
A Mechanism of Automated Monitoring Deployment in
Grid Environment

Yinfeng Wang
Postdoctoral Research Fellow

of Department of Computer Science,
Hong Kong Baptist University

+852-34115972

yfwang@comp.hkbu.edu.hk

Kwang Mong Sim
Professor of Department of Computer
Science, Hong Kong Baptist University

Kowloon Tong, Kowloon
+852-34115818

bsim@comp.hkbu.edu.hk

Xiaoshe Dong
Professor of Department of Computer

Science,Xi’an Jiaotong Univesity
Shannxi,Xi’an

+86-29-82663951

xsdong@mail.xjtu.edu.cn

ABSTRACT
Constructing monitoring systems beforehand cannot satisfy the
requirement of dynamically organizing resources. This paper
describes a script-based approach to automate the deployment of
grid monitoring service components. An automated deployment
monitoring mechanism uses the information of dynamically
joined nodes to deploy system components, which avoids
potential errors and inconvenience by manual deployment. The
mechanism is Grid Monitoring Architecture compliant, and
provides user-defined XML interfaces that is scalable and
integrates with existing grid platforms and monitoring systems
smoothly. To decrease the deployment complexity, this paper
proposes an N-ary-tree based algorithm that reduces the
automated deployment complexity from linearity rate to
logarithm and provides more than 10 times improvement on
deployment time. Empirical results show that the automated
deployment monitoring mechanism can rapidly deploy
monitoring services, and monitors heterogeneous and dynamic
grid resources efficiently.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

D.4.8 [Performance]: Monitors

General Terms
Management, design

Keywords
Automated Deployment, Grid Resource Management, Monitoring
Service.

1. INTRODUCTION
GRID monitoring is the act of collecting and providing grid
resource status information that is used to facilitate system
management, fault detection and performance optimization. Grid
resources can potentially be heterogeneous and distributed. In
service oriented computing environments, the resources are
encapsulated into services to decrease the interoperation
complexity and service interoperation based on Open Grid
Service Architecture (OGSA) [1] and Web Services Resource
Framework (WSRF) provide user-transparent access to resources.
Open architectures and common standards including Web
Services [2], XML [3], WSDL, SOAP and SLA, meet the grid
requirements as the infrastructure of service oriented computing
[4], which helps abstract and organize the resources to form the
uniform resource view [1].

 In service oriented computing environments, dynamic formation
of Virtual Organization (VO), and dynamic organization and
management of the resources are the key issue to guarantee the
Quality of Service for grid resource management. Due to the
dynamic nature of Grid computing systems, monitoring and
scheduling are indispensable to dynamic resource organization.
Following the discovery of resources for task execution, grid
computing systems need mechanisms to flexibly monitor the
resources to enforce automatic quality control [5] and to satisfy
scheduling requirements. Given these requirements, a Grid
monitoring system needs to perform automated deployment of
monitoring services on new-entry resources. Encapsulating
monitoring functions as services enable system functions to be
extended more freely. On the foundation of the automated
deployment monitoring service, we optimize the scalability of the
system further, working on the policy for automated deployment
and developing a platform-independent mechanism of an
Automated Monitoring Deployment system (AMDs), which
already enables automated deployment of monitoring services on
Linux and AIX operating systems.

2. RELATED WORK Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Qshine08 July 28–31, 2008, Hong Kong, China.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2.1 Existing Systems Review
Global Grid Forum's Grid Monitoring Architecture (GMA) [6]
has been widely accepted as a standard for Grid monitoring
systems. GMA defines the relationships among Producers,
Consumer and Directory Service. However, Directory Service
does not provide a clear definition on data pattern, query language

peri
Callout

peri
Callout

peri
Typewriter
QShine 2008, July 28-31, 2008, Hong Kong, Hong Kong.

Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.3814

peri
Typewriter

peri
Typewriter

and transport protocol. In the Globus Toolkit 4.0, MDS [7] is a
WS-based Grid monitoring system. It implements the index
service (registry and cache) and the trigger service based on the
common aggregator framework in WSRF. The function of
Achieve that the two services, information providers and Clients
(WebMDS) have implemented is an implementation of the GMA.
In addition, Relation Grid Monitoring Architecture (R-GMA) [8]
defines the data pattern of the monitoring information, query
language and the function of Directory Service.

