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Abstract-Many accelerometer-based energy expenditure es­
timation algorithms and platforms have been established in 
recent topical literature, and each boasts a high correlation 
against the gold standard in energy expenditure measurement, 
i.e. indirect calorimetry. The aim of this study was to implement 
a set of these algorithms, run them aU over a common dataset 
and investigate the strengths and weaknesses associated with 
each. The algorithms were then ported to a SHIMMER device 
for a real time, mobile and non-invasive energy expenditure 
estimation solution. High correlations were found between 
the accelerometer-regressed energy expenditure estimates and 
the reference dataset both on a computer and SIDMMER­
implementation of the algorithms. 

Keywords-Energy expenditure estimation, accelerometers, in­
direct calorimetry. 

I. INTRODUCTION 

There exists no reliable, non-invasive, portable and widely 
validated energy expenditure measurement sensor. When one 
considers that statistics report that a large percentage of 
today's youth and adults as being overweight and that a large 
portion of our elderly suffer from conditions that inhibit 
their physical activity the need for a reliable, objective and 
portable energy measurement system is self evident. While 
comparisons have been drawn between different energy 
expenditure platforms[I] the authors believe that algorithmic 
comparisons have not been investigated. 

Indirect calorimetry is the gold standard in energy ex­
penditure measurement and was the means employed to 
record reference energy expenditure levels in this study. 
The heat that a living organism produces is a function 
of the ratio of O2 and CO2 it expresses, and indirect 
calorimetry exploits this fact to regress the heat energy to 
an energy expenditure measurement, i.e. kilo calories, kilo 
loules etc. The calorimeter that was used was the CPET 
(Cardio Pulminary Exercise Testing) metabolic cart[2]. 

To measure the gaseous composition of the breath a gas 
mask is placed over the mouth and nose of the subject. A 
hose is attached to the gas mask and this leads to the indirect 
calorimeter. A good seal between the gas mask and the face 
must be present to ensure that the gasses that are analysed 
by the calorimeter have solely been sourced from the breath. 

Energy expenditure can be quantified in many different 
ways. The most commonly used energy measurement units 
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Table I 
MET ACTIVITY INTENSITY CLASSIFICATION 

Activity level MET range 

Light activity Under 3 

Moderate activity Between 3 and 6 

Vigorous activity Above 6 

in literature are kilo-calories/minute, kilo-Ioules/minute. 
However, other lesser known units, such as metabolic equiv­
alents (METs), exist and are sometimes used as the unit 
of regression in energy expenditure estimation. A MET is 
defined as 3.5 ml 02/kg/min, and is commonly used in the 
quantification of the extent of activity intensity, see Table I. 

If, while being monitored by the CPET, one was exercis­
ing, the metabolic rate of the subject will change according 
to the extent of the exercise. The response, however, is not 
instantaneous, and is similar to the charging of a capacitor 
in a resistor/capacitor network in response to a step input. 

A SHIMMER (Sensing Health with Intelligence, Mod­
ularity, Mobility, and Experimental Reusability) mote is a 
wireless sensor platform that is geared towards wearable 
applications[3]. The SHIMMER has a small form-factor 
(sOrnm x 2Smm x 12.Smm), is very light (IS grammes) 
and can sample three channels of 12-bit ADC at SOHz for 
up to ten days. 

Recent researcher in activity monitoring have pub­
lished exciting results in this form of energy expenditure 
estimation[ 4]. The favoured means of measuring this is with 
microelectromechanical systems (MEMS) accelerometers. 
Accelerometers are sensors which can detect acceleration 
along a directional axis. If three of these are orthogo­
nally orientated then three dimensional accelerations can 
be measured. Accelerometer based expenditure estimation 
initially used uniaxial accelerometers, as these were the first 
MEMS accelerometers to be fabricated. Triaxial accelerom­
eters were then introduced as three uniaxial accelerometers 
orthoganally mounted on a cube, until triaxial accelerome­
ters were fabricated on one chip. 

