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Abstract—In ambient-assisted living environments, advanced 
sensors are used to detect potential problems that may affect the 
occupant. For a range of unsafe living conditions, characteristic 
odours arise that can provide early warning of a problem in the 
dwelling. In this paper, we investigate the concept of smell 
monitoring in the smart home environment, with particular 
attention paid to food spoilage. Using a commercially available 
electronic nose (e-nose) based on a metal-oxide sensor array, the 
odours associated with five common foods were captured over a 
seven day period. All foods were readily discriminated at the 
beginning of the measurement period. However, as the food 
spoiled, the odour profiles changed significantly. In several cases, 
the changes for a given food exhibited a clear trajectory in the 
PCA space. This preliminary work suggests that e-nose 
technology is a promising candidate for incorporation in the 
smart home. For widespread adoption, however, future e-nose 
development must continue to improve current shortcomings 
such as instability, user intervention, and high cost.  
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I.  INTRODUCTION 

Use of pervasive healthcare technologies in ambient 
assisted living environments (which includes the smart home) 
is becoming increasingly common. A smart home is defined as 
“a residential setting equipped with a set of advanced 
electronics, sensors and automated devices specifically 
designed for care delivery, remote monitoring, early detection 
of problems or emergency cases and promotion of residential 
safety and quality of life” [1]. Deployment of these 
technologies in a residential setting requires overcoming 
several real obstacles for general acceptance (particularly 
among the elderly), including ease of use and privacy 
considerations [2]. Despite this, inroads have been made. 
Technologies such as wearable vital sign monitors, bed 
sensors, and assistive lighting devices are now being used 
routinely in nursing homes [3].  

TAFETA (“Technology Assisted Friendly Environment for 
the Third Age”) is a research program currently underway at 
Carleton University and the Elizabeth Bruyère Research 
Institute in Ottawa, Canada. TAFETA brings together multi-
disciplinary experts to develop smart technologies that help 
seniors live independently in safe, responsive environments 
[4]. In addition to those already mentioned, a variety of other 
assistive technologies are currently being investigated as part 
of the TAFETA project, such as smart grab bars, motion 
sensors, and microphone arrays [5,6]. 

As is the case with any private dwelling, routine events that 
occur in a smart home can lead to a variety of different odours 
in the ambient environment. A certain set of these (e.g. 
cooking and cleaning) would be considered normal and are 
expected to occur as a result of the occupant’s day-to-day 
living. There are, however, other odours that can arise in this 
environment that are not so innocuous (e.g. garbage, urine, 
burning smell). When these types of smells occur, they may be 
indicative of a problem, but the occupant of a smart home is 
not always able to detect them (e.g. due to olfactory 
impairments or dementia) [7]. In this case, the occupant (or in 
cases where he or she does not have the capacity to act 
accordingly, a caregiver or family member) should be made 
aware of the situation in order to rectify the unsafe or 
unsanitary condition. 

In order to minimize the risk of harm in these 
circumstances, various types of detectors and gas sensors can 
be installed in order to alert the occupant of a dangerous 
situation. Indeed, the smoke detector and the carbon monoxide 
detector are simple examples that have saved countless lives 
since their introduction [8]. These detector systems are by 
their nature application-specific, designed to detect a specific 
gas with high sensitivity and specificity. These sensors do not 
respond to, nor can they be trained to recognize, any other 
gasses or odours that may indicate a problem in a smart home.  