 In the field of cluster monitoring, PARMON [9] is a C/S
architecture of monitoring system. The customer can obtain real-
time information of a set of fixed-nodes from the server and
appoints a supervision node. SCMS [10] is an extensible
management tool of the Beowulf cluster, it can help customer
monitoring, inquiring system information, maintaining
configuration, etc. SuperMon [11] is a monitoring system that has
a hierarchy architecture. It needs to first install kernel module in
each node, then gathers information Point-to-Point. It can divide
nodes into groups to collect supervision information.

 Ganglia [12] is a scalable distributed monitoring system. It is
based on a hierarchical design that uses a multicast-based
listen/announce protocol within clusters and a tree of point-to-
point connections among representative cluster nodes to federate
clusters and aggregate their states. It satisfies the requirement of
monitoring multi-clusters. However, when we want to monitor a
new cluster, we must manually install Ganglia on every node by
configuring the environment, compiling the source codes and
executing a make command. In large-scale clusters, the efforts to
deploy monitoring system in this way would be considerable.

 The information to monitor includes "latest-state", "continuous"
and "history" [8]. To effectively decrease the data transmitted,
GridEye [13] studies the relationship between the resource
information of monitoring service and the information caching.
ChinaGrid SuperVision (CGSV) [14] adopts the
Producer/Consumer/Register Model. Based on JAVA and Web
Service, it builds a three-tier monitoring and management
architecture comprising "monitoring information source,
information together and user view". Each tier can implement
different monitoring functions through deploying and compositing
different services.

2.2 Our Contributions
Existing resource monitoring systems have the following features:

1) Construction of monitoring environments is mostly a
manual, ad hoc process beforehand;

2) Have high complexity to update or add supervision nodes but
lack scalability;

3) High-cost of update, fault-tolerant and maintenance of
monitoring service in distributed environments.

 In the context of service computing environment, service or
resource tend to have dynamic binding as the job execution. To
respond to a variety of demands of the service, the VO member
changes dynamically. These characteristics put forward a higher
request to deploy the monitoring service which satisfies the
request of dynamically organizing resources in Grids.

 Using an XML-defined-interface approach, this article presents
a script-based automated deployment mechanism to deploy
resource monitoring service to lower the complexity of the
supervision management effectively, ensure the system is
scalable, and enables the monitoring of the dynamically organized
resources without having to construct monitoring environments in
advance. Moreover, we also exploit the system availability and
the method of encapsulating monitoring service for integration
with grid platforms as well as how to extend monitoring interface,
and finally provide an evaluation of the system performance
through experimentation.

3. AUTOMATED DEPLOYMENT OF
MONITORING SERVICE
Given the heterogeneity among nodes in Grid computing systems,
supporting the interoperability between services or between
services and resources is an essential issue. The dynamic and
interactive features of Grids require that monitoring services can
1) monitor the dynamically composed VOs, 2) organize and
manage the dynamic resources, 3) obtain the required state
information of the resources, and 4) support the interaction and
management of the upper layer services. To address these issues,
a Grid monitoring system requires the function of an automated
deployment of monitoring service on newly-joined resources.

3.1 The Architecture of AMDs
As shown in Figure1, AMDs is divided into two logical layers:
the data layer and the collective layer. The data layer gathers the
state information of resources of each node in every cluster. To
simplify the data layer, a single monitoring node is treated as a
cluster with one node. In the collective layer, a Global
Information Collector (GIC) gathers the state information of the
resources of every cluster.

Global
Information

Collector
（ GIC）

System
Component
Container
（ SCC）

Daemon

ManagerPortal
Protocol Database

……
Probe

Local Information
Collector（ LIC）Daemon

……
Probe

Local Information
Collector（ LIC） Daemon

……

…

CAP CAP

Figure 1. The Architecture of AMD system [17]

Table 1. List of modules function

Module name Function

Global
Information
Collector (GIC)

Gathers the resource state information of every
cluster in a round-robin manner processes the state
information and stores it.

Local Information
Collector (LIC)

Gathers the state information of the resources of the
cluster on which LIC is running, and listens to the
requests from GIC.

