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ABSTRACT
In this paper, we investigate the routing optimization problem in
wireless mesh networks. While existing works usually assume
static and known traffic demand, we emphasize that the actual traf-
fic is time-varying and difficult to measure. In light of this, we
alternatively pursue a stochastic optimization framework where the
expected network utility is maximized. For multi-path routing sce-
nario, we propose a stochastic programming approach which re-
quires no priori knowledge on the probabilistic distribution of the
traffic. For the single-path routing counterpart, we develop a learning-
based algorithm which provably converges to the global optimum
solution asymptotically.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Communi-
cations

General Terms
Algorithms, Design, Performance

Keywords
Wireless Mesh Networks, Routing, Learning Algorithms

1. INTRODUCTION
Wireless mesh networks provide last mile broadband Internet ac-

cess with low cost yet high bandwidth. The mesh routers com-
municate with each other via wireless links. Meanwhile, several
edge mesh routers provide wireless access to the client users where
all the traffic is directed to the gateway node. Due to the multi-
hop nature, the routing in wireless mesh networks is an important
and interesting topic and has attracted significant attention from the
community [1].
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However, the existing routing schemes in wireless mesh net-
works usually assume that the traffic demands aggregated at edge
routers are static and known. In practice, apparently, the instanta-
neous traffic demand may fluctuate dramatically due to the client
users’ behavior and the mobility of users. Therefore, the uncer-
tainty of the traffic demands at edge routers is not negligible and
needs to be considered meticulously in wireless mesh networks.

Traffic estimation is proposed as a feasible solution to harness
the traffic uncertainty. Several prediction models are proposed in
the literature [18, 20, 30]. However, we emphasize that the acquisi-
tion of accurate traffic information is by no means trivial and usu-
ally computationally expensive. Even worse yet, the estimation
techniques yield poor performance in a highly dynamic environ-
ment. Therefore, routing design in wireless mesh networks with
uncertain traffic demand is remarkably challenging.

To circumvent the burden of route recalculation, oblivious rout-
ing schemes are suggested [2, 16, 17, 24, 25]. A traffic-oblivious
routing protocol requires limited traffic information and achieves
worst-case performance guarantee. In other words, by sticking to
a fixed routing strategy, the worst-case performance is optimized.
Therefore, the instability and prohibitive overhead of rerouting are
avoided and the performance is acceptable if the traffic pattern varies
within a certain range. However, one noticeable drawback of obliv-
ious routing schemes is the computational complexity [25]. In ad-
dition, the optimization on the worst-case performance is usually
over-conservative. Also, limited knowledge is attained when the
traffic pattern varies drastically and exceeds the tolerance bound.
In light of these concerns, we propose a stochastic optimum rout-
ing strategy in wireless mesh networks where the expected network
utility is optimized, rather than the worst-case performance. Our
schemes differ from previous work in several aspects. First, our
algorithm does not require a priori knowledge of the traffic distri-
bution. Therefore, the computational overhead of traffic estimation
can be avoided. Secondly, our scheme does not require that the
traffic pattern varies within a certain range. Thirdly, our proposed
algorithms are amenable to decentralized implementations.

The remainder of this paper is organized as follows. Section 2
briefly outlines the related work. The system model used in this pa-
per is introduced in Section 3. The routing optimization problems
with multi-path and single-path routing constraints are investigated
in Section 4 and Section 5, respectively. A numerical example is
provided in Section 6 and Section 7 concludes this paper.

2. RELATED WORK
Routing plays a critical role in wireless mesh networks. In the

literature, the routing problem is usually formulated as an optimiza-
tion problem where heuristic or decomposition-based solutions are
proposed. The existing works usually assume that the traffic input
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from each edge router is static and known. Meanwhile, the empiri-
cal studies based on real traffic traces reveal that the instantaneous
traffic fluctuates from time to time and is difficult to predict. To
address the uncertainty of traffic demand in mesh networks, two
lines of research effort have been discussed. The first category,
which is in analogy of robust optimization techniques, achieves
optimal worst-case performance. Oblivious routing schemes fall
into this category. The second category, which is in analogy of
the general stochastic optimization techniques, alternatively pur-
sues the expected utility maximization [6], [29] [13–15]. Our work
falls into this category. In [14], the power scheduling problem with
time-varying channel is investigated. In [29], the impact of noisy
feedback is analyzed, where the traffic demand is assumed to be
sufficiently large and a rate control algorithm, based on the dual
decomposition approach, is implemented to adjust the ingress traf-
fic. Nevertheless, in our work, the traffic demand is dynamic and
may even appear zero sometime. Another related work is [6] where
the throughput maximization routing is considered. The traffic dy-
namic in wireless mesh networks is well addressed. However, the
authors assume the traffic statistics are known, i.e., the probability
distribution of random traffic demand is assumed to be a priori. In
our scheme, such information is not required, as will be clarified in
following sections.

