the Numeric Com-

parison protocol [19] with the difference that the six digit
values used for visual comparison are not shown. Thus, the
user cannot verify that the correct public key values have
been exchanged.

4.1.1 Man-in-the-Middle Attack
The Just Works protocol is vulnerable to MITM attacks as

identified in the Simple Pairing white paper [19]. An active
attacker can inject his own public key value to the attacked
devices and establish DH keys with both of the devices.

4.2 Passkey Entry Protocol
In the Passkey Entry protocol, a six digit number is in-

putted by a user in both devices, alternatively, displayed on
one device and inputted in the other. The public keys are
exchanged and authenticated using the six digit number.

1If a PIN is reused, an attacker can successfully perform
a MITM attack as described in Section 4.2.1.

4.2.1 Shortcomings
If a PIN is reused, e.g., a user chooses to use the same PIN

for pairing between several devices, which is not unlikely, an
attacker can perform a MITM attack [25]. To successfully
conduct the attack, the attacker needs to know the PIN that
is going to be used in the pairing. The attacker can learn it
by passively eavesdropping on a previous pairing procedure
or guess it if a trivial PIN, such as “000000”, is selected.

In addition to this attack possibility, the Passkey Entry
protocol is not energy efficient since a large portion is re-
peated for 20 rounds. In each round, four messages (two for
the commitment values and two for the nonces) are sent over
the wireless channel. In addition, two messages are trans-
mitted for the initial public key exchange. Thus, a total of
82 messages are exchanged over the wireless channel dur-
ing the pairing procedure. Furthermore, two f1 functions
(one for calculating the commitment value and one for veri-
fying the received commitment value) are calculated in each
round. Thus, a total of 40 f1 calculations are performed
in one device during the pairing procedure. Since these de-
vices often run on batteries, an energy-efficient protocol is
desirable. Moreover, since communication over the wireless
channel is the most energy-consuming function [26, 27, 28],
it is necessary to minimize communications overhead.

5. DESIGNING ACDHEKE FOR
BLUETOOTH

In this section, we present the design behind the ACD-
HEKE protocol for Bluetooth. The scenarios supported by
Just Works and Passkey Entry are analyzed and adjusted to
fit the design of the ACDHEKE protocol.

5.1 Analyzing Usage Scenarios for Just Works
The Just Works protocol is primarily designed for -/I de-

vice configurations. Such common usage scenarios are pair-
ing a cell phone with a headset or a laptop with a mouse.
Just Works also supports -/- and -/O device configurations
(such as connecting two headsets or a mouse and a display).
However, in practice such scenarios are not realistic. To our
knowledge, there exists no practical example usage of such
a scenario.

With the support of the usage scenarios found on blue-
tooth.com [29], we restrict the design of ACDHEKE to sup-
port -/I but not -/- and -/O device configurations. The sup-
ported scenarios for ACDHEKE are similar to the fixed PIN
scenarios in Bluetooth 2.0 [2]. To the best of our knowledge,
the restriction does not have any practical implications.

The -/I scenario is particularly challenging since visual
comparison or entering a secret value in both devices is not
possible. To maintain the convenience level for the user and
supported by [18], we propose to preinstall a secret value in
the device lacking sufficient input and output capabilities.

We assume that the secret value is a unique and nontrivial
six decimal digit PIN. We admit that preinstalling a secret
value involves a weakness, which we discuss further in Sec-
tion 7.3.2; however, we believe that achieving a certain level
of security is better than no security at all. One important
aspect is that the PIN is not revealed to an attacker after
an ACDHEKE pairing procedure as is the case for pairing
in Bluetooth 2.0 [6].

Table 2: Notation used in the following protocol
Ca Commitment value from device A
DHKEY ab DH key between devices A and B
f1′() Function that generates the 128-bit commitment

values Ca and Cb for the ACDHEKE protocol
PKa Public key of device A
SKa Secret (private) key of device A
TPKa Temporary public key of device A
TSKa Temporary secret (private) key of device A
Kab Temporary DH key between devices A and B
PIN Six decimal digit PIN stored, generated, or in-

putted manually into a device
EK(M) Encryption of message M using the key K
DK(M) Decryption of message M using the key K
P192(u, V) Function used to calculate a DH key (x-coordinate

of the u-th multiple uV of the point V on the
elliptic curve P-192 [30])

5.2 Analyzing Usage Scenarios for Passkey
Entry

The Passkey Entry protocol is suitable for I/I and O/I de-
vice configurations. Common usage scenarios include pair-
ing a cell phone and a computer, or two PDAs. We design
ACDHEKE to support the same configurations as Passkey
Entry, i.e., both I/I and O/I are supported.