Electronic nose (or e-nose) is a name given to a category of 
gas-sensing instruments that are designed to recognize odours 
from a wide range of possibilities. This is accomplished 
through the use of a sensor array with broad and partially 
overlapping sensitivities. With this arrangement, the individual 
sensors generate responses different from each other over a 
diverse set of odours. The result is a pattern which forms a 
signature of that smell. With training, the e-nose learns the 
pattern (called a smellprint) best representing each odour. 
Once trained, the e-nose can be used to identify unknown 
smells. In addition to the sensor array, an e-nose comprises a 
pattern recognition system (responsible for signal processing, 
feature extraction and training) and a sample handling 
component (which is needed to standardize the way in which 
the input is presented to the sensors) [9,10]. E-nose technology 
has matured in the last 10 years, and these instruments are 
gaining increased acceptance in industry. Successful 
applications include quality control and shelf life monitoring 
of food, beverages, and pharmaceuticals [11]. In addition, 
there has been a significant research and development effort to 
investigate their suitability in many other areas such as 



medical diagnosis [12], bacteria detection [13], and 
environmental monitoring [14].   

Though the potential of e-noses has been proposed in the 
context of smart homes [5,15], its use has not been extensively 
explored. Adoption of ambient e-nose monitoring in the smart 
home will depend on the technology being unobtrusive, fully 
automated, cost-effective, and insensitive to normal 
environmental changes (e.g. temperature and humidity 
variations) to avoid the need for re-training [16]. In contrast, 
most current commercial electronic nose instruments are large 
and expensive, requiring a sophisticated sample handling 
apparatus and a highly pure carrier gas. A few portable e-
noses exist (such as the Cyranose 320 (Smiths Detection, 
Pasadena, CA) [17] and the zNose (Electronic Sensor 
Technology, Newbury Park, CA) [18]), but they also have a 
relatively high cost and require significant user intervention 
for training, sniffing, and reading results. These are clearly not 
suitable for immediate deployment in the ambient-assisted 
living environment, and these practical limitations have been a 
real impediment for e-nose adoption in smart homes.  

Recent research has demonstrated that many of the 
shortcomings of current industrial e-nose systems that make it 
presently unsuitable for smart homes will soon be overcome. 
The gas sensors are continually being miniaturized, making 
them more attractive for use in pervasive health monitoring 
environments. These new smaller sensors are now being 
fabricated using commodity technologies which will 
drastically lower manufacturing costs [19, 20]. Additionally, 
e-noses are now being fitted with wireless data transmission 
features [21]. Once this technology matures, it will be easier to 
aggregate the odour signals from multiple e-nose devices 
(positioned in different rooms) to a central odour monitoring 
station in the smart home. 

Spoiled food is an odour category of particular importance 
in the smart home. Having the ability to detect food spoilage in 
this environment (and subsequently alerting the situation) can 
prevent the occupant (who may have impaired cognitive 
abilities and/or a weakened immune system) from suffering 
severe sickness due to ingestion, or it may also alert caretakers 
of a potential health issue. In this paper, we assess the capacity 
of a commercially available electronic nose to characterize the 
process of spoilage for a set of five common foods measured 
over several days. In so doing, we illustrate the potential uses 
and identify a number of practical problems that must be dealt 
with when e-nose devices become more pervasive in the smart 
homes of the future. 

II. METHODS 

A. Food Samples 
In this study, we considered five common foods:  

homogenized milk (M), 18% cream (C), yoghurt (Y), eggs 
(E), and sour cream (S).  These foods were purchased fresh 
from a grocery store and left out at room temperature over a 
period of 7 days to expedite the spoilage process. Groups of 
food samples were processed by the e-nose on five separate 
occasions during the experiment – on days 1 (fresh), 2, 3, 5, 
and 7.  Figure 1 shows the difference in the appearance of the 

samples between the first and last days, illustrating clearly that 
spoilage has occurred by the end of the seventh day.  On each 
of these days, the substance was mixed thoroughly, and then 
four 1mL samples from each of the categories were transferred 
by pipette into 10mL glass vials and capped. These samples 
were analyzed by the e-nose (see below) in alternating order 
(C,E,M,S,Y,C,E,M,S,Y…). A total of 100 samples were 
recorded, consisting of 4 samples/category (for each day) x 5 
categories x 5 days. 
 