3. MODEL

Internet
Gateway Node

Relay Router

Relay Router

Relay Router
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Figure 1: Wireless Mesh Network Topology.

We consider a wireless mesh network depicted in Figure 1. The
mesh network consists of several edge routers, intermediate relay
routers and a gateway node W which provides the connection to
the Internet. Each edge router is associated with a number of client
users. Denote the set of edge routers as M and the aggregated
traffic demand at the m-th edge router as zm. Naturally, zm is
a random variable which is determined by the behaviors of client
users. We assume that the instantaneous traffic demand at an edge
router forms a stationary stochastic process.

There are two types of routing protocols in the literature, i.e.,
arc-routing and path-routing. In arc-routing protocols, the deci-
sion variable is the amount of traffic allocated on each link of the
network, whereas the path-routing protocols adjust the fraction of
traffic allocated on each distinct path. We follow the latter approach
due to its practical merit [16]. For example, we can utilize the path
diversity provided by OSPF/IS-IS and MPLS techniques. More
specifically, OSPF divides the traffic evenly among all paths with
the same cost whereas MPLS enables more flexible manipulation

on the flows on all available paths. In our scenario, one edge router,
say m, has Pm acyclic paths to the gateway node W . The instan-
taneous traffic zm is distributed among all Pm paths and each path
possesses a fraction, denoted by rk

m where1 m = 1, · · · ,M and
k = 1, · · · ,Pm. We have

Pm∑

k=1

rk
m ≤ 1, ∀m ∈M. (1)

Define rm as the fraction vector and r = [r1, · · · , rM], which is
the decision variable in our optimization framework throughout the
paper. We define

δm =

Pm∑

k=1

rk
m, ∀m ∈M (2)

for notation succinctness.
We denote the set of wireless links in the mesh network as E .

We assume in this paper that a scheduling scheme is available for
the medium access where each link possesses a time share of the
channel access. For each link e ∈ E , there is a link cost, denoted by
le, which is a function of the instantaneous aggregated flow and the
achievable data rate of the link, denoted by fe and ce, respectively.
Note that ce is given by

ce = c̃e × γe (3)

where c̃e denotes the nominal capacity of the link and γe is the frac-
tion of time that link e is active following the scheduling. Without
loss of generality, we assume the power of each link is fixed.

Each edge router has a concave utility function, denoted by U(xm),
which reflects the degree of satisfaction by transmitting a flow of
xm = zm × δm. In light of the link costs, the surplus of the m-th
edge router, a.k.a., net reward, is given by

Om = Um(zm × δm)−
Pm∑

k=1

zmrk
m

∑

e∈P k
m

le(fe) (4)

where e ∈ P k
m represents all links along the k-th path of Pm. We

assume that the link cost function le(fe) is a non-decreasing and
differentiable function of fe. Two such well-known examples are

le(fe) =
1

ce − fe
(5)

which represents the average waiting time on link e, and

le(fe) =
fe

(ce − fe)ce
(6)

which reflects the average queueing time on link e, following a
model of M/M/1 [12]. Note that the cost is considered as +∞ if
fe ≥ ce.

Define a topology matrix Hm for the m-th edge router where the
element Hm

e,k = 1 represents that link e is on the k-th path of Pm

and zero otherwise. Therefore, we have

fe =

M∑
m=1

Pm∑

k=1

Hm
e,kzmrk

m. (7)

Note that in wireless mesh networks, the edge routers and relay
routers are usually static. Therefore, the topology matrix, i.e., Hm,
is a fixed binary matrix and can be acquired easily. However, the

1In this paper, we slightly abuse the notation by using the same
symbol for a set and its cardinality for notation succinctness.



values of fe, zm and le are random due the uncertain traffic de-
mand, which makes the routing problem more challenging. In Sec-
tion 4, we formulate the multi-path routing optimization problem
of wireless mesh networks in a stochastic programming framework
where a distributed algorithmic solution is derived. The single-path
routing scenarios are investigated in Section 5, where a learning-
based algorithm is introduced to achieve the global optimum solu-
tion asymptotically.

