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Abstract-In this paper we introduce a device for monitoring 
subjects by logging sensory data over long periods of time. 
The system consists of a sensory measurement unit, a memory 
unit and an application for data preprocessing tasks, such as 
converting sensory measurements to desired units or calculating 
averages. In order to demonstrate usage, an activity level mon
itoring system inspired by medical applications is implemented 
using the device. A rudimentary threshold-based embedded 
classifier is trained using several different activities, yielding an 
activity level indicator. 2 subjects are monitored to train the 
classifier, and the system is then evaluated on new data using 
those two subjects plus a third not involved in the training 
process. The results indicate an activity classification of 74% 
into three levels using 2 simple data thresholds, with a system 
lifetime of 26 days on 2 AAA batteries. 

I. INTRODUCTION 

In health-based medical monitoring applications, having to 
involve medical personnel in the monitoring process is costly 
and intrusive, hindering normal user activity. In order to reduce 
costs and improve quality of life of the subjects, a process 
for unsupervised monitoring of patients in their everyday 
environments is needed. Inspired by this scenario, we have 
developed a low-power, high sample-rate sensory device which 
can be worn by subjects over long periods of time. 

The system consists of a sensory measurement unit, a 
memory unit and a monitoring application. The sensor board 
has 3 sensors, a light sensor, a temperature sensor and a 
vibrational sensor, with an interface for an external acceler
ation sensor if required. The sensor unit is also equipped with 
an RF communication module which has been disabled for 
the purpose of this application. The MMU provides a FAT32 
interface between the sensor board and a microSD card used 
as a data sink. The software application periodically samples 
the sensor, performs any preprocessing necessary and passes 
the data to the MMU to be logged. 

A simple activity level monitoring application was con
structed in order to evaluate the system. The application con
sists of a rudimentary threshold-based classifier that provides 
an activity level given a vibrational intensity. Low activity 
levels have been shown to be a risk factor for many illnesses, 
and higher levels have been indicated to prevent the onset of 
sickness [4], [5], [9]. Activity levels have been correlated with 
overall disease risks as indicated in [4], spiraling obesity in [5], 
as well osteoporosis and muscle atrophy in [9], demonstrating 
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the need for monitoring the activity levels of individuals over 
longer periods of time. Inspired by these phenomena, we 
decided to test this device as a platform to allow medical 
experts to develop activity level monitoring applications. 

The experiment is done as follows: three mutually exclusive 
activity levels are defined and example activities are selected in 
order to evaluate the classification. 2 subjects are monitored to 
gather an initial dataset which is then used to train the classifier 
by adjusting the threshold levels. The classifier is adjusted 
to differentiate between the different activity levels, yielding 
a quantized (as opposed to analog) activity level indicator. 
The system is then evaluated using 3 subjects in terms of 
recognition and power consumption levels. Finally the results 
and their implications are discussed. 

II. RELATED WORK 

Activity level is a term used to describe the amount of 
energy expended per time period (e.g. Joules per week) as 
is indicated in [4]. In the medical literature, this value is 
often measured using the doubly-labeled water technique to 
ascertain total energy expenditure of a test subject [5]. Some 
other approaches to ascertaining a subject's activity level are 
personal estimation as in [4] or using accelerometers as in [6]. 

Devices for logging acceleration data, such as in[l], do not 
provide customizable data preprocessing, but rely on external 
processes to interpret the data. The approach in [6] is based 
on the use of accelerometers and generates accurate mea
surements of energy expenditure, but also requires a separate 
system to interpret the data. Activity recognition applications 
based on small low-power nodes using accelerometers such as 
in [8] also use a back end classification system to analyze the 
data, placing unnecessary location limitations on the subject. 
Other embedded classification approaches such as [3] and [7] 
are concentrated on context recognition and transmission as 
opposed to the logging aspect as presented here. 