6. ACDHEKE AUTHENTICATION
PROTOCOL

The ACDHEKE authentication protocol is designed to re-
place both Just Works and Passkey Entry, and thus three
separate cases exist: -/I, I/I, and O/I device configurations.
For -/I, we assume that a PIN is preinstalled in the device.
For I/I, a PIN is inputted in both devices, and for O/I, a
random PIN is generated and displayed on one device. The
notation used in the following protocol is described in Ta-
ble 2.

The desired security properties for the ACDHEKE pro-
tocol are to prevent MITM attacks, and provide protection
against passive eavesdropping.

6.1 Functions
We have adopted the improved minimal DHEKE II [23]

to create a high-entropy shared secret (DH key) from the
initial low-entropy PIN. We extend the protocol to include
the public key values in the verification. Using the DH key,
we can verify that the exchanged public key values are the
same on both devices.

We attempt to use the same functions that exist in Blue-
tooth Simple Pairing. ECDH is used to calculate a tempo-
rary DH key used for verifying the public keys exchanged.
We also extend the Simple Pairing commitment function f1
to include a 192-bit number instead of the 8-bit number as
the fourth input value. The original f1 function uses this
input value only to verify one bit of the PIN. We extend the
function to verify a 192-bit temporary public key instead.
We call the new function f1′. The inputs to f1′ are: U
(192 bits), V (192 bits), X (128 bits) and Z (192 bits). The
output of the f1′ function is:

f1′(U, V,X,Z) = HMAC − SHA− 256X(U ||V ||Z)/2128

where || denotes concatenation.

PKb

Device A
Input

Device B
Input/Output/

None
PKa

TPKb, Cb = f1'(PKb, PKa, Kba, TPKb)

EPIN(TPKa)

Kba =
P192(TSKb, TPKa)

Ca = f1'(PKa, PKb, Kab, 0)

Kab =
P192(TSKa, TPKb)

Verify Cb = f1'(PKb, PKa,
Kab, TPKb)

Verify Ca = f1'(PKa, PKb,
Kba, 0)

PIN

DHKEYab =
P192(SKa, PKb)

DHKEYba =
P192(SKb, PKa)

User inputs PIN on device A

Generate
TPKa, TSKa

Generate
TPKb, TSKb

Inputted,
generated,
or stored

Figure 2: ACDHEKE protocol.

6.2 Protocol
The proposed protocol is shown in Figure 2. First, the

public keys PKa and PKb are exchanged between the two
devices. Devices A andB generate temporary ECDH public-
private key pairs (TPKa, TSKa, TPKb, TSKb). The PIN
is sent over the auxiliary channel. A encrypts TPKa with
the inputted PIN and sends to B which decrypts the mes-
sage and calculates the DH keyKba = P192(TSKb, TPKa).
The following message, containing TPKb and the commit-
ment value Cb calculated using the public key values PKb,
PKa, the key Kba, and TPKb, is sent from B to A.

Next, A calculates the DH keyKab = P192(TSKa, TPKb)
and verifies the received commitment value Cb with the cal-
culated value from the f1′ function of the public key values
PKb and PKa, the calculated key Kab, and TPKb. Then,
a commitment value is calculated on A using PKa, PKb
and Kab and sent to B which verifies the received message.
Thus, mutual authentication that both devices possess the
key Kab == Kba is performed. In addition, mutual authen-
tication that both devices share the view of the exchanged
public key values is performed. Next, the ECDH calculation
is repeated using the initially exchanged public keys (PKa
and PKb). Identical to Bluetooth version 2.1 [8], a DH key
is calculated on both devices. After the last step, both de-
vices are assured that they have exchanged public key values
and that a DH key is established between them (DHKEY ab
== DHKEY ba).