4. MULTI-PATH ROUTING SCENARIO
In this section, we consider the cases where multi-path routing

is allowed for fault tolerance and load balancing purpose, i.e., the
aggregated flow of each edge router is distributed among several
available paths.

In the network, each edge router has a surplus given by (4). From
the network’s perspective, our objective is to maximize the overall
surplus of the network, i.e.,

∑M
m=1 Om. However, due to the ran-

domness induced by the traffic demand uncertainty, the overall sur-
plus itself is a random variable. Therefore, we alternatively pursue
a stochastic optimum solution of r∗, which maximizes the expected
overall surplus of the network. Mathematically, the routing prob-
lem in the wireless mesh network is formulated as

max
r
E(

M∑
m=1

Om)

s.t.
E(fe) ≤ ce ∀e ∈ E (8)
Pm∑

k=1

rk
m ≤ 1 ∀m ∈M (9)

fe =

M∑
m=1

Pm∑

k=1

Hm
e,kzmrk

m ∀e ∈ E (10)

Om = Um(zm × δm)−
Pm∑

k=1

zmrk
m

∑

e∈P k
m

le(fe) ∀m ∈M

(11)

where E(.) is the expectation operator. We assume that the random
traffic demands of all edge routers can be discretized into arbitrar-
ily many yet finite states, where each state is represented by s ∈ S .
The time is slotted and within one slot, the traffic demands on all
edge routers correspond to one of the states and remain unchanged
within the current slot. Note that Om, fe, le and zm are all state-
dependent variables and hence we will add a superscript s in the
following formulations. Denote the stationary probability distri-
bution of state s as πs. We can rewrite the routing optimization
problem as

max
r

∑
s∈S

πs(

M∑
m=1

Os
m)

s.t.
∑
s∈S

πs(f
s
e ) ≤ ce ∀e ∈ E (12)

Pm∑

k=1

rk
m ≤ 1 ∀m ∈M (13)

fs
e =

M∑
m=1

Pm∑

k=1

Hm
e,kzs

mrk
m ∀e ∈ E (14)

Os
m = Um(zs

m × δm)−
Pm∑

k=1

zs
mrk

m

∑

e∈P k
m

lse(f
s
e ) ∀m ∈M (15)

We can verify that if the stationary probability distribution πs

is known as a priori, the optimization problem is a deterministic
convex optimization problem and the Slater’s condition is satis-
fied. However, the actual value of πs is either difficult to mea-
sure in practice, or needs significant computational overhead to es-
timate. Next, we propose a distributed solution which converges to
the global optimum solution yet requires no information about the
underlying probabilistic distribution.

We first obtain the Lagrangian as

L(r, λ, µ)

=
∑
s∈S

πs





∑
m∈M

Um(zs
m × δm)−

∑
m∈M

∑

k∈Pm

zs
mrk

m(
∑

e∈P k
m

lse(f
s
e ))





+
∑

m∈M
λm(1−

∑

k∈Pm

rk
m) +

∑
e∈E

µe(ce −
∑
s∈S

πsf
s
e )

=
∑
s∈S

πs

{ ∑
m∈M

(Um(zs
m × δm) + λm) +

∑
e∈E

µece

−
∑

m∈M

∑

k∈Pm

(zs
mrk

m(
∑

e∈P k
m

(lse(f
s
e ) + µe) + λmrk

m)



 (16)

Note that µ is the link congestion price similar as [4, 5, 10]. The
dual variables of λ ensure that the summation of fraction variables
is less or equal to unity. Define

Qs =sup
r

{ ∑
m∈M

(Um(zs
m × δm) + λm) +

∑
e∈E

µece

−
∑

m∈M

∑

k∈Pm

(zs
mrk

m(
∑

e∈P k
m

(lse(f
s
e ) + µe) + λmrk

m)




(17)

Therefore, the dual function is given by

g(λ, µ) =
∑
s∈S

πsQ
s where λ ≥ 0, µ ≥ 0. (18)

To achieve the minimum value of (18), or equivalently, to obtain
the stochastic optimum value of r∗, we utilize the stochastic primal-
dual approach [5]. The dual variables, i.e., λ and µ are updated as