                                              (a) 

 
                                              (b) 

 
Figure 1 – Food samples used in e-nose experiments: (a) Day 1 and (b) Day 7. 

 

B. Electronic Nose 
The e-nose used to capture odour patterns consisted of an 

array of twelve metal oxide (MOS) sensors (AlphaMOS FOX, 
AlphaMOS, Toulouse, France [11]). The vial containing the 
sample was agitated and heated to 50oC for 5min to concentrate 
the odour. A syringe was used to extract 2.0mL of headspace 
from the vial and then inject it into the sensor chamber. When 
this occurs, the MOS sensors respond by swelling or 
contracting by varying amounts. This changes their electrical 
conductivity over the duration of the gas sampling cycle in a 
manner that is slightly different from sensor to sensor. The 
sensor responses were recorded every 0.5 s for 2 minutes, 



giving a set of 12 response curves of conductivity vs. time (an 
example set is shown in Figure 2). 

 

                                                   (a) 

 
                                                   (b) 

 
                                                   (c) 

 
Figure 2 – (a) Raw sensor response curves for an arbitrary chosen cream 
sample, (b) Pre-processed sensor response curves, (c) feature extraction 

process (for a single arbitrary sensor). 
 

C. Preprocessing and Feature Extraction 
With the MOS, it was necessary to perform baseline 

manipulation in order to increase contrast and remove the 
effect of short-term baseline drift [22]. In our case, we used a 
fractional manipulation on the MOS data, defined as: 
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where Ri(t) is the measured sensor response for sensor i, Ri0 is 
the baseline response for sensor i (at t=0), and Ri,preproc(t) is the 
scaled response retained for the following stages. The MOS 
response curves consist of 240 data points. Left unaltered, this 
would constitute an amount of information that is prohibitively 
large to use in a pattern recognition system. It is necessary to 
extract from this curve a more efficient representation for 
subsequent processing – ideally, so that a set of feature(s) 
retains the information essential for representing and 
differentiating between the different food categories. The most 
common approach (and the one we adopt here) is to represent 
the time series for each sensor with a single value. The 
maximum absolute value of Ri,preproc(t), denoted mi = 
max(abs(Ri,preproc(t) )) was used as the feature of interest for 
each curve (see Figure 2(c)).  
 
This process creates a vector for each sample j, jf , which 

consists of 12 elements. Each element represents the 
maximum feature from the sensor curve as described above: 
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where mi, j is the i th sensor’s feature for sample j. Vector 
normalization was used to normalize the features for all 
samples, resulting in vectors jf̂ in the direction of jf with unity 

amplitude: 
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D. Dimensionality Reduction 
 
      Working with feature vectors in a high dimensional space 
is problematic by nature:  a) the features are generally highly 
correlated (since the sensors have overlapping sensitivities), b) 
it is impossible to visualize the clusters, and c) the number of 
training samples required to cover this vector space is 
prohibitively large (it must grow exponentially with the 
dimension of the space). This is known as the curse of 
dimensionality and it is a significant impediment in machine 
learning systems [23]. E-nose systems generally perform a 
dimensionality reduction (DR) stage, wherein the dimension 
of the feature vector is decreased significantly. In this work, 
we used principal component analysis (PCA). PCA is an 
unsupervised DR method that calculates a new vector space 
from linear combinations of the original. In this new space, the 
basis vectors lie along the direction in which the original 
feature vectors displayed the greatest amount of scatter. PCA 
is generally used in exploratory data analysis, where the goal 
is to examine the generated e-nose patterns in a lower 
dimensional space. If separation between the various 
categories’ samples can be demonstrated in the PCA space, we 
have a high degree of confidence that this can be further 
enhanced with the use of supervised DR methods (such as 
multiple discriminant analysis, MDA [23]). PCA was used to 



reduce the dimension of the feature vectors from twelve to 
two. 