Probe A script deployed in a node. The Probe waits for
the request from LIC. When the request arrives, it
immediately gathers the state information of the
node, and sends the state information in XML
format to LIC.

Daemon Monitors other system components running in
AMDs. It uses heartbeat information to check the
status of each component. If it detects a failed
component, it will restore the failed component

Manager Implements the function such as the automatic
deployment of system components on newly-joined
resources. Administrators can also modify the
system configuration through the Manager.

Portal The Web interface of AMDs. Via the Portal, we
can view the current and historical state
information of the resources. The Portal also
provides the management interface implemented by
the Manager component. In addition, the Portal can
be encapsulated as a service and also can be
published in the grid environment. AMDs is
compliant with GMA architecture and supports
different administrative domains to use the
monitoring service through the proxy.

Component Auto-
deploy Proxy
(CAP)

CAP is a system component that performs the
automatic deployment of other system components
on each newly-joined cluster.

System
Component
Container (SCC)

SCC is a container that maintains the system
component and the corresponding configuration
files. It is implemented based on the FTP protocol.
When deploying the system components, CAP
communicates with SCC and downloads the
required system components via the FTP protocol.

Database Stores the state information gathered from every
cluster and the configuration of every cluster

 The Daemons have two levels: the local daemons, which
ensure that the system components of the local cluster are
running, and the global daemon, which ensures the core
components of AMDs (e.g., GIC) are running. The global daemon
monitors every local daemon and ensures they are functional. The
global daemon and the Manager monitor each other. If the global
daemon failed, the Manager will reset it.

3.2 Flow of Automated Deployment System
Module
After startup, AMDs listens to the request for deployment. When
accepting an Administrator's deployment request or a resource's
(e.g., a cluster) request to join the grid platform, AMDs will start
a service thread, which can choose the different service approach
based on different requests. The service thread starts the
automatic deployment after it receives the configuration
information for deployment. Figure2 shows the process of
automated deployment.

 Based on the deployment information of the newly-joined
resources, the automated deployment process of system
components is as follows:

1) Deploying system components. This step is divided into two
phases: a) deploying CAP to the front-end machine, and b)
starting CAP. According to the deployment configuration
file, CAP can generate one N-ary tree source from the front-

end machine and the subnet of the cluster. Depending on N-
ary tree structure, CAP completes the deployment of system
components. All the required components are downloaded
from SCC.

2) Inspecting of other local resource monitoring systems. CAP
inspects whether other local resource monitoring systems
exist. If so, LIC obtains the state information of resources
from the existing local resource monitoring system prior.
Currently, AMDs only supports Ganglia.

3) Generating the configuration file. After deployment, CAP
generates the configuration file based on the result of
deployment. The configuration file contains information of
configurations required by each component as well as other
useful information, such as the SCC's IP address, and port
number. In case any of the system components fail, AMDs
will restore the component based on the configuration file.

4) Starting the LIC. CAP launches the LIC and the local
daemon into execution. When started, LIC immediately
gathers the state information of the resources based on the
deployment information of the configuration file, and returns
the deployment result.

Dissatisfy

Existing system
components?

Run Local Monitor

Check local
running configure

Login resource
provider

Deploy components by
specific flow

Create deploy-config.xml

Return deployment result

System
deployment

failure

Y

N
Login
failure

Login success

Satisfy

Set priority
Deploy CAP

Figure 2. The process of automated deployment

 If the deployment succeeds, the Manager will notify the GIC
that there is a newly-joined cluster, and sends the deployment
result to the GIC. The GIC then updates the list of monitoring
clusters, and adds the newly-joined cluster to the list. From this
point on the GIC will gather the state information of the resource
of the newly-joined cluster.

3.3 Obtain Information of Newly-joined
Clusters
Before automatic deployment of monitoring service system
components on a cluster, the basic information of the cluster
should be provided. This information can be added by the
administrator or obtained from cluster registration. The newly-
joined cluster needs to supply information that could be

represented by the following tuple:

 type(N am e O S ,Front-IP ,

 Login<Protocal,U sernam e,Passw ord> ,
 Intall<N ode,Path)

In form aiton = < >

>
 The information includes type of cluster operating system, IP
address of Front-end machine (like a bridge from other systems to
the cluster), hostname of each node, installation path, etc.
Additionally, the resource provider needs to assign the rights for
the monitoring service to ensure resource security. The new
cluster only needs to offer a user account with common user's
privilege to complete the automated deployment of system
components. The system determines the type of Probe to be used
to deploy system components and builds the new cluster's
automatic deployment configuration file according to the
information of the newly-joined cluster.