λm(n + 1) = [λm(n)− αm(n)ζm(n)]+ ∀m ∈M (19)
µe(n + 1) = [µe(n)− αe(n)ξe(n)]+ ∀e ∈ E (20)



where [x]+ denotes max(x, 0). Similarly, the primal variable, i.e.,
rk

m, is updated as

rk
m(n + 1) = [rk

m(n) + αm,k(n)ηm,k(n)]10 (21)

where [x]ba denotes max(min(b, x), a) and we use symbol α(n)
to represent the corresponding stepsizes, i.e., αm(n), αe(n) and
αm,k(n), generally. Note that the instantaneous link flow is con-
sidered as fixed when the fraction variable rk

m is updated.
The stochastic subgradients, i.e., ζm(n), ξe(n) and ηm,k(n), can

be attained by the Danskin’s theorem [3], following a similar ap-
proach as in [13, 14]

ζm(n) = 1−
∑

k∈Pm

rk
m∀m ∈M (22)

ξe(n) = ce −
∑

m∈M

∑

k∈Pm

zs
mrk

mHm
e,k ∀e ∈ E (23)

ηm,k(n) = −[λm + zs
m(

∑

e∈P k
m

(lse + µe))]∀m ∈M. (24)

The distributed implementation of the algorithm is summarized
as follows.

Algorithm:

Repeat:

- Each link measures

ξe(n) = ce −
∑

m∈M

∑

k∈Pm

zs
mrk

mHm
e,k. (25)

- Each link updates the link congestion price as

µe(n + 1) = [µe(n)− αe(n)ξe(n)]+. (26)

- Each edge router measures

ζm(n) = 1−
∑

k∈Pm

rk
m (27)

and

ηm,k(n) = −[λm + zs
m(

∑

e∈P k
m

(lse + µe))]. (28)

- Each edge router updates the fraction variable as

rk
m(n + 1) = [rk

m(n) + αm,k(n)ηm,k(n)]10. (29)

- Each edge router updates the dual variable λ as

λm(n + 1) = [λm(n)− αm(n)ζm(n)]+. (30)

Until:

- The difference between successive iterations, i.e.,

ε = |rk
m(n + 1)− rk

m(n)| (31)

is within a predefined convergence threshold ε′.

End
Note that the information needed in the algorithm is either lo-

cally attainable or acquirable by the feedback along the paths. There-
fore, the algorithm is amenable to distributed implementation. The
convergence of the algorithm follows the results of [29] and thus
we provide the following theorem without proof.

THEOREM 1. The algorithm converges to the global optimum
with probability one, provided that the following constraints are
satisfied [9,29]: α(n) > 0,

∑∞
n=0 α(n) = ∞, limn→∞ α(n) = 0

and
∑∞

n=0(α(n))2 < ∞, ∀m ∈ M and e ∈ E , where α gener-
ally represents all stepsize parameters in (19), (20) and (21).

5. SINGLE-PATH ROUTING SCENARIO
In this section, we consider a wireless mesh network where single-

path routing strategy is adopted. Therefore, the fraction variable rk
m

is a binary number in this scenario. More specifically, rk
m = 1 de-

notes that the m-th edge router selects the k-th path to deliver traf-
fic and the fraction variables on other paths are zeros. The integral
property of the fraction variables complicates the routing optimiza-
tion problem. We first express the routing optimization problem,
with single path routing constraint, as

max
r

∑
s∈S

πs(

M∑
m=1

Os
m)

s.t.
∑
s∈S

πs(f
s
e ) ≤ ce ∀e ∈ E (32)

Pm∑

k=1

rk
m ≤ 1 ∀m ∈M (33)

fs
e =

M∑
m=1

Pm∑

k=1

Hm
e,kzs

mrk
m ∀e ∈ E (34)

Os
m = Um(zs

m × δm)−
Pm∑

k=1

zs
mrk

m

∑

e∈P k
m

lse(f
s
e ) ∀m ∈M

(35)

rk
m ∈ {0, 1} (36)

Apparently, this is a stochastic integer programming which is diffi-
cult and computationally demanding to solve. For a survey on the
algorithmic solutions of stochastic integer programming problems,
refer to [23]. Distinguishing from previous work, we next propose
a learning-based algorithm, which asymptotically converges to the
global optimum of the aforementioned stochastic integer program-
ming problem. First, we briefly overview the learning automata
technique, based on which our algorithm is proposed.