Onboard a SHIMMER device is a microprocessor 
(MSP430), Bluetooth radio (Mitsumi WML-C46N CSR 
based design), micro SD card slot, a triaxial accelerome­
ter (Freescale MMA7260Q l.SI2/4/6g Micropower MEMs 
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Table II 
PHYSICAL CHARACTERISTICS OF VOLUNTEERS FOR THE STUDY 

ID Age(yr) Height(cm) Weight(kg) 

1 23 174.5 77.5 

2 25 183 81.8 

3 22 187 86.7 

4 24 179 87 

5 30 170 88 

Mean ± SD 24.8 ± 3.1 178.7 ± 6.72 84.2 ± 4.45 

Accelerometer) as well as other electronic components. The 
range of applications that the SHIMMER can be used for 
is extensive. This is due to the fact that the firmware of 
the microprocessor can be programmed by a suitable user 
to perform specific task. The devices are programmed in 
a language called nesC (network embedded systems C) and 
the microprocessor is embedded with the TinyOS component 
based operating system. 

It is with the SHIMMER that the comparison of energy 
expenditure estimation for this study is to be accomplished. 
SHIMMERs were strapped to different locations on the body 
as a volunteer walks on a treadmill. As they exercise the 
measured accelerations are streamed in real time via the 
Bluetooth data link and the accelerations are stored on a 
computer for analysis. 

II. METHODS 

A. Experimental setup 

Five healthy male subjects participated in this study. The 
physical characteristics of each subject were recorded and a 
summary can be seen in Table II. 

A treadmill (Powerjog GX lOO) was set up to operate from 
3krnph to 7kmph at lkmph increments. The subjects were 
requested to walk on it at these speeds and five accelerome­
ters were placed on the body to record acceleration data. The 
accelerometers were placed on the ankle, knee, waist, wrist 
and arm and were attached to the body via custom-made 
neoprene straps. All the accelerometers were positioned on 
the right side of the body as it was reasoned that over an 
epoch the accelerations on one side of the body should be 
similar to those measured on the other side of the body. This 
will be discussed in Section III-A. 

The treadmill ran at each speed for four minutes at a 1 % 
gradient, to emulate walking on a flat surface[5]. The time 
for which the subject walked at each speed was chosen at 
four minutes due to [6] and [7]. Reference [6] provides the 
upper bound to the amount of time that an exercise must be 
performed for the body to have reached a steady metabolic 
state as between 2 - 3 minutes, depending on the fitness of 
the individual. Reference [7] limits the upper time limit on 
the routine of this study for a reliable metabolic response 
at twenty, as the body is exerted to more physical exertion 
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different attributes of the body will change the metabolic 
rate of the process. 

A gas mask was fixed over the subject's mouth and 
nose and the net was tightly fastened around the subject's 
head. A hose leaves the mask and is attached directly to 
the gas analysers in the calorimeter. To ensure that no gas 
entered or exited the seal about the subject's face, other 
than that contributed by breathing, the subject was asked 
to momentarily block the outlet of the gas mask and if they 
were unable to express air during this very brief time the 
mask was deemed securely fastened. 

Authors in this area typically sample the accelerations at 
moderately low sampling frequencies - 50Hz is common, 
but other frequencies are also seen in literature. In order to 
allow the database of accelerations that have been recorded 
to be used over a wide range of algorithms (not necessarily 
only those which sample at 50Hz) accelerations were sam­
pled at a higher sampling rate of 250Hz. This will allow 
a resampling algorithm, when required, to downs ample to 
the required sampling rate with a high confidence in the 
accuracy of the new dataset. According to [4], many papers 
cite the fact that the body cannot be expected to generate 
motion that is quicker than 15-20Hz so signals above these 
frequencies are filtered out. 

The accelerometers on the ankle, knee, wrist and arm 

recorded acceleration only, but the accelerometer on the 
waist also recorded the electrocardiogram (ECG) through 
an ECG daughterboard and on the SHIMMER and ECG 
electrodes that were affixed to the body in an Einthoven 
triangle configuration. The ECG signal was also sampled at 
250Hz. The purpose of this is to investigate the effects of 
marrying different types of energy expenditure algorithms 
together to one algorithm, i.e. acceleration and heart rate, 
acceleration and heart rate variability etc. A reference heart 
rate was provided by a polar chest heart rate strap (S6IOi). 
The acceleration and ECG data was transmitted via Blue­
tooth radio from the SHIMMER devices to a nearby PC 
where the data packets from each SHIMMER were parsed 
by a custom written program, written in C++, and stored to 
a file. 