In this paper, we opt for a long-term approach to patient 
monitoring, detailed with an example using a vibrational 
sensor to gather data on the activity level of the subject 
being monitored. We attempt to combine the features in the 
aforementioned publications by taking advantage of the low
power properties of all of the components in the system. 
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Fig. 1. The Activity Level Logging Device 

III. METHODS 

The monitoring device consists of two separate modules: 
the sensor sampling and preprocessing system and the data 
storage system. The sensor board is responsible for sensor 
sampling and preprocessing and a separate board acts as an 
MMU providing access to a microSD card. The sensor board 
is based on the PIC18F14K22 microprocessor and the memory 
board is implemented using a PIC32MX, both of which are 
available from Microchipl. The device is pictured in 1, the 
sensor board is on top, followed by the memory board below, 
with the battery case at the bottom. 

A. Sensory Data Acquisition 

The sensor board firmware can be described as a multi-rate 
sampling and low-power data processing application, which 
can be programmed for adjustable-frequency sampling of the 
sensors. Data preprocessing is then limited by the power 
of the microprocessor as well as the effort incurred by the 
sampling rate. Both preprocessing tasks and sensor sampling 
share the same processing resources, therefore they both affect 
power consumption rates as more work consumes more energy. 
Sampling rates of sensors can be implemented well over 
100Hz depending on the amount of processing required. 

For vibration measurements, we use a miniature ball switch 
sensor, in which a conductive sphere rolls between two 
charged plates, closing a circuit in a certain position. With 
a diameter of 0.8mm, the sphere's physical properties are 
different from those in traditional ball switches, especially in 
terms of sensitivity even at low-intensity vibrations, as well as 
in three dimensions [2]. A diagram of the sensor as well as 
the circuit used to sample it can be found in Figure 2. 
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Fig. 2. The Micro Vibration Sensor from [2] and Schematic 

1 Data sheet available at www.microchip.com 
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When agitated, the ball within the sensor rolls back and 
forth, generating digital output which is sampled by the micro 
controller. Although the output is in digital form (see Figure 
3), the valuable information which is used is only unary, 
meaning only the transitions in the output is noted, and not 
the state in which the ball switch is in. The output of the 
sensor is connected to the counter input of the controller, using 
dedicated hardware to keep track of the number of transitions, 
also referred to as events, of the vibration sensor in a given 
period of time. A periodic sampling of the counter yields the 
number of events which occurred since the last measurement. 
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Fig. 3. Sensory Output for Typing (Top), Walking (Middle) and Jumping 
Rope (Bottom) 

For light level measurements, the APDS 9003-020 photo 
sensor from Avago Technologies Ltd.2 was used. The analog 
sensor delivers an indicator of light intensity levels across 
the entire spectrum recognizable by the human eye. For tem
perature measurements the TC1047A temperature-to-voltage 
converter from Microchip Technologiesl was selected, with a 
range from -40°C to +125 °C and an accuracy of ±0.5 DC. 

The sensor board software periodically samples the sensors, 
performs preprocessing (e.g. converting temperature sensor 
readings into DC), and then passes the information to the mem
ory board for logging. The frequency of the measurements, as 
well as the preprocessing methods are application specific and 
should therefore be customized to fit the scenario. Both the 
light and temperature sensors are analog, meaning analog-to
digital conversions for each of the sensors are necessary. 

IV. ApPLICATION EXAMPLE: ACTIVITY LEVEL 

CLASSIFICATION 

In order to create a basis for evaluation, a system to 
classify three different activity levels based on vibrational 
intensities was constructed. The implementation described 
here is extremely simplified and is not meant for actual 
monitoring applications, but rather is only used to demonstrate 
the limitations and capabilities of the monitoring device. The 
scenario is motivated by the medical literature in related work 
and our experiment illustrates principle technical feasibility, 
however an evaluation as a medical tool is clearly beyond the 
focus of this paper. 