The temporary public and private keys are discarded after
the final DH key is established. It is imperative that TPKa
is not revealed as it would allow an attacker to bruteforce
the PIN.

Abort

PKb

Device A
Input

Device B
Input/Output/

None
PKa

Attacker E

PKe

PKe

TPKb, Cbe = f1'(PKb, PKe,
Kbe, TPKb)

Generate
TPKb, TSKb

Generate
TPKa, TSKa

Kbe = P192(TSKb,
DPIN(EPIN’(TPKea)))

Ceb = f1'(PKe, PKb, Keb, 0)

Kae =
P192(TSKa, TPKeb)
Verify Cea = f1'(PKe,

PKa, Kae, TPKeb)

Verification fails if
Kae != Kea

BREAK

TPKeb, Cea = f1'(PKe, PKa,
Kea, TPKeb)

Kae != Kea
unless

TPKa’ ==
TPKa, i.e., if
PIN’ == PIN

Guess PIN’

EPIN(TPKa) EPIN’(TPKea)

TPKa’ = DPIN’(EPIN(TPKa))
Kea =

P192(TSKeb, TPKa’)

Verify Ceb = f1'(PKe,
PKb, Kbe, 0)

Verification fails if
Kbe != Keb

BREAK

PIN

Generate
TPKeb, TSKeb

Generate
TPKea, TSKea

Keb =
P192(TSKea, TPKb)

Kbe != Keb unless
PIN’ == PIN

DHKEYae =
P192(SKa, PKe)

DHKEYbe =
P192(SKb, PKe)

DHKEYea =
P192(SKe,

PKa)

DHKEYeb =
P192(SKe,

PKb)

User inputs PIN on device A

Attacker goal

Inputted,
generated,
or stored

Figure 3: Man-in-the-middle attack against the
ACDHEKE protocol.

7. ANALYZING THE ACDHEKE
AUTHENTICATION PROTOCOL

The desired security properties of the ACDHEKE authen-
tication protocol are prevention of the MITM attack that the
original Just Works protocol is vulnerable to, and assurance
that passive eavesdropping (in particular to calculate the
PIN) is still prevented. A security level equal or better to
that of the Passkey Entry protocol should be achieved.

7.1 Man-in-the-Middle Attack
An active attacker can still inject his own public key value

to the attacked devices; however, the attack is not successful
since the two attacked devices will detect the MITM attack.
The MITM attack flow and the protection mechanism is
described as follows.

The objective of the attacker is to create the keys Kea
equal to Kae and Keb equal to Kbe. If the attacker manages
to create these keys, the attacker can successfully create DH
keys with both devices and perform the attack. The attack
scenario is illustrated in Figure 3. The action on the left-
hand side of the attacker is performed for attacking device
A, and the right-hand side is performed for attacking device
B. The attacker goal is shown at the bottom in the figure.

First, the attacker E sends its public key value (PKe) to
the two devices. The attacker then receives the encrypted
TPKa value. Since the PIN is unknown to the attacker,

he cannot learn the TPKa value. If the attacker simply
forwards the message to B, a key between A and B is es-
tablished, and the attacker cannot learn anything. There-
fore, the attacker generates two ECDH public-private key
pairs (TPKeb, TSKeb, TPKea, TSKea), and encrypts
TPKea with a guessed PIN ′. This value is sent to B
which calculates the DH key Kbe according to P192(TSKb,
DPIN (EPIN′(TPKea)). B then sends TPKb, together with
the commitment value of PKb, PKe, Kbe, and TPKb.

To continue the attack on A, the attacker decrypts the
received encrypted TPKa with the guessed PIN ′ to get
TPKa′, and calculates the DH key Kea using TSKeb and
TPKa′. Then, the attacker sends TPKeb together with the
commitment value of PKe, PKa, Kea, and TPKeb to A.

Next, A calculates the DH key Kae using the received
TPKeb, and verifies the received commitment value Cea
with the calculated commitment value of PKe, PKa, Kae,
and TPKeb. This matches only if Kae equals Kea, which
is true only if TPKa′ equals TPKa, which in turn is true
only if the attacker guessed the correct PIN (PIN ′ equals
PIN). A aborts if the verification fails and sends an abort
message to B.

