
 

  

Abstract—In healthcare acceleration sensors have various 

applications in monitoring movements for prevention, diagnostics, 

therapy and rehabilitation. Unfortunately they react sensitive 

against changes of environmental conditions and therefore it is 

necessary to calibrate them from time to time. This paper 

introduces a technique for automatic self-calibration of body 

worn triaxial-accelerometers that do neither need any user 

interaction nor a special calibration procedure. The data are 

calibrated automatically during operation of the sensor. The 

method does not require any knowledge about the actual 

orientation of the sensor and uses the activity of the subject to 

calibrate, because the activity is the region of interest for 

evaluation. The error of the automatic self-calibration will be as 

small as the error of common techniques for calibration that need 

an additional procedure, whereby an important error source will 

be excluded. The resulting algorithm is so small and compact, that 

it can even be transferred onto a sensor system and executed by 

its microprocessor. 

 
Index Terms—Acceleration, Calibration, Pattern recognition, 

Wearable sensor 

I. INTRODUCTION 

UE to technological progress in integrated circuits sensors 

become more affordable, whereby the sample rate 

increases. Therefore, the area of application extends rapidly. 

Especially in healthcare are a lot of possible applications e.g. 

monitoring patients during surgery [1], in telemedicine [2] or 

in home care programs [3]. Within this context, acceleration 

sensors become more interesting in supervising the motion 

sequences of patients, because accelerometers are very small 

and deployable for miscellaneous purposes. 

Acceleration data contain an immense amount of coded 

information. The measured data do not only contain 

information about the relative direction of gravity but also 

about velocity and the covered distance over a certain time. 

Especially in application with subjects it is easily possible to 

acquire and to interpret data about activities of daily living 

(e.g. sitting, lying, standing, going and climbing stairs) [4]. On 

the one hand high risk patients of cardiovascular diseases 
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could be monitored, e.g. by a step counter to give them an 

overview of their exercises [5]. On the other hand patients with 

pathologic gait could be trained in the physical therapy or at 

home [6]. 

 

Yet sensors need to be calibrated to provide reliable data. In 

the process, resulting expenses depend on the physical, 

chemical or biological property measured. Calibration poses a 

lot of problems: on the one hand a calibration process 

generally has to be done by an experienced specialist. On the 

other hand a sensor can not serve its actual purpose during the 

calibration. Thus a sensor has to be removed from the 

appropriate installation and checked according to its 

application. 

Previous calibration algorithms for accelerometers, as 

introduced in [7-10], use rotational measurement. By 

rotational measurement each axis is lined up once in direction 

and once in opposite direction of gravity as precisely as 

possible (figure IV shows a possible result). For example not 

exactly leveled or uneven surfaces or changes of 

environmental conditions will cause an appreciable error. 

In this paper an algorithm is presented which is not based on 

rotational measurement and which is capable of calibration 

during operation without knowledge of the sensor’s properties. 

This is done by probabilistic analysis of the data. Thus, the 

sensor neither needs to be removed nor to be adjusted in a 

special calibration procedure. If no special calibration 

procedure is needed, an important error source will be 

excluded. 

II. OBJECTIVES 

The aims of this paper are: 

1. to specify an automatic self-calibration algorithm for 

triaxial accelerometers 

2. to indicate its advantage compared to calibration by 

rotational measurement 

III. METHODS 

A. Automatic self-calibration 

 Automatic self-calibration features autonomous calibration 

of the sensor and normalization into the unit g = m / s
2
 without 

any configuration and input of characteristics. This is made 

possible by probabilistic techniques and an attentive 
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observation of the behavior of acceleration data. Only a few 

steps that are easy to calculate are necessary for this technique. 

Thereby, it is assumed that the accelerometer is worn on the 

torso, because a wearing position close to the barycenter of the 

body naturally causes comparably little noise. Therefore, let a 

= (a1, a2, a3)
t
  be the acceleration vector. 

 

1. Determination: The three mean values m1, m2 and m3 of 

the three-dimensional acceleration vectors are calculated 

during the times of the data, where the subject moves. This 

significantly reduces the error of the algorithm. The decision 

for the „active” regions was obvious, because in general the 

measured data should be used to measure the moving behavior 

of the subject and therefore it is of interest for evaluation. For 

the computation of the mean the arithmetic mean can be used. 