B. Analysis 

1) Symmetry verification: To verify the assumption of 
symmetry between accelerations on the right and left hand 
sides of the body a test was set up whereby accelerometers 
were placed on the right and left wrists and ankles and while 
a subject walked the accelerations on these parts of the body 
were recorded, stored in file and analysed. 

2) Codeword to acceleration conversion: The micropro­
cessor on the SHIMMERs used in this study sample raw 
output values from accelerometers. These values are then 
converted to a digital codeword by the microprocessor's 
ADC module. In order to convert the codeword to an 
acceleration value (of dimensions ms-2 or multiples of g) 
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Figure I. Codeword values at adjacent device orientations 

an offset must be subtracted from the codeword (to centralise 
it from the Og position) and this result must then be scaled by 
a constant value to complete the conversion. As each device 
is unique these scaling values vary from device to device so 
an efficient search algorithm was required to discover these 
values for each SHIMMER used. 

As a result of the orthogonality of the accelerometer's 
axes ( 1) is true for stationary devices due to the device 
experiencing Earth's gravitational field. 

Z ( d . ) 2 aid - ZOg 
2..= . = 19 = 9.81ms-2 
i=x dZ1g 

(I) 

Where i is the axis that is being considered aid are the 
digital codewords of the accelerations sensed in the ith 
direction (i.e. x, y or z), diOg are the offsets that when 
subtracted from the measured value scale the acceleration 
from the Og point, and di19 are the values that scale the 
digital representation of the acceleration value to g's, i.e. 
the digital 19, 9.81ms-2 value. 

To find these points the triaxial accelerometer is orientated 
for a given time period on its six faces. If the surface the 
accelerometer was being placed on was perfectly level and 
the faces of the accelerometer were completely orthogonal 
the average between two sets of readings, for one face and 
its opposite counterpart, would provide the Og position for 
that axis. The distance between midpoint and the extremities 
would then provide the 19 value for the axis, see Figure 1. 

However, these conditions cannot be assumed true. The 
points that convert the values recorded on each axis can be 
realised by finding a point in the range [0,4095] on each axis 
on the accelerometer, resulting in 40963 possible solutions 
in total. 

A brute force search for this value is not feasible, so a 3D 
binary search algorithm was implemented to search for the 
values that minimise the standard deviation of the magnitude 
of the instantaneous accelerations in ( 1). Depending on 
the maximum and minimum values recorded on different 
orientations requiring the number of iterations given by (2), 
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yielding 123 iterations at worst. 

N = 2 (ceil (log2 (maxValue - minValue)))3 
(2) 

The 'ceil' function rounds a number up to the next 
highest integer. Using this method the codewords received 
are scaled to provide accurate acceleration measurements of 
the accelerations the devices experienced. 

3) Breath and acceleration synchronisation: The energy 
expenditure levels that were measured by the CPET and 
saved to a computer were recorded on a breath-by-breath 
basis. The breathing rate of a human is not periodic, es­
pecially over a range of exercises, so the dataset that is 
used as the reference for the accelerometer-regressed energy 
expenditure levels is not regularly distributed over time. The 
time-tag associated with the measurement of each breath is 
also rounded to the nearest whole second, introducing further 
inaccuracies. 

For comparison purposes the reference data must be on a 
common time-base with the regressed data, i.e. a reference 
energy expenditure value must be available every regression 
epoch. The time base that the reference data must match 
was given by the epoch time, Te, of the algorithms that are 
implemented, discussed later. Two means of achieving the 
time correlation were investigated. 

The first method involved casting a cubic spline curve 
interpolation over the reference dataset (the energy expen­
diture values and the times associated with each of these 
were passed as spline parameters). The value of the spline 
curve at each integer multiple of Te was taken as the energy 
expenditure reference for that epoch. 