III. RESULTS 

Figure 3 illustrates the capacity of the e-nose to 
discriminate between food samples on a given day throughout 
the measurement period. In these plots, each point denotes an 
individual food sample represented in the PCA space. On day 
1 (fresh food, Figure 3(a)), the categories are very well 
separated, indicating that the measured odour signatures of 
each category are quite distinct from one another. However, at 
the end of the measurement period (day 7), the odour patterns 
of the cream, sour cream and yoghurt sample appear to come 
together.  This is suggested visually by the significant amount 
of overlap between these groups’ data points in Figure 3(b). 
Because overlap in the 2-dimensional PCA space does not 
unequivocally correspond to similarity of the measured 
patterns, though, we also computed the distance between the 
category centroids using the original 12-dimensional space. 
The results are shown in Table 1 and demonstrate that the 
degree of similarity between these pairs of sample categories 
increases from the beginning to the end of the experiment. 
 
                                              (a) 

 
                                              (b) 

 
Figure 3 – PCA results for all food sample measurements on a given day: (a) 

Day 1, (b) Day 7.  In each case, a different PCA projection is used. 

TABLE I.  DISTANCE BETWEEN CATEGORY CENTROIDS AT 
START AND END OF EXPERIMENT 

Distance Between Centroids (Day 1/Day 7) 
Category 

Cream Eggs Milk Sour 
Cream Yoghurt 

Cream  - 0.09 / 
0.99 

0.04 / 
0.52 

0.14 / 
0.02 

0.34 / 
0.07 

Eggs 0.09 / 
0.99 -  0.05 / 

0.62 
0.24 / 
0.99 

0.43 / 
0.95 

Milk 
0.04 / 
0.52 

0.05 / 
0.62 -  0.19 / 

0.52 
0.39 / 
0.49 

Sour 
Cream 

0.14 / 
0.02 

0.24 / 
0.99 

0.19 / 
0.52 -  0.20 / 

0.07 

Yoghurt 0.34 / 
0.07 

0.43 / 
0.95 

0.39 / 
0.49 

0.20 / 
0.07  - 

 

We now turn our attention to the ability of the e-nose to 
measure food spoilage over time. With this goal, it is helpful to 
see how the odour patterns of the same food changes over the 
duration of the entire experiment. Figure 4 illustrates this 
behaviour for three of the food categories. In each of these 
cases, the individual clusters (representing the same food 
measured on different days) show minimal overlap. This 
indicates that the odour signatures of these foods (as measured 
by the e-nose) evolve quite differently as time progresses (i.e. 
as the food spoils). Moreover, when we track the centroids of 
the clusters over time (see the arrows in Figure 4), we see that 
these exhibit a relatively smooth trajectory in the PCA space as 
the food spoils. This is in agreement with our intuition – the 
food spoilage process is a gradual one (caused by, for example, 
continual bacterial growth in this host). As such, we would not 
expect these smellprints to show sudden discontinuities or 
jumps.  

The results presented above show that as the experiment 
progressed, more within-category variability was evident. In 
Figure 4 (b) and (c), for instance, the cluster defining the Day 
7 samples is much larger than those taken earlier. One possible 
explanation for this variation relates to the manner in which 
the samples were transferred to the vials. At the beginning of 
the experiment, all samples had a low viscosity. This made 
pipetting very easy – for these early samples, the volume 
transferred to the vial was very close to 1.0mL. Towards the 
seventh day, however, a number of the foods (particularly sour 
cream and yogurt) had thickened significantly. When pipetting 
this highly viscous substance, it was impossible to be 
confident that exactly 1.0mL was transferred. Furthermore, as 
time progressed, the foods were seen to grow moulds, develop 
crusts on the surface, and separate (Figure 1). In these cases, 
when the food is mixed before sampling, any remaining 
inhomogeneity in the sample will be manifested as variations 
in the e-nose responses. The resulting effect on the 
repeatability of the yogurt results is evident in Figure 5. For 
substances which remained less viscous (such as eggs), this 
effect was not seen (Figure 4(a)). 
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Figure 4 – PCA results for food samples measured throughout the entire 

experiment: (a) Eggs, (b) Sour Cream, (c) Yoghurt. Labels indicating the day 
of measurement are included for each cluster. Cluster centroids are marked 

with an “X” and the arrows show centroid progression with time. 
 