Before the abort message reaches B, the attacker sends
the commitment value Ceb of PKe, PKb and Keb to B
which verifies if the received commitment value matches the
calculated commitment value of PKe, PKb and Kbe. This
matches only if Kbe equals Keb, which is true only if the
attacker guessed the correct PIN (PIN ′ equals PIN). B
then aborts if the verification fails.

The goal of the attacker is to create DH keys between A
and E (DHKEY ae == DHKEY ea) and between B and
E (DHKEY be == DHKEY eb). A and B will both detect
the attack if the attacker does not know the PIN. Since the
PIN is regenerated for devices with output capabilities, the
attacker cannot learn this value. Since an attacker cannot
learn the PIN after a pairing procedure, the protocol is se-
cure for fixed PIN devices as long as the PIN is not revealed
in any other way.

7.2 Passive Eavesdropping
The following messages can be learned from passive eaves-

dropping: PKa, PKb, EPIN (TPKa), TPKb,
f1′(PKb, PKa,Kba, TPKb), and f1′(PKa, PKb,Kab, 0).
Even if an attacker captures those messages, calculating the
key Kab/Kba is hard without knowing either of the pri-
vate keys because of the elliptic curve discrete logarithm
problem. Moreover, using only EPIN (TPKa), TPKb and
f1′(PKb, PKa,Kba, TPKb) to bruteforce the PIN is hard
because of the fact that TPKa is randomly generated and
calculating the DH key is difficult. Even if an educated
guess on the PIN is made and TPKa is decrypted, verifica-
tion is hardly possible because of the randomness involved.
Thus, the protocol includes protection against offline PIN
cracking. Even if the same PIN is reused a number of
times, the messages sent between two devices will be dif-
ferent because of the random temporary public key values,
and therefore an attacker cannot learn the PIN. In compar-
ison, using the same PIN more than once in Passkey Entry
compromises the security of the protocol. Thus, the ACD-
HEKE authentication protocol includes protection against
passive eavesdropping, and the PIN cannot be calculated
offline.

7.3 Practical Considerations
There are some practical issues that need further consid-

eration before this protocol can be adopted.

7.3.1 Energy Efficiency
The ACDHEKE authentication protocol involves six ex-

changed messages (two public keys, one encrypted tempo-
rary public key, one temporary public key, and two commit-
ment values) during the pairing procedure. In contrast, the
Just Works protocol involves five exchanged messages and
the Passkey Entry protocol 82 exchanged messages. The
ACDEKE protocol considerably reduces the communication
overhead in comparison with the Passkey Entry protocol and
is comparatively the same for Just Works. Since messages
on the radio is most energy-consuming, minimizing the com-
munication overhead is of great importance.

Furthermore, the ACDHEKE protocol comprises one sym-
metric encryption/decryption operation using the PIN, two
ECDH calculations (to calculate the DH key Kab/Kba and
DHKEY ab/DHKEY ba), and two f1′ functions (for Ca/Cb
and verification of Ca/Cb) in one device during the pairing
procedure. The f1′ function is comparable to the f1 func-
tion in terms of computational efficiency. The Just Works
protocol entails only one f1 function, one g function, and
one ECDH calculation. The Passkey Entry protocol involves
40 f1 calculations and one ECDH calculation. ACDHEKE
uses the same functions as Simple Pairing, and thus no ad-
ditional computational requirement is necessary.

7.3.2 Fixed and Variable PINs
The ACDHEKE protocol supports both fixed and variable

PINs. Variable PIN devices regenerates a PIN for each pair-
ing procedure and thus prevents an attacker from learning
the value. In contrast, fixed PIN devices use the same PIN
for all pairing procedures. Since fixed PINs are supported,
ACDHEKE provides protection against offline PIN cracking
to prevent attackers from learning the PIN.