For the range of time that an epoch exists a number of 
breaths will occur. The second method that was implemented 
averages the energy expenditure levels within the range of 
the epoch, [t, t + Te), and uses this as the energy expendi­
ture level for the current epoch. If no breaths occur, which 
is unlikely, 0 is returned, as no energy expenditure was 
detected; this is not guaranteed with the splining method. 

4) Algorithm implementation: Four algorithms were in­
vestigated in this study: one by Bouten[8], two by Chen[9] 
and one by Crouter[ lO]. 

Bouten[8] collected a large set of triaxial acceleration 
and indirect calorimetry energy expenditure data. With the 
dataset and knowledge of conditions provoking the acceler­
ations was able to formulate an acceleration-based energy 
expenditure estimation algorithm and published (3). 

EEact = 0.104 + 0.023 x IAAtot (3) 

Where EEact is the energy expenditure estimation due 
to activity that the equation calculates and I AAtot is a 
dimensionless unit known as the integral of the absolute 
value of the acceleration, see (4). 



(4) 

Bouten et al. collected a large set of acceleration and 
reference calorimeter data. Linear regression was performed 
over the database to convert the acceleration values to energy 
expenditure measurements resulting to the parameters of (3). 

Chen's algorithms[9] use a waist mounted accelerom­
eter and the approach was to first separate the hori­
zontal (x, y) and vertical (z) acceleration components 
that were detected by the accelerometers. The accelera­
tions were converted to vertical and horizontal acceleration 
counts for the epoch being studied (horizontal compo­
nent H(k) = Jax(k)2 + ay(k)2, and vertical component 

V(k) = Jaz(k)2). These acceleration counts were then 
combined with subject-specific linear parameters and the 
acceleration-based EE estimate resulted. Two algorithms are 
presented, the first, linear algorithm[9], is summarised in by 
(5). 

aL =(5.76 x mass(kg)+ 

11.95 x height(cm)+ 

6.89 x age(yr) - 2,001)/1000 

b 
_ 5.96 x mass(kg) + 349.5 

L -

1000 
EEact(k) =aL x H(k) + h x V(k) 

(5) 

Chen's second algorithm[9] is similar to the first, linear, 
algorithm. Much of the research in accelerometer-based 
regression is based about generating linear regression equa­
tions, as seen in (5), but it is not clear if the regression 
should be linear. A nonlinear regression equation was also 
computed by Chen to investigate this point, and the equa­
tions used by this algorithm are given by (6). 

1 
_ 2.66 x mass(kg) + 146.72 

p -

1000 

2 
_ -3.85 x mass(kg) + 968.28 

p -

1000 
12.81 x mass(kg) + 843.22 

aN = 
1000 

bN =(38.90 x mass(kg)-

682.44 x gender+ 

692.44)/1000 

EEact(k) = aN x H(k)pl + bN X V(k)p2 

(6) 

Where gender is defined as 1 for men, and 2 for women. 
These algorithms were chosen because the parameters of the 
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Figure 2. Time lag between speed change and energy expenditure, dt 

equations are subject-specific, i.e. they are a function of the 
physical characteristics of the person, and to investigate the 
benefits/drawbacks of linear and nonlinear subject-specific 
regression parameters. 

Similar to Bouten et al., Chen's algorithms resulted from 
both linear and nonlinear regression on the dataset that was 
collected. This regression differed due to the introduction of 
the physical characteristics of the subjects into the regression 
algorithms and the format of the resulting equations (that the 
parameters were themselves parametrised). 

The final algorithm that was studied was Crouter's 
algorithm[ 10]. When the instantaneous acceleration captured 
by the devices is plotted against the energy expenditure 
measured by the CPET, a time lag can be seen between 
the accelerations detected at the step change in the speed 
of the treadmill and the metabolic response, see Figure 2. 
The output of the previous algorithms would instantaneously 
change once the speed of the treadmill has been increased as 
they are functions of the acceleration that was recorded over 
the last epoch. Crouter's algorithm attempts to follow the 
trend of the metabolic response with a regression equation 
that is a function of the previous minute's worth of epoch 
readings. 

Where the Bouten's and Crouter's algorithms provide one 
equation that is called at the end of each epoch Crouter's 
algorithm uses a decision tree to determine which of the 
equations he generated to user 1 0]. 