In the cases where fast convergence is important (e.g. online-

calibration, like calibrating during operation) the median can 

be used.  
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a′  has to be divided by its average length to normalize the 

vector and to eliminate existing range information. The factor 

½ was figured out by reviewing test-sets of about 150 minutes 

length. This improved the results significantly. 

 

3. Relative location: The relative location of the means to 

each other has been disturbed apparently by the first step. To 

involve the location relation of the vectors again, an offset-

vector has to be calculated. Therefore, without loss of 

generalization let be m1 > m2 > m3. The term in the middle m2 

is used as a fixed point and is set to zero
1
. The other two 

components, that are 
1a ′′  and 

3a ′′ , can be displaced according 

to the ratio of their means (see figure I). 
 

FIGURE I 

RELATIVE LOCATION OF THE MEANS 

    
 

After this observation it is possible to construct the offset-

vector by the ratio of the means to each other. In the case 

 
1
 the value 2a ′′ will represent the transversal axis, because of little motion 

expected compared to the other axes. The “no-displacement“ should indicate, 

that the average expected activity in this axis approaches zero. 
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Generally framed: if for any x, y, z ∈ {1, 2, 3} the order is 

mx > my > mz, whereas x, y, z are pairwise disjointed, then is 
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B. Activity detector 

The quality of the results can be improved, if the mean is 

only calculated based on the active regions of the data set, like 

in the first step of the automatic self-calibration. The difficulty 

is that the automatic self-calibration requires recognized active 

phases. Therefore an algorithm is needed, that will work 

independently on calibrated data. 

The idea is to determine occurring deviation mi to the mean 

m̄ i in an observation window. The signal level of akinetic 

patterns changes only marginally and mi can be matched to the 

average deviation m of the data set. In case of mi / m it 

might be a passive action. The following equations reflect the 

concept: 
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whereas the observation window i spans the range [xi, yi]. az 

represents the z-coordinate of the appropriate acceleration 

signal a, whereas az(j) refers to the signal level at point j ∈ N. 

In a consequence of equation (2) an axis independent equation 

for mi is: 
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for all i. 

From mi / m follows, that the quotient can be estimated 

through a threshold value s: 

s
m

mi <                        (3) 

If falling below the threshold value s it is a passive activity. 

Such an assumption as a quotient is reasonable, because the 

included range information of mi and m are eliminated. This 

means that non-calibrated data can be handled. 



 

Example: when 8-bit encrypted data in the range [0, 255] 

are fed into the algorithm, the same threshold value s can be 

used for data which are defined in a range [-4, 4]. 

IV. RESULTS 

To review the quality of the self-calibration a showcase data 

set was recorded. With this data set it is possible to compare 

the self-calibration method presented in this paper to the 

calibration by rotational measurement. The quality of the 

rotational measurement can be determined by recording a 

calibration data set, where each axis is lined up once in 

direction and once in opposite direction of gravity, so that each 

axis is exposed to 1g and -1g. 

The showcase data set consists of acceleration data of about 

an hour emphasized relaxed actions. The data set has been 

recorded with a sensor board from Freescale „ZSTAR Triaxial 

Accelerometer demo board“ with the designation 

RD3152MMA7260Q [11]. In this process the data were 

recorded with 20 fps in an 8-bit resolution. The maximum 

acceleration was 4g. 
 

FIGURE II 

A DATASET WITH VARIOUS MOTION PROCESSES 

 
 

The table I decodes the actions of the data set of figure II 

with their corresponding durations. 
 