4. ENCAPSULATE THE MONITORING
SERVICE
Using AMDs, complete system monitoring components
deployment can overcome the difficulty of having to install real-
time monitoring service in geographically-distributed
environments. Furthermore, customers can choose a suitable
automated deployment service to satisfy local management
policies, and resolve the complexity of maintenance cost in the
wide distributed open circumvents.

4.1 Encapsulate the Proxy Service
Adopting the tools such as Globus [15] or other grid develop
studio, we can encapsulate the monitoring service into Resource
Monitoring service proxy (RscMproxy), and deploying it at the
portal. The objects of the service proxy are the commands that
can be executed at the host node such as netstat, and Ping. The
executable program, Java Class can be encapsulated into the
service by writing an execute program shell script and integrated
with embedded executable contents. The encapsulated monitoring
service proxy process is shown in Figure 3.

Figure 3. Encapsulate the monitoring service process

1) Write service executable script. Define the script
runRscMProxy.sh as follows:

a. #!/bin/sh
b. java RscMProxy.class $1 $2 $3

2) $1, $2, $3 are the parameters for running the
RscMProxy.class. $1 defines the monitored cluster, $2
defines appointed node, and $3 defines which kind of
resources status type need view.

3) Encapsulate service. a) define the service name: RscMProxy;
b) define service execute parameters; and c) upload script
runRscMProxy.sh. Finally, the grid platform will
automatically complete the service register.

4) Upload monitoring service proxy (RscMProxy.class) to the
location of runRscMProxy.sh.

5) Grant the script executable rights. If script cannot execute,
the access of this service will fail. Hence, the monitoring
service needs some execute rights.

4.2 Extensible Probe Interface
To support different heterogeneous resources integration, AMDs
provides an extensible XML-based probe interface. Various probe
script for heterogeneous resources can be extended as follows:

1) By providing a unified XML interface for probes, local
administrators can write or extend existing probes, then
continue to extend collector and parser interface functions
according to resource status type;

2) Supporting present local monitoring systems to obtain
information from Ganglia as shown in Figure 3;

3) If no probe matches the node that joins recently, the local
AMDs will discover suitable components released in other
grid environment portals, and add probes in local system
through the monitoring proxy service;

4) According to the type and version of the OS running on the
newly-joined cluster, ADMs determines the type of probe
that is used to deploy system components and build the new
cluster's automated deployment configuration file.

5. PERFORMANCE ANALYSIS AND
EVALUATION

5.1 Analysis and Optimization
The clusters usually have many host nodes which share reliable
private network connections and use homogenous operating
systems. When a cluster wants to join the monitoring system, all
its nodes need to deploy same monitoring components. Hence, the
group of nodes can be treated as tree-like topology. The topology
or the ordering of the tree can be obtained by the front-end
machine and the cluster's connection network. Consequently, a
node may represent a separate data structure or a tree of its own.

 Starting from the root node, every internal node takes charge of
the deployment of its child nodes through the Component Auto-
deployment Proxy (CAP) function. Although the multicast
function is always disabled for security reasons, if the router (or
switch) in the cluster supports multicast routing, the deployment
traffic cost will be reduced by simultaneously delivering a single
stream of components to group nodes.

 The procedure of optimized ADMs deployment is detailed in
the N-ary-Tree based Algorithm.