A fixed PIN is appropriate for -/I device configurations,
for which the Just Works protocol is suitable. The fixed
PIN in the device must be preinstalled and kept secret. The
security of the ACDHEKE protocol for such scenarios re-
lies on the secrecy of this value. Moreover, the PIN must
be unique and nontrivial. It should be noted that the PIN
is used only once during the pairing procedure and is not
needed for subsequent authentication between those devices.
Therefore, there exists no need for a user to remember the
secret PIN (as opposed to, e.g., ATM cards where the PIN
is required for every usage). For subsequent pairing of other
devices with a fixed PIN device, the same PIN is used, which
is similar to fixed PIN device pairing in Bluetooth 2.0. How-
ever, in contrast to Bluetooth 2.0 [6], the PIN is not revealed
to an attacker after one pairing, and therefore, ACDHEKE
is still protected. To our knowledge no other solutions for
devices with limited output capabilities to achieve the same
level of security exist.

A variable PIN, on the other hand, is appropriate for I/I
and O/I device configurations, for which the Passkey Entry
protocol is suitable.

We argue that the use of fixed PINs should be restricted to
devices that lack output capabilities, and that variable PINs
should be used when possible since they achieve a higher
level of security.

7.4 Benefits
The benefits with the ACDHEKE protocol compared to

Just Works are improved security and protection against
MITM attacks. Compared to Passkey Entry the benefits are
improved security and protection against MITM when the
user reuses the PIN. Table 1 contains the benefits compared
to Just Works and Passkey Entry. Most importantly, the
number of messages exchanged over the wireless channel is
reduced from 82 to 6 in comparison with Passkey Entry.
Moreover, the PIN is not revealed after a pairing procedure.

The ACDHEKE protocol can replace the Passkey Entry
protocol by using variable PINs and replace the Just Works
protocol by using fixed PINs. The supported scenarios are
restricted to suit the ACDHEKE protocol, and therefore -/-
and -/O device configurations are not supported. To our
knowledge, these restrictions have no practical implications,
and all the usage scenarios on bluetooth.com [29] are still
possible with the ACDHEKE protocol.

7.5 Analysis of the Protocol in the Formal
Model

We have used ProVerif [31, 32], a cryptographic protocol
verifier developed by Bruno Blanchet, for formal analysis of
the protocol. It can be proved to be secure against an at-
tacker who cannot access the auxiliary channel. Chang and
Shmatikov used ProVerif [33] to perform a formal analysis
of Bluetooth device pairing, and ProVerif has also been used
to perform formal verification of other protocols [34, 35, 36].

A detailed description of ProVerif is found in [32], and
a brief description is as follows. In ProVerif, the protocol
to be verified is specified in a process calculus, which is an
extension of the π-calculus. Each role in the protocol is
represented by a separate process, and the complete proto-
col is constructed as a model with unbounded sessions of the
individual protocol role processes. These processes are auto-
matically translated by ProVerif into a set of Horn clauses,
which represent the protocol using abstract algebra. The
solving algorithm, which is sound but not complete, uses
the Horn clauses as input and determines what an attacker
can learn from protocol executions.

ProVerif uses two fundamental principles: the Dolev-Yao
attacker model, where the attacker has complete control of
the network and the cryptographic algorithms used, and per-
fect cryptography, where it is impossible to decrypt an en-
crypted message without knowing the decryption key.

We assume that the attacker cannot access the auxiliary
channel. To perform a MITM attack the attacker needs to
construct the same DH key or temporary DH key as A and
B, which would require knowledge of the PIN used. We
assume that the PIN is of low-entropy, and using the cap-
tured messages over the wireless channel an attacker could
attempt to bruteforce the PIN. Under this assumption, the
following properties are satisfied.

• An attacker cannot learn the value of PIN from the
messages exchanged.

• An attacker cannot learn the value of DHKEY or the
temporary Kab/Kba from the messaged exchanged.

This proof shows that the protocol is secure against an
attacker who can read, intercept, inject, and modify mes-
sages, as long as the attacker cannot access the auxiliary
channel. An attacker cannot learn the value of the PIN used

in the ACDHEKE protocol, and can therefore not perform
a successful MITM attack. Moreover, the attacker cannot
calculate the DH key or the temporary DH key used by A
and B both during and after the procedure.