 

 
Figure 5 – Repeatability of measurements throughout experiment (yogurt). On 

each day, twelve bars are shown (one for each e-nose sensor). The height of 
each bar is a normalized measure of standard deviation, σ/µ, where µ and σ 
are respectively the mean and standard deviation of that sensor’s extracted 

feature over all four samples processed on that day. 

IV. DISCUSSION 

There is a large literature which demonstrates the ability of 
e-noses to track food spoilage in very controlled environments 
[24-26]. In most of these papers, a single food is considered, 
and the e-nose sensor outputs are demonstrated to correlate 
with the severity of the mechanism which causes the spoilage 
(e.g. in [26], to the total viable counts of bacteria present in 
red meat are measured throughout the spoilage process (15 
days), and the e-nose responses and its classification engine 
are trained against this “gold standard” bacteriological 
method). In this paper, we focused on a variety representative 
of common foods that would be present in a smart home. 
Additionally, we have not performed a bacteriological analysis 
of the spoiled foods. Instead, we have used simple time 
increments (essentially, the number of days at which the food 
has been left out at room temperature) as our measure for the 
degree of spoilage. This decision was deliberate, and allowed 
us to investigate the suitability of e-nose technology in this 
application domain with as simple an arrangement as possible. 
Further work in this area will certainly have to address the fact 
that since different foods spoil at different rates, a simple time 
measure of spoilage is not appropriate. Fuzzy methods are a 
potential candidate here and have been used successfully in e-
nose studies [27]. Fuzzy methods assume that classification 
output category ranges are not mutually exclusive, but rather 
allow graded membership in a cluster.  

Figure 6(a) illustrates that even with the small number of 
food categories studied in this paper, there does not appear to 
be a general “spoilage space” to which foods trend as they 
spoil. Despite this, we know that for wide variety of foods that 
have “gone off”, they elicit odour responses which have a 
common trait – it smells generally very unpleasant to humans. 
Intuitively, then, it is plausible that by using supervised 



classification methods such as MDA and ANNs [23], better 
identification of spoilage over a wider range of foods can be 
achieved (see Figure 6(b)). This scenario ensures that, during 
training, the machine learning system is provided with not 
only the sensor responses to the sample, but also a priori 
knowledge of the degree of spoilage that the sample has 
undergone. It is then up to the supervised algorithms to learn 
the characteristics that all of the spoiled foods have in 
common, based on this labeled data 
 
                                              (a) 

 
                                              (b) 

 
Figure 6 – Representation of all food samples – all days, all categories (100 
samples) (a) PCA, (b) MDA. In the PCA plot, there is no trend towards a 
“spoilage” space as the experiment progresses (e.g. the Day 5/7 samples 
overlap with the earlier ones). However, when using MDA (a supervised DR 
method), the projection into the new space clearly separates the oldest (i.e. 
most spoiled) food samples. 

 

In the future, it will be vital to keep abreast of 
research and industry developments in miniaturization, cost 
reduction, and usability of e-nose sensors. Those used in this 
study (while physically small) are packaged in a system which 
is prohibitively large and expensive for this application. 

Moreover, it will be important to continue to collect 
supplementary e-nose data for both: a) additional types of 
spoiled foods (e.g. meats, cheese, fish) and b) other odours 
from a wider category of interest in the smart home (e.g. 
burning food, garbage, hygiene-related). In doing so, we can 
continue to investigate the use of e-nose as an effective 
pervasive smart home monitoring technology. 
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