Algorithm name: N-ary-Tree based automated deploy
algorithm
Input: Deploy component node topology, information of
 Newly-joined Clusters
Output: Complete the component deployment cover the N-ary

 Tree topology
String [] monitorHosts; // Record all Hosts name
N： The N-ary of the nodes
Void AutoDeploy (index)
Begin:
1) { //Each non-leaf node using multithread to deploy its

 //child node concurrently;
2) int startChild, endChild;
3) startChild = (index - 1) * N + 2; //N-ary tree
4) endChild = index * N + 1;
5) //Deploy the child node
6) for (int i = startChild; i <= endChild; i++)
7) {
8) if (isLeaf(i)) // this node is the leaf node
9) {
10) Create deploy Probe shell commands based on the
 information of Newly-joined Clusters;
11) Start thread, execute shell commands, deploy
 Probe at child node i;
12) }
13) else // not the leaf node
14) {
15) Create deploy CAP proxy and Probe shell commands
 based on the information of Newly-joined Clusters;
16) Start thread, execute shell commands, deploy Probe
 at child node i;
17) Start CAP, using AutoDeploy method deploy the
 child nodes of the node i;
18) }
19) } //end for
20) } // End deployment
End

 If a lot of nodes are deployed concurrently in one large-scale
cluster, the CAP node will have performance bottleneck. The
deployment time for monitoring components can be reduced
considerably by 1) adopting the N-ary tree automated deployment
algorithm to completely automate the components deployment
and 2) selecting a reasonable value of the parameter N to
construct a N-ary tree by considering the sum of the nodes and its
subnets.

 The deploying time includes 3 periods: deploying front-end
machine; deploying CAP and probe at non-leaf nodes; deploying
probe at leaf-nodes. The AMDs deploying time is given by:

(1)autodeploy front N leaf leafT T T T−= + +

Since every internal node needs to deploy the CAP module, the
height of a full N-ary tree is , Hence, it follows
that the deploying time formula for AMDs is:

⎣ ⎦log 1
n

sum +

⎣ ⎦ ⎣ ⎦log (log 1) (2)
front n CAP n probe

T T T Tsum sum= × + ++ ×

 If concurrent requests arrive, the automated deployment
service will generate corresponding threads to handle these
requests. Since there is no Write operation during download, so
there is no critical section of the process. After validating the
corresponding request, the thread starts deploying system
components.

 Using N-ary-Tree based algorithm, we have the
complexity N(log)Sumο . Thus, AMDs can scale well and
effectively deploy monitoring services within large-scale clusters
and grid environments.

5.2 Test Environment
The tests are based on the High Performance Computing
Environment at Xi'an Jiaotong University. The test environment
includes IBM workstation cluster, AIX/RS6000 cluster, and
Dawning 4000L cluster. Table 2 shows the configuration of the
distributed test environment composed by the three clusters.

Table 2. The list of the test environment

Name OS Type Node
Number

Remark

IBM eServer1 Windows XP 1 SCC

IBM eServer2 RedHat Linux
9.0

1 The control
center of AMDs

IBM Workstation
Cluster

RedHat Linux
9.0

2 Testing cluster

RS6000 AIX 4.3.3 6 Testing cluster

Dawning 4000L RedHat Linux
9.0

26 Testing cluster

 Whereas the Dauwning4000L cluster is connected to another
LAN (202.117.10.xxx), the control center and the System
Component Container (SCC) of AMDs and all other test clusters
are within the same LAN (202.117.15.xxx).

5.3 Test Result
With Ganglia, we must manually deploy the monitoring system
on nodes. In the test, we use version 3.0.2 of Ganglia. Assume
that all the dependency packages for Ganglia have been installed,
and the installation files of Ganglia have been downloaded to the
appointed node. The required time to manually deploy Ganglia on
a node is the total time required to successfully execute the
following 4 shell commands:

cd /path/to/ganglia-3.0.2;
/config. --prefix=/path/to/ganglia;
make;
make install

 Table 3 shows the manual deployment (Batch run above 4
commands) time of Ganglia and the automatic deployment time
of AMDs in the same IBM eServer. From Table 3, it can be seen
that the deployment time of AMDs is less than that of Ganglia.

Table 3. The deployment time of one node install Ganglia or
AMDS

Name(IBM
eServer2)

OS Type Nodes Deployment
time(s,)

Deployment
approach

Ganglia Red hat
Linux 9.0 1 123.893 Manual

AMDs Red hat
Linux 9.0 1 45.312 Script-based

Table 4. Workload influence the deployment time
Deployment time(s,) Name OS Type Nodes

Workload <
15%

Workload >
90%

Dawning
4000L

Red hat
Linux 9.0 6 72.903 73.455

 From Table 4, it can be seen that by deploying the same nodes,
the cluster workload becomes an influence factor since more time
is needed to complete deployment with heavy loads than light
loads. The time for deploying front-end machine is shown in
Table 5.