5) SHIMMER-domain implementation: The SHIMMER 
was used for data aggregation, but it was also tested for 
applicability as a mobile, reliable and non-invasive en­
ergy expenditure measurement platform. The algorithms 
from Section II-B4 were implemented on the SHIMMER 
and a comparison between the software results and the 
SHIMMER-domain results was performed. 



Table III 
PERCENTAGE DIFFERENCE IN RIGHT AND LEFT BODY ACCELERATIONS, 

N=7 

Location Mean S.D. Max Min 

Wrist 0.7879% 0.4409% 1.5848% 0.0206% 

Ankle 1.7763% 0.7174% 2.9969% 0.6343% 
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Figure 3. Individual and combined acceleration trace for Og offset test 

III. RESULTS 

A. Symmetry verification 

After the collection of body accelerations for the sym­
metry test the accelerations that were recorded on the right 
and left hand side were analysed. The IAA, see (4), of the 
acceleration vector was used over a 10 second epoch and the 
results on the right and left sides of the body were compared 
against one another. Table III is a summary of the results 
found from the experiment. It was found that the difference 
in IAA between the right and left sides of the body differed 
by no more than 3%. This difference was deemed small and 
it was decided to use the accelerations on the right hand side 
of the body on every subject accordingly. 

B. Codeword to acceleration conversion 

Figure 3 is a trace of the accelerations measured when the 
SHIMMER devices were orientated on their six faces, Figure 
3(a,b,c), and the magnitude combination when the offset that 
provided the smallest standard deviation from the mean was 
discovered, Figure 3(d), which, due to ( 1), is expected to be 
a constant value equalling 19. As the experiment was set up 
for orientation analysis the SHIMMER device was stationary 
on each axis for a time period until it was flipped to the 
other axes. Equal contributions of constant, non-switching, 
accelerations were used in order that each axis factored 
equally to the resulting offsets, i.e. the disturbances seen 
in Figures 3(a,b,c) were omitted from the calculations. 

When the results from the binary search were employed 
and the standard deviation of magnitude of the acceleration 
were subsequently inspected the mean standard deviation 
(over all the SHIMMERs' accelerometers, N = 5) was 
calculated as 19 ± 0.0082g (mean ± SD) for static devices, 
19 due to ( 1). The small standard deviation from the mean 
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Figure 4. Averaged and splined energy expenditure plotted against time 

suggests that the searching algorithm functions well for the 
accelerometers that were studied. 

C. Breath and acceleration synchronisation 

1) Reference energy level: Figure 4 plots the energy 
expenditure values of the splined and averaged reference en­
ergy expenditure against a common time base. As expected 
both curves follow the same trend. In general the variation in 
the splined curve is higher than that of the averaged curve. 
This is to be expected as in generating the values for the 
averaged dataset the algorithm averages a number of data 
points over the epoch range, introducing a filtering effect. 

It was decided to use the results of the averaging method 
as the reference against which the accelerometer-based 
energy expenditure estimates will be compared. This was 
chosen because the times that were associated with each 
breath were rounded to whole second numbers. The spline 
curve fitting function requires data points coupled with 
associated time stamps. If confidence cannot be found in the 
time stamp one cannot be assured that the curve returned is 
accurate. This is not an issue for the averaging algorithm as 
it depends on values found within the range of an epoch and 
is invariant to the exact time the value was recorded. 

2) Energy expenditure normalisation: Crouter's algo­
rithm regresses to a unit of energy expenditure measurement 
called METs (metabolic equivalent). This unit is defined as 
3.5 ml O2 kg-1 min-1 so is a function of the energy 
expenditure and the mass of the subject in question. As 
neither Chen nor Bouten regressed to this unit of energy it 
was necessary to scale the reference and the regressed energy 
values to a common standard so that all algorithms can be 
compared on the same grounding. This was accomplished 
by (7). 

j= f - min (ref) 

max (ref - min (ref)) 
(7) 