8. FUTURE WORK
Using our proposed ACDHEKE authentication protocol,

secure authenticated pairing with devices with limited input
and output capabilities can be achieved. However, the fixed
PIN scenarios involves a weakness, and a way to establish a
strong secret in a device with insufficient input and output
capabilities is an area that requires further research. If an
attacker can learn the value of the fixed PIN, he can compro-
mise that device. Therefore, it is interesting to investigate
the possibilities of using variable PINs for -/I device config-
urations. For example, if the PIN is generated the first time
the device is used, the PIN must be revealed to the device
owner somehow. This is not trivial considering the limited
output interface. For example, for headsets, since a six digit
number cannot be displayed, presenting the six digit num-
ber through the audio speaker could serve as an alternative.
However, this method would potentially involve new hard-
ware and extra costs. Other alternatives are to reset the
PIN to a certain factory-default value by pressing a reset
button or to set the PIN to a value of the owner’s choice.
Once again, given the limited input and output capabilities,
these alternatives must be properly investigated.

9. CONCLUSION
We have proposed an auxiliary channel Diffie-Hellman en-

crypted key-exchange authentication scheme to establish a
PIN-based secure authentication between two previously un-
known devices. The key exchange creates a high-entropy
shared key from a low-entropy PIN that is transferred over
an auxiliary channel. The high-entropy key is then used to
verify that the two involved devices possess the exchanged
public key values. The scheme protects against MITM at-
tacks since only a device that knows the PIN can perform the
authenticated and encrypted key exchange. In addition, it
provides protection against passive eavesdropping, including
offline PIN cracking, due to the random temporary public
keys involved in the key exchange.

In WPANs, establishing trust between previously unknown
devices is both necessary and important. We have adopted
our authentication scheme to Bluetooth and designed an
ACDHEKE authentication protocol that can replace the
Simple Pairing Just Works and Passkey Entry protocols.
Moreover, our proposed protocol is substantially more se-
cure than the current Just Works protocol and reduces the
number of messages exchanged compared to the Passkey En-
try protocol while maintaining the usability and convenience
level for the user.

10. REFERENCES
[1] Seyit A. Camtepe and Bent Yener. Key Distribution

Mechanisms for Wireless Sensor Networks: A survey.
Technical report, Rensselaer Polytechnic Institute,
2005.

[2] Bluetooth SIG. Bluetooth Specification Version 2.0 +
EDR, 2004.

[3] Dennis K. Nilsson, Phillip A. Porras, and Erland
Jonsson. How to Secure Bluetooth-Based Pico

Networks. In The 26th International Conference on
Computer Safety, Reliability and Security
(SAFECOMP), Nuremberg, Germany, 2007.

[4] Albert Levi, Erhan Cetintas, Murat Aydos, Cetin K.
Koc, and M. U. Caglayan. Relay Attacks on Bluetooth
Authentication and Solutions. In ISCIS, LNCS 3280,
Kemer-Antalya, Turkey, 2004.

[5] BSI. Bluetooth, Threats and Security Measures.
Technical report, BSI, 2003.

[6] Yaniv Shaked and Avishai Wool. Cracking the
Bluetooth PIN. In 3rd USENIX/ACM Conf. Mobile
Systems, Applications, and Services (MobiSys),
Seattle, Washington, USA, 2005.

[7] Markus Jakobsson and Susanne Wetzel. Security
Weaknesses in Bluetooth. In CT-RSA, LNCS 2020,
2001.

[8] Bluetooth SIG. Bluetooth Specification Version 2.1 +
EDR, 2007.

[9] Dirk Balfanz, D. K. Smetters, Paul Stewart, and
H. Chi Wong. Talking To Strangers: Authentication in
ad-hoc wireless networks. In Symposium on Network
and Distributed Systems Security (NDSS), 2002.

[10] Frank Stajano and Ross Anderson. The Resurrecting
Duckling: Security issues for ad-hoc wireless networks.
In Security Protocols, 7th International Workshop
Proceedings, 1999.

[11] Mario Cagalj, Srdjan Capkun, and Jean-Pierre
Hubaux. Key Agreement in Peer-to-Peer Wireless
Networks. Proceedings of the IEEE Special Issue on
Cryptography and Security, 94(2):467–478, 2006.

[12] N. Asokan and Philip Ginzboorg. Key Agreement in
Ad Hoc Networks. Computer Communications,
23(17):1627–1637, 2000.

[13] Dennis K. Nilsson, Ulf E. Larson, and Erland Jonsson.
Unidirectional Auxiliary Channel Challenge-Response
Authentication. In Proceedings of the Seventh Annual
IEEE Wireless Telecommunications Symposium
(WTS), Pomona, CA, USA, 2008.