Table 5. Deploying time of Dawning 4000L front-end machine
Deployment time (s,)

CAP Local
component

Probe

Total time
(s,)

Workload

14.170 20.657 11.124 45.951 > 90 %

 Since the cluster nodes' workloads change with time, taking
heavy loaded nodes as non-leaf nodes to distribute and perform
deployment and remote control will result in delaying their
current process capacities and the amount of delay increases with
the amount of workload or number of leaves.

 If we deploy 24 nodes as shown in Figure 4, there is about 10%
deviation between the deployment completion time and the
theoretical value that reflect the performance of the automated
deployment mechanism working in real complicated Grid
environments.

Automated Deployment

0

20

40

60

80

100

120

1 2 4 6 8 12 16 20 24
Nodes

D
ep

lo
y

tim
e(

s)

Theoretic Practical

Figure 4. Deployment time of AMDs at Dawning4000L cluster
 Figure 5 shows the response time of deploying monitoring
services at cluster Dawning4000L using the manual method
deploy Ganglia v.s. AMDs. From Figure 5, it is observed that
there is a huge drop in deploying time (>90%). AMDs reduces the
complexity of deploying time from linearity to logarithm. Hence,
the advantage of the script-based deployment approach is more
apparent in large-scale deployments.

Manual VS AMDs

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 12 16 20 24Nodes

D
ep

lo
y

tim
e(

s)

Manual deploy Ganlia AMDs deploy

Figure 5. Deployment time of Ganglia at

Dawning4000Lcluster Vs AMDs
 In addition, with the script-based deployment approach, the
cost in administrators' learning curve is also lower [16]. Within
AMDs, administrators do need to even prepare any deployment
script, but simply to fulfill the configuration web form of the
newly-joined cluster. The newly-joined cluster interacts with the
automatic deployment service, and the deployment can
automatically complete without human intervention.

6. CONCLUSION
The complexity of the grid is ever-increasing as more
heterogeneous resources and services are aggregated into various
VOs. In such context, we design a mechanism that supports
automated monitoring of resources in dynamic, distributed and
open environments. By integrating the automated deployment
service into existing grid platforms, global consistent views of
monitored resources can be generated. Hence, the QoS of
dynamic resource organizations can be improved because the
required information about resources being monitored can be
automatically obtained. Moreover, the script-based automated
deployment approach is quite simple and flexible. It dramatically
reduces the deployment complexity and achieves more than 10
times saving in deployment time. AMDs can also automatically
detect and restore failed system components. As an open
mechanism, it can cope with standard protocols and
heterogeneous resources are unaware of any outside monitoring
tools. By using XML-based probe interfaces the mechanism
maintains scalability to work with other grid platforms and
existing cluster resources monitoring system (such as Ganglia),
and makes full use of available resources in grid environment.

 There are several issues for future work. First, the monitoring
information share among different domains has to be advanced;
maybe these collective layers can be aggregated in P2P manner.
Second, although the AMDs can support monitoring user-defined
resources, administrators still need to manually extend
information interfaces which should be improved. Moreover,
AMDs should consider supporting interoperation with different
directory service such as Universal Description, Discovery and
Integration (UDDI) registry. Once a resource is published the
automated deployment mechanism should begin to deploy
monitoring service immediately, avoid administrators'
intervention and achieve completely automated deployment
ultimately.

7. ACKNOWLEDGMENTS
This work was supported in part by a competitive research
grant from the Hong Kong Research Grant Council
(HKRGC), project code: RGC/HKBU210906.

8. APPENDIX
Implemented using JAVA, AMDs makes full use of its platform
independent feature. Our system achieves the status information
of resources in MySQL and Round Robin Database (RRD
http://oss.oetiker.ch/rrdtool/) database to optimize the system
performance. The status information of resources can be
displayed in graphical form (Figure. 6).

Figure6. Shell commands for create CPU history trace in
RRD

 There are two data collection methods: events trace and
sampling. The information is recorded in XML format, and is
organized in hierarchical structure (Figure.7). Some attributes are
static, (e.g., the memory size); these attributes will not change for
a long time. To avoid introducing overheads, after gathering the
information, the AMDs will not probe them twice unless active
update requests are received. The dynamics status information
monitoring is activated either by the specific events (signaling) or
by timer interrupts (periodic value).