Where f is the signal that's to be scaled (can either be 
the reference or regressed datasets), ref is the reference 
data (i.e. the dataset recorded by the C PET), and 

j 
is 



Table IV 
TABULATION OF RMSE VALUES FOR EACH ALGORITHM, OVER EVERY 

VOLUNTEER FOR DATA COLLECTION, N = 7 

Algorithm RMSE ± SD 

Chen nonlinear 0.065737 ± 0.003285 

Chen linear 0.080713 ± 0.013166 

Bouten 0.075382 ± 0.019273 

Crouter 0.135009 ± 0.014078 

the scaled reference/dataset. This function is called on the 
reference data, to scale it between the range of 0 and 1, 
and the regressed dataset. Figure 5 shows the plots of the 
regressed energy expenditure levels against the measured 
energy expenditure levels. A close tie can be seen between 
the reference and computed energy levels. 

D. Algorithm implementation 

Over the set of algorithms that were studied Chen's 
nonlinear algorithm performed best in comparison to the 
averaged energy expenditure values that were calculated. 
Figure 5 is a sample of the accelerometer regressed en­
ergy expenditure values and those measured by the CPET 
for each algorithm. The similarity between the regressed 
energy expenditure and the reference energy expenditure 
was determined by calculating the root mean squared error 
(RMSE) value between the datasets. For two signals, Xl, the 
reference, and X2, the regressed signal, of the same length, 
n, the RMSE is given by (8). Two identical signals will give 
an RMSE = O. 

n 

L (Xl (i) - X2 (i))2 
(8) 

RMSE= n 

i=l 

The list of RMSE values associated with each algorithm 
can be found in Table IV. 

It is not entirely surprising that Chen's linear and nonlin­
ear algorithms performed so well because the algorithms are 
finely tuned to work for a person of a well defined stature, 
weight, gender etc. The fact that the nonlinear algorithm 
performance is best suggests accelerometer based energy 
expenditure regression may not be a linear process. 

Bouten's algorithm performed relatively well considering 
the parameters of the equation were given 'as is' and were 
not dependent on mass, height, or gender of the subject. 
While the results of Chen's algorithms are expected to 
remain accurate with a growing signal database it is unsure 
how the results of Crouter and Bouten's algorithms will be 
affected. 

Crouter's algorithm appeared to consistently overestimate 
the energy expenditure which contributed heavily to it per­
forming poorest out of the algorithms investigated. However, 
the energy trace was smooth and did follow the trend of the 
metabolic response, see Figure 5(d). 
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E. SHIMMER-domain implementation 

The implementation of the algorithms were then trans­
ferred to the SHIMMER domain. In order to validate the 
performance of the SHIMMER as a standalone and wireless 
platform for applications two SHIMMERs were worn on 
the same location of a body and the wearer was requested 
to walk at a comfortable walking pace. One SHIMMER 
was programmed to transmit real-time acceleration data 
to a computer, as was done in the data collection stage, 
while the second SHIMMER was programmed to regress 
the accelerations that were detected to energy expenditure 
measurements as described earlier. The acceleration data that 
was streamed to the computer was then analysed in Matlab 
and compared to the energy expenditure levels that were 
calculated on the second SHIMMER. The two datasets were 
found to be always within 2% of one another, suggesting 
that the SHIMMER is an ideal device for real time energy 
expenditure estimation. 

The linear algorithm was first implemented due to the fact 
that it is a relatively straightforward algorithm to implement 
and that it performed well in comparison to the reference 
data points. Once the implementation was validated and 
verified Chen's second algorithm and Bouten's algorithm 
were likewise transferred to the SHIMMER-domain. The 
difference between the SHIMMER-domain and Matlab im­
plementations were likewise within 2% of one another. This 
2% discrepancy is due to the slightly different orientation 
and position of two SHIMMERs on the body for this 
experiment. 

IV. DISCUSSION AND CONCLUSIONS 

It is quite clear from the RMSE values presented in 
Table IV that accelerometers are a well suited instrument 
for estimating energy expenditure, in comparison to the gold 
standard, i.e. indirect calorimetry. Each of the algorithms 
investigated here have different assets (Bouten's algorithm 
works well with constant parameters over a wide set of 
users, Chen's algorithms follow the metabolic trends well 
due to the subject specific parameters of the equations, and 
Crouter's algorithm follows the trend of metabolic change 
well), and each also have aspects that might be improved 
upon. 