5.1 Learning Automata
Learning automata techniques have been broadly investigated in

the networking community [26] [8] [7] [11] [27] [19]. As one of
the stochastic learning schemes, learning automata was first intro-
duced in the control community for stochastic systems. As depicted
in Figure 2, the basic single user scenario where learning automata
techniques can be applied consists of a random environment, a set
of finite actions and a rational decision maker. At a time instance,
the decision maker selects one of the actions according to the selec-
tion probability vector p. The random environment responds with
a stochastic output based on which the learning algorithm updates
the selection probability vector and the iteration continues. In a sta-
tionary random environment, the standard learning automata algo-
rithms asymptotically converge to an action which is stochastically
optimal in the sense that the expected objective is maximized [22].

In our scenario, each edge router is an independent decision
maker. The action space corresponds to the available paths of each
edge router. Meanwhile, the random environment is the uncertain
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Figure 2: Structure of A Single User Learning Automata.

traffic demands at all edge routers jointly. To incorporate a multi-
agent learning scenario, we form all M edge routers as a learning
team, which targets to the stochastic optimum solution collectively.
In addition, we utilize the gateway node W of the wireless mesh
network as a teacher. After each decision maker selects an action,
the gateway node multicasts a feedback signal, denoted by β, based
on which each edge router updates the selection probability vector
and the algorithm iterates until convergence.

5.2 Learning-based Algorithm
Each edge router, say m, maintains a selection probability vector

pm and an inner-state vector um. We use the notation (m, k) to
indicate the k-th path of the m-th edge router, i.e., the k-th action
from the action space of the decision maker m.

At the initialization phase, the value of um is randomly gener-
ated and pm = [1/Pm, · · · , 1/Pm]. At time instance n, the algo-
rithm executed at the m-th edge router is described as follows.

Algorithm:

Repeat:

- Selects a routing path from Pm, say j, according to the se-
lection probability vector pm(n) and starts the transmission.

- After receiving the feedback signal from the gateway node
W , denoted by β(n), the inner state vector um is updated as

um,k(n + 1) =

[
um,k(n) + θ(n)β(n)(1− eum,k∑

k∈Pm
eum,k

)

+
√

θ(n)ωm,k(n)
]L
0

, for k = j (37)

um,k(n + 1) =
[
um,k(n) +

√
θ(n)ωm,k(n)

]L
0

for k 6= j

(38)

Recall that j denotes the selected action, i.e., the chosen path.

- The selection probability vector pm is then updated, follow-
ing

pm,k =
eum,k∑

k∈Pm
eum,k

∀k ∈ Pm. (39)

Until:

- max(pm(n)) > B where B is a predefined convergence
threshold.

In the algorithm, θ(n) is the learning parameter of the algorithm
satisfying 0 < θ(n) < 1. L is a positive number which keeps the
inner state value bounded. The sequence of ωm,k(n) is a set of
random variables with zero mean and a variance of σ2(n). The
global feedback signal β(n) is calculated by the gateway node W
as

β(n) =

∑M
m=1 Os

m

J (40)

where J is a sufficiently large number to normalize the output. In
other words, the value of β(n) is deliberately tuned within [0, 1].
We emphasize that the introduced noise parameter ω restrains the
algorithm from being trapped in an inefficient equilibrium. Note
that the value of β(n) can be informed by efficient multicast al-
gorithms, e.g., [28], initiated by the gateway node W . The team
learning is then executed in a decentralized fashion. The steady
state behavior of the learning-based algorithm is given in the fol-
lowing theorem.

THEOREM 2. The proposed learning-based algorithm converges
to the global optimum solution of the single-path routing optimiza-
tion problem with probability one, if the following conditions are
satisfied [21]: (1) limn→∞ θ(n) = 0 and (2) limn→∞ σ(n) = 0.

The proof of the theorem benefits from the stochastic differen-
tial equation (SDE) approach which follows similar lines as [21]
and thus omitted due to the page limit. In the next section, we
will demonstrate the efficacy of our algorithmic approaches via a
numerical example, for both multi-path and single-path scenarios.

6. NUMERICAL EXAMPLE
We consider an illustrative wireless mesh network shown in Fig-

ure 3. Among all available paths, we assign a set of paths for each
edge router and the corresponding links2 are shown in Figure 3.

1

2 3 4

5 6 7

Gateway

Relay Router

Edge Router

TrafficTrafficTraffic

Figure 3: Illustration of Available Paths.

The gateway node is indicated as node 1. Three edge routers are
marked as node 5, 6 and 7, respectively, which consistently deliver
the aggregated traffic to the gateway node. The available paths for
each edge router are provided in Table I.