TABLE I 

THE DECODED ACTIONS OF THE DATA SET OF FIGURE II 

begin Stop duration in s action 

0 200 200 stand 

200 500 300 sit 

500 600 100 go 

600 1200 600 sit 

1200 1400 200 stand 

1400 2050 650 sit 

2050 2250 200 go 

2250 2450 200 sit 

2450 2950 500 lie down 

 

If the automatic self-calibration is done as presented in this 

paper, then an absolute error regarding rotational measurement 

occurs like shown in figure III. The revealed error is 

remarkably small and constant. If the computed error of the 

test data set is added up, then the sum of the absolute error will 

be 2727.32g on 29226 triaxial values. The automatic self-

calibration, regarding to the rotational measurement that can 

be the only basis for the comparison here, has an average error 

of 

sum of the error in g

number of values
 = 

2727.32g

29226
 = 0.093g. 

 

FIGURE III 

THE ABSOLUTE ERROR OF THE AUTOMATIC SELF-CALIBRATION REGARDING 

ROTATIONAL MEASUREMENT 

 
 

But how does the result respectively the error occurring in 

rotational measurement look like? Figure IV demonstrates a 

data set occurring in rotational measurement. Hence, six 

measurements were performed for about 100 seconds, to gain 

a representative result. 
 

FIGURE IV 

AN EXAMPLE OF A ROTATIONAL MEASUREMENT 

 
 

The error that occurred during rotational measurement can 

be shown in a diagram. Figure V shows the absolute error 

regarding the real values, because it is not possible to align the 

sensor accurately to gravity. The calculated sum of the errors 

of this data set regarding the real values is 392.27g on 7600 

three dimensional values. Of course the peaks during the six 

times of rotation of the sensor were ignored. 

Now it is easy to determine the average deviation of the 

rotational measurement in regard to the real values: 

sum of the error in g

number of values
 = 

392.27g

7600
 = 0.052g. 

 



 

FIGURE V 

THE ABSOLUTE ERROR OCCURRED DURING ROTATIONAL MEASUREMENT 

 
 

If the worst case is assumed and both errors are added, then 

the maximal uncertainty is 0.052g + 0.093g = 0.145g 

regarding the real values. However, that the error is much 

below this can be proven easily: During a lying-down phase a 

significant small error occurs (see figure III). In this case the 

error of the automatic self-calibration regarding the real values 

can be determined and its average is 0.009g. 

 Sensors react sensitive against changes of environmental 

conditions. Especially the temperature can influence the results 

badly. Figure VI shows the data measured by a shadowy lying 

sensor during a sunny summer day. The sensor was exposed to 

a changing temperature and as a result the measured values 

increased. 
 

FIGURE VI 

CHANGES OF THE MEASURED VALUES OF A TEMPERATURE EXPOSED SENSOR 

 

V. CONCLUSION 

In this section the objectives are examined. 

A. Specify an automatic self-calibration algorithm (aim 1) 

The error of the automatic self-calibration (see figure III) is 

very small compared to conventional techniques for calibration 

of acceleration sensor data. Therefore, this aim has been 

apparently achieved. Unfortunately the used showcase did not 

meet demands. The results of the showcase have to be verified 

by public accessible case studies or data from prolective 

studies. 

B. Indicate its advantage compared to previous calibration 

algorithms (aim 2) 

The revealed errors indicate that the automatic self-

calibration has reached a sophisticated state and can compete 

against the error-prone rotational measurement if enough 

acceleration data for the calibration algorithm are provided. 

Even small variations on the measurement setup (i.e. not 

exactly leveled surfaces, uneven surfaces, not exactly aligned 

sensors regarding gravity, changes of environmental conditions 

etc.) can cause markedly errors. Overall it means that the 

automatic self-calibration eliminates a critical error source: the 

manual calibration. The error of rotational measurement 

regarding the real values is marginal smaller than the error of 

the automatic self-calibration regarding the rotational 

measurement. 

Especially the adaptability of the self-calibration to 

changing environmental conditions (e.g. temperature, pressure 

etc.) through the continuous calculation of the mean has an 

obvious advantage compared to the rotational measurement. 

The occurring error of common calibration techniques will 

only be compensated by a frequent rotational measurement. 

This paper showed that the self-calibration algorithm neither 

requires any maintenance nor a special calibration procedure. 

Body mounted sensors can be automatically calibrated during 

operation. Estimates suggest that the self-calibration algorithm 

consists only of simple operations and is so small and compact 

that it can be easily transferred right to a sensor system and 

executed by its microprocessor. 
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