[14] Jaap-Henk Hoepman. The Ephemeral Pairing
Problem. In Financial Cryptography, Key West,
Florida, USA, 2004.

[15] Markus Jakobsson. Lecture Notes in I400/I590: Issues
in Security and Privacy. http:
//www.informatics.indiana.edu/markus/i400/.
Visited October, 2007.

[16] IEEE Standards. 802.15.4 Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs), 2003.

[17] ZigBee. ZigBee Alliance. http://www.zigbee.org.

[18] ZigBee Standards Organization. ZigBee Specification,
2006.

[19] Bluetooth SIG. Simple Pairing Whitepaper, 2006.

[20] Steven M. Bellovin and Michael Merritt. Encrypted
Key Exchange: Password-based protocols secure
against dictionary attacks. In IEEE Symposium on
Security and Privacy, pages 72–84, May 1992.

[21] Danny Dolev and Andrew C. Yao. On the Security of
Public Key Protocols. In IEEE 22nd Annual
Symposium on Foundations of Computer Science,
Stanford, CA, USA, 1981.

[22] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient
Mutual Data Authentication Using Manually

Authenticated Strings. Cryptology ePrint Archive,
Report 2005/424.

[23] Chun-Li Lin, Hung-Min Sun, and Tzonelih Hwang.
Efficient and Practical DHEKE Protocols. SIGOPS
Oper. Syst. Rev., 35(1):41–47, 2001.

[24] National Institute of Standards and Technology.
Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography.
NIST Special Publication 800-56A, March 2007.

[25] Jani Suomalainen, Jukka Valkonen, and N. Asokan.
Security Associations in Personal Networks: A
Comparative Analysis. In Security and Privacy in
Ad-hoc and Sensor Networks 4th European Workshop
(ESAS), Lecture Notes in Computer Science,
Cambridge, UK, 2007.

[26] Adrian Perrig, Robert Szewczyk, Victor Wen,
David E. Culler, and J. D. Tygar. SPINS: Security
protocols for sensor networks. In Mobile Computing
and Networking, pages 189–199, 2001.

[27] Chris Karlof, Naveen Sastry, and David Wagner.
TinySec: A link layer security architecture for wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd
International Conference on Embedded Networked
Sensor Systems, Baltimore, November 2004.

[28] Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil
Gligor. MiniSec: A secure sensor network
communication architecture. In IPSN ’07: Proceedings
of the 6th International Conference on Information
Processing in Sensor Networks, pages 479–488, New
York, NY, USA, 2007. ACM Press.

[29] bluetooth.com. Bluetooth Usage Scenarios for Play.
http://www.bluetooth.com/Bluetooth/Connect/

Play/Scenarios/, 2007.

[30] U.S. Department of Commerce/National Institute of
Standards and Technology. Digital Signature Standard
(DSS), 2000.

[31] Bruno Blanchet. Analysis of Cryptographic Protocols
in the Formal Model.
http://www.di.ens.fr/ blanchet/crypto-eng.html.

[32] Bruno Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In 14th IEEE
Computer Security Foundations Workshop
(CSFW-14), pages 82–96, Cape Breton, Nova Scotia,
Canada, June 2001. IEEE Computer Society.

[33] Richard Chang and Vitaly Shmatikov. Formal
Analysis of Authentication in Bluetooth Device
Pairing. In LICS/ICALP Workshop on Foundations of
Computer Security and Automated Reasoning for
Security Protocol Analysis (FCS-ARSPA), Wroclaw,
Poland, July 2007.

[34] Riccardo Bresciani. The ZRTP Protocol: Security
Considerations. Technical report, LSV, ENS Cachan,
France & Scuola Superiore Sant’Anna, Italy, 2007.

[35] Steve Kremer. Formal Verification of Cryptographic
Protocols. Invited tutorial, 7th School on Modelling
and Verifying Parallel Processes (MOVEP’06),
Bordeaux, France, June 2006.

[36] Erik Angelin. Verifying IKEv2 using ProVerif.
http://www.imit.kth.se/courses/2G1517/03-04/03-
04/Erik/IKEv2.pdf,
2004.