Host
Attr: name

Cluster
Attr: name
Attr: nodenum

CPU

Attr: CPU-user
Attr: CPU-name

Attr: CPU-system

Inuse

Attr: Inuse-size
Attr: Inuse-work

Attr: Inuse-name
Partition

Attr: Partition-name
Attr: Partition-size
Attr: Partition-free

Memory

Attr: MEM-size
Attr: MEM-inuse

Attr: MEM-name

IOTTYIOCPU CPUIODisk
IOStat

Attr: IOStat-name

CPUPartition
FileSystem

Attr: FS-number
Attr: FS-name

CPUCPU

CPU-AVG

Attr: CPU-user

Attr: CPU-name
Attr: CPU-number

Inuse

Pin

……

…… ……

PGSpace

Attr: PGSapce-size
Attr: PGSpace-name

…… …… ……

……

Figure 7. Layered information structure

9. REFERENCES
[1] I. Foster et al. The Open Grid Services Architecture, Version

1.0, 29 January 2005, http://forge.gridforum.org/projects/
ogsa-wg.

[2] Hamid R. Motahari Nezhad, Boualem Benatallah, Fabio
Casati, et al. Web Services Interoperability Specifications.
Computer, 2006, 39(5),pp.24-32.

[3] Erik Wilde. XML Technologies Dissected. IEEE Internet
Computing, 2003, 7(5), pp.74-78.

[4] Michael N.Huhns and Munindar P. Singh. Service-Oriented
Computing: Key Concepts and Principles. IEEE Internet
Computing, 2005, 9(1), pp.75-81.

[5] Ian Foster. Service-Oriented Science. Science, Vol 308, Issue
5723, 6 May 2005, pp. 814-817.

[6] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V.Taylor, R. Wolski. A Grid Monitoring Architecture,
GWDPerf-16–3, Global Grid Forum (GGF), August2002.
Available: http://wwwdidc.lbl.gov/GGF-PERF/GMA-
WG/papers/ GWD-GP-16-3.pdf.

[7] http://www.globus.org/toolkit/mds/.
[8] Andy Cooke, Alasdair J G Gray, et al. R-GMA: An

Information Integration System for Grid Monitoring.
Proceedings of the 10th International Conference on
Cooperative Information Systems, 2003

[9] R.Buyya. PARMON: a Portable and Scalable Monitoring
System for Clusters. Software-Practice and Experience,
2000, 30(7), pp.723–739.

[10] http://www.opensce.org/components/SCMS.
[11] Matthew J. Sottile, Ronald G. Minnich. Supermon: a high-

speed cluster monitoring system. Proceedings of the IEEE
International Conference on Cluster Computing, September
2002.

[12] Matthew L. Massie, Brent N. Chun, David E. Culler. The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing, Vol
30, June 2004, pp.817-840.

[13] Chu Rui, XIAO Nong, And LU Xi Cheng. A GMA Based
Open Grid Resource Information Service. Journal of
Computer Research and Development, 2004.12, pp.2114-
2112.

[14] Weimin Zheng, Lin Liu, Meizhi Hu, Yongwei Wu, Liangjie
Li, Feng He, Jing Tie, CGSV: An Adaptable Stream-
Integrated Grid Monitoring System, NPC 2005, LNCS3779,
pp.22-31.

[15] Ian Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. IFIP International Conference on
Network and Parallel Computing. Berlin, Springer-Verlag
LNCS, 2006, 3779, pp.2-13.

[16] Vanish Talwar, Dejan Milojicic, Qinyi Wu,Calton Pu,
Wenchang Yan , et al. Approaches for Service Deployment.
IEEE Internet Computing, 2005, 9(2), pp.70-80.

[17] Xiaoshe Dong, Yinfeng Wang, Zhongsheng Qin, et al.
Automatic Deployment Mechanism for Monitor Service in
Grid Environment. Proceedings of the GCC2006W, 2006,
Oct.21-23, Changsha, China. Published by the IEEE
Computer Society, pp 63-70.