2Data sheet available at www.avagotech.com 



A. Activity Level Recognition 

The activities used for testing and training where selected 
such that they approximately fell into three different categories 
of activity levels as can be seen in table I. Two subjects 
performed each of the three activities over the course of 30 
seconds in order to generate a basis on which to train the 
classifier. The subjects where wearing the device attached at 
the hip, programmed with a sample rate of 1Hz. Table II 
displays 10 seconds worth of raw sensory data as read from 
the counter, where each row of the table constitutes one second 
of the specified activity. 

TABLE I 
ACTIVITY LEVELS, REPRESENTATIVE ACTIVITIES, IDENTIFIERS AND 

THRESHOLDS 

ID Level Repr. Activity Levels 
I Low Typing ::; 550 
2 Medium Walking 551 - 1508 
3 High Jump-Rope > 1509 

Using this data, thresholds were calculated to separate the 
data into three classes. This was done by calculating the mean 
number of ball switch events per user per event and selecting 
the midpoint between the upper value of one class and the 
lower value of the class above it. The resulting threshold 
values which were used to create the rule-based classifier 
are indicated in the third column of table I. Under real 
conditions and depending on medical indication and treatment 
plan, these thresholds would need to be determined by a 
medical professional. They are strongly application and subject 
dependent as will be discussed later. 

TABLE II 
EXAMPLE SENSOR DATA FOR THREE ACTIVITIES 

Typing Walking Jump-Rope 
0 648 1966 
0 228 1266 
0 594 2040 
0 1000 2734 
0 1188 1628 
0 1444 1898 

34 2172 1284 
14 1506 1236 
0 1484 1972 
0 1262 1986 

B. Data Logging 

The memory unit of the device consists of a microproces
sor and a microSD card which is connected to the activity 
recognition module via UART. The sensor node sends the ID 
of the activity level recognized to the memory board with a 
period of one second to be logged in a file on the SD card. 
The processor implements a FAT file system on the microSD 
card, allowing the user (in this case the medical care giver) to 
remove the card at any time to analyze the activity level log. 

One issue which comes up when attempting stand-alone 
data logging with time stamps is accounting for clock drift. 
Fortunately, since we are attempting long term data logging, 
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this error can be corrected by a comparison between log 
time and system time when the microSD card is inserted into 
the physician's machine, allowing for a general estimate of 
clock drift over the monitoring period. This approach assumes 
that the time period from removal of the card to insertion 
into the evaluation machine can be estimated, and that the 
estimation error is small compared to the amount of clock 
drift. A more accurate method would be to enable the RF 
communicator located on the sensor board and create a beacon 
system which synchronizes the system clock when in range. 
This is outside the scope of this paper and would affect the 
power measurements presented here. 

V. EVALUATION 

The evaluation of the sensory monitoring and logging 
system is divided into two parts. First, the classification 
methods are evaluated using a short study. Second, the physical 
attributes of the system are evaluated in order to generate an 
estimate of the system lifetime. 

A. Activity Level Classification 

In order to evaluate the accuracy of the activity level classi
fier, 3 users were asked to perform the activities associated 
with the activity levels for 30 seconds per activity. These 
evaluation data are distinct from the training data, gathered 
under similar conditions at a different point in time. Table III 
indicates the results of the evaluation, where subject 3 was 
not included in the classifier training process. We evaluated 
correct or incorrect recognition of activity levels again with 
the representative activities for the respective activity levels 
(see Table I). 

TABLE III 
CLASSIFICATION RATES IN PERCENT BY USER AND ACTIVITY 

Subject 1 Subject 2 Subject 3 
Low (Typing) 81 97 100 

Medium (Walking) 72 69 86 
High (Jump-Rope) 0 66 97 

These results indicate very successful classification rates 
for typing at the computer, especially when considering that 
random probability distribution would equate to a classification 
rate of only 33.3%. Walking was also relatively well recog
nized as indicated by recognition rates of the medium activity 
level from 69% to 86%. Jumping-rope on the other hand, 
shows confusing results with respect to one subject, indicating 
recognition rates from 0% for subject 1 to 97% for subject 3. 
Overall, the system was able to classify the three activities 
correctly 74% of the time. 