Accelerometers can detect changes in motion, but where 
they fail in the question of energy expenditure estimation 
is in the enumeration of the effort required for movement. 
For example, an accelerometer will detect the motion of 
a moving arm, but if a weight was attached to the arm 

as it moves accelerometers cannot estimate the new effort 
required without foreknowledge of the weight. 

The accuracy of all of the algorithms is subject to the 
reference their results are compared against. As the reference 
energy expenditure levels are not periodic and the time 
stamps are rounded to the nearest second some means of 
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Figure 5. Sample plots for normailsed results of Bouten, Chen and Crouter's energy expenditure algorithms plotted with the reference levels 

manipulation must be performed on the original reference 
data to coordinate its measurements with others. This pro­
cess could potentially introduce inaccuracies to the reference 
data. As the method employed here involved averaging the 
breath data over an epoch a level of filtering was introduced 
to the reference data, which will reduce any noise that has 
been introduced, in effect a dynamic width moving average 
filter is being used. 

Indeed, the reference energy levels can themselves be cor­
rupted before any analysis is performed. This can happen on 
the treadmill through the subject yawning, coughing or even 
talking and while the subjects were requested to keep this 
to a minimum the possibility of artefacts siphoning through 
to the reference data must be accounted for. Measurement 
artefacts will accelerate, exaggerate or otherwise affect the 
reference values and the times they are measured. Low­
pass filtering should remove most of these, and as this was 
performed by the epoch measurement-averaging algorithm 
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discussed earlier, a significant portion of the artefacts were 
deemed to have been sufficiently reduced. 

That Chen's algorithms provide excellent estimations of 
energy expenditure is a very strong indication that subject­
specific parameters in regression equations are one of the 
leading factors for accurate regression to energy expenditure 
values. The one shortcoming of the algorithm is that its 
output does not follow the trend of energy change when 
a change of pace is invoked. It is possible that this could be 
dealt with by utilising a moving average filter over the last 
number of algorithm energy levels. 

Due to Chen's nonlinear algorithm resulting in the best 
correlations against the reference dataset the assumption of 
linearity between measured energy expenditure and acceler­
ation may only be true only over a certain operation range. 
For these trials, however, the treadmill was set to move from 
3 to 7kmph. 7kmph is a very quick walk and many might 
feel more comfortable to jog at that pace. It may be more 



fitting to use EE regression equations for running at these 
quicker paces, as the algorithms used may be out of their 
operating range. 

The algorithms of Bouten and Crouter do not target the 
individual but rather were developed to accommodate the 
common user. This carries a convenient 'plug and play' 
feature to the algorithms (no setup required) but in counter­
point the accuracy of energy expenditure estimation is traded 
away, as can be seen seen by the results, with Crouter's more 
than Bouten's. 

While the correlations between the reference and esti­
mated energy expenditure levels are high (low RMSE) it 
is clear to see that a high variation exists between these 
two datasets. A number of factors could lead to this. As 
mentioned previously the metabolic response to an activity 
change does not occur instantaneously. Between the times of 
the initial change in motion and reaching of steady state by 
the body the difference between the,ation, a few percent of 
correct orientation, instantaneous change in regression levels 
and the rise of measured values will contribute to the noise 
in the plots below. 

While the positioning and orientation of the devices was 
done with care, it cannot be guaranteed that the accelerom­
eters were precisely vertical. Investigation into errors of ori­
entation were done by Wang et al[ 1 1] and Bouten et al[ 12]. 
It was discovered that once the devices were 'close' to the 
correct orientation, within a few percent of a perfect posi­
tioning, the results were not badly affected. This positioning 
was accomplished by accurate fabrication of the straps that 
held the devices to the body. The devices themselves slotted 
tightly into a pouch limiting any vibrational motion. The 
straps were wide enough to reduce orientation errors to the 
point where they were unimportant. 

This study shows that many accelerometer-based energy 
expenditure estimation algorithms can produce accurate re­
sults, and that a SHIMMER is an ideal platform on which 
they may be implemented. 
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