Note that each edge router has two acyclic paths to reach the des-
tination. The link cost function follows (5). The traffic is randomly
generated at each edge router with Gaussian distribution. The mean
2Note that the actual network topology can be much larger.



Table 1: Available paths for each edge router.
Edge router 5 P 1

5 : {5 → 2 → 1}
P 2

5 : {5 → 3 → 1}
Edge router 6 P 1

6 : {6 → 2 → 1}
P 2

6 : {6 → 4 → 1}
Edge router 7 P 1

7 : {7 → 3 → 1}
P 2

7 : {7 → 4 → 1}

is 5 and the variance is 1. In addition, we limit the traffic to be in the
range of [0, 10]. We emphasize that these settings do not involve
any loss of generality. By setting the traffic of each router with
identical statistical characteristics, the stochastic optimum solution
coincides with the load-balancing solution. The computational dif-
ficulty of calculating the global optimum of the stochastic integer
programming problem can be avoided. Therefore, we can easily
verify the efficacy of our proposed algorithms. In addition, the ac-
tual achievable data rate is a function of the transmission power
and the scheduling algorithm. Without loss of generality, we as-
sume that the achievable data rate of each link is 10. We utilize the
same stepsize for the stochastic gradient approach in (19), (20) and
(21), which is inversely proportional to the number of iterations.

We first investigate the multi-path routing scenario where each
edge router can divide the incoming traffic on two available paths.
Restated, it is straightforward to verify that, given the current set-
tings of link achievable rates and statistical characteristics, the stochas-
tic optimum solution coincides with the load-balancing solution. In
other words, the solution of r1

5 = r2
5 = r1

6 = r2
6 = r1

7 = r2
7 = 1

2
maximizes the expected overall network surplus and thus solves
the routing optimization problem. This observation is verified in
Figure 4.
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Figure 4: Convergence of Fraction Variables.

Figure 4 depicts the evolution of 6 fraction variables of edge
routers where pair m−k denotes rk

m. At initialization, we manually
set the fraction variables as r1

5 = 1, r2
5 = 0, r1

6 = 1, r2
6 = 0 and

r1
7 = 0, r2

7 = 1 which is remarkably biased. Then, the distributed
algorithm derived in Section 4 is executed. As pictorially shown
by Figure 4, all 6 fraction variables evolve with the iterations and
converge to the stochastic optimum solution gradually.

Next, we investigate the single-path routing scenario. The net-
work settings are the same as in multi-path scenarios except that
each edge router can only select one of the available paths to trans-

mit. The learning parameter is set to θ(n) = 1/n where n is
the index of the current iteration. The noise parameters are zero
mean Gaussian random variables with diminishing variances, e.g.,
σ(n) = 1/n. The bounding parameter L is 100 and J is 100.
The convergence threshold B is 0.9999. The learning-based algo-
rithm is executed until each edge router sticks to one of the avail-
able routing paths. The convergence behavior of the learning-based
algorithm is demonstrated in Figure 5.
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Figure 5: Convergence of Selection Probability Vectors.

In Figure 5, we denote pair m−k as the probability that the m-th
edge router picks the k-th path for next iteration. For example, 5−1
represents the probability that edge router 5 selects the first path,
i.e., P 1

5 . As illustrated in Figure 5, 5− 1, 6− 2 and 7− 1 promptly
approach to unity while others diminish to null. From Figure 3,
it is apparent that such a routing strategy is indeed a global opti-
mum solution of the routing optimization problem with single-path
routing constraints. The learning-based algorithm finds this global
optimum solution effectively. Note that this routing strategy is not
the only global optimum solution. For instance, (p2

5 = 1, p1
6 = 1,

p2
7 = 1) is another global optimum solution due to the statistical

symmetry of the network. By adjusting the initial conditions, the
learning algorithm finds other global optimum routing strategies as
well. Duplicate results are omitted.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we consider the routing optimization problem in

wireless mesh networks under uncertain traffic demands. For multi-
path routing scenario, we investigate the problem in a stochastic
programming framework and a distributed algorithmic solution is
derived. For the single-path routing scenario, the problem is formu-
lated as a stochastic integer programming where a learning-based
algorithm is proposed.

In our work, we consider a single gateway in the wireless mesh
network. The extension to the multiple gateway scenarios remains
as future research. In addition, the analysis for the performance
of our schemes under non-stationary traffic demand is challenging
and needs further investigation.
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