TABLE IV 
CONFUSION MATRIX FOR CLASSIFIER OUTPUT IN PERCENT 

Low Medium High 
Low (Typing) 95 3 2 

Medium (Walking) 6 75 18 
High (Jump-Rope) 2 43 55 



The activity jumping rope shows the effects of interpersonal 
variations between the different subjects of the evaluation, as 
illustrated by the last row of Table m. The inability on the 
part of the classifier to produce the correct activity level for 
jumping rope (see Table IV) is due to these interpersonal vari
ations and can be partially attributed to the overly simplified 
classifier design and training process. For an actual medical 
application, the activity levels and thresholds would obviously 
need to be fine-adjusted by the medical expert based on the 
medical indication and a patient's general health status. 

B. System Lifetime Analysis 

Two aspects must be observed when evaluating the maxi
mum lifetime of this system: energy consumption and memory 
consumption. The energy consumption was measured while 
the activity level recognition and logging process was under
way. In order to calculate how much energy was consumed, 
the amount of current pulled by the device was dynamically 
measured. The amount of energy consumed over the period of 
time beginning at to and ending at tl is then given by itl 

Vsupp!y X Isupp!y dt to 
The result of the analysis is an energy consumption of 

4.4 78mJ / s or 4.4 78m W. An average AAA battery has 5071 J 
with an average voltage of 1.225V during discharge and an 
electric charge of 1150mAh, yielding an estimated system 
lifetime of 26.1 days of continuous measurement. This is in 
part due to the low consumption of the sensor which has a 
rate of consumption of only .5 p,W. These values are strongly 
influenced by the application, specifically the sample rate 
(in this case 1Hz) and the amount of preprocessing needed 
and will therefore vary from application to application. These 
rates are also dependent on the microSD card used, as the 
consumption values vary from twice to five times that of the 
microprocessor per byte written. 

The capacity of the microSD card is 2GB or 2 x 109 Bytes. 
Each second requires one byte for storage of the activity level 
identifier; at 2GB capacity the application would be able to 
last for 63 years and 5 months before running out of memory. 
This clearly indicates that energy consumption, not memory, 
is the limiting factor in system lifetime. 

VI. CONCLUSION AND FUTURE WORK 

In this paper we presented an adjustable-rate sensory sam
pling and logging device with light-weight data processing 
capabilities. The device uses vibration, light and temperature 
sensors to take a snapshot of its environment at regular 
intervals. We presented the hardware architecture to support 
this process consisting of a sensor board for data acquisition 
and a memory board for logging. A software system was 
also presented, consisting of an embedded sensor sampling 
application with processing capabilities running on the sensor 
board and a FAT file system driver on the memory board. The 
activity level log is secured to a microSD card on the memory 
board to allow easy access for data extraction. 
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Inspired by a medical scenario calling for long term moni
toring of patients as to the amount of activity performed, we 
created an example application which classifies subject activ
ities in 3 different levels based on the amount of vibrations 
incurred. An evaluation of recognition structures was carried 
out, using data from two individuals to train the activity level 
classifier. The evaluation was carried out using separate data 
from the two previous subjects as well as a third individual 
not involved in the training process. Overall, an activity level 
recognition rate of 74% was achieved, illustrating the light
weight processing capabilities of the device. In addition to the 
recognition rate, the lifetime of the system as a logging device 
was calculated. Using 2 AAA batteries as a power supply, the 
system lifetime was calculated to be >26 days. 

The results of the evaluation indicate that the device pre
sented here can accurately acquire and log sensory data, as 
well as perform light-weight data processing operations on 
the embedded system. They also indicate that these tasks can 
run over a time frame of approximately a month without 
interruption, allowing for unsupervised monitoring of subjects. 

Enabling the RF communication unit on the sensor board 
would provide support for the beacon synchronization appli
cation as discussed previously. This would solve the clock 
drift problem, but would create another as RF communication 
would negatively affect power consumption. For this reason 
it would then be necessary to adapt the application and re
evaluate the power consumption of the device. 
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