
Security Analysis and Implementation of Web-based
Telemedicine Services with a Four-tier Architecture

Amiya K. Maji, Arpita Mukhoty, Arun K. Majumdar, Jayanta Mukhopadhyay, Shamik Sural, Soubhik Paul, Bandana
Majumdar

Indian Institute of Technology
Kharagpur, India

{amiya, amukhoty, akmj, jay, shamik, spaul, m_bandana}@cse.iitkgp.ernet.in

Abstract—Security of Telemedicine applications is not often given
adequate importance by the developers and healthcare
administrators primarily to reduce cost. Though some security
safeguards are employed by these applications to comply with
existing medical data security and privacy regulations, these are
not adequate in today’s context. Moreover, in a web-based
application environment not only the data but also the
application itself is vulnerable to attackers. Keeping these
concerns in mind, we present the design of a web-based, four-tier
Telemedicine System named iMedik which is accessible over
desktops as well as handheld devices. We have illustrated how the
proposed system differs from existing three-tier web applications.
The compliance status of the application with HIPAA Security
Guidelines has also been noted. The security measures described
in our approach look into the four-tier architecture from an
attacker’s viewpoint and present a simple road map for
developing secure e-health application with anywhere, anytime
availability.

Keywords—multi-tier; telemedicine; vulnerability analysis; e-
health; web based

I. INTRODUCTION
Internet, due to its anywhere anytime availability, has

influenced the trends in application development to a great
extent over the last decade. Organizations are putting more
emphasis on developing web-based systems because of the
wider availability and lesser cost of these applications.
Research in the field of e-Healthcare applications has been no
exception. Support from various government and private
institutions has led to the genesis of a plethora of web-based
medical software during a short span of time. A literature
survey on the current trends in e-Healthcare research shows
several projects dedicated to the development of web-based
applications to support enhanced patient care. While several
researchers have presented Internet based Electronic Medical
Record (EMR) systems [1, 2], development of web-based
applications for emergency care and building collaborative care
environments for improved healthcare services [3–5] have also
been active areas of study. Researches in the direction of
healthcare delivery at home [6, 7] and online monitoring of
patients’ vital statistics [8] have gained momentum in recent
times. Surprisingly, security considerations in these
applications are very often found inadequate for the risks
prevalent in the Internet environment. A great majority of the
existing web-based e-Healthcare softwares incorporate

transmission security as the sole means of protecting medical
data. Some of the approaches also use digital certificates in
conjunction with SSL for user authentication. Very few of the
articles discuss about other aspects of security like access
control, auditing and session management [3, 6, 9]. Further-
more, none of these works have been found to contain
discussions on application security.

In this paper we present the architecture of a web-based
four-tier telemedicine system named iMedik which has been
developed with a major emphasis on security. Our work
extends the existing three-tier application architecture [6, 7, 9]
to incorporate an additional layer of security. In this
architecture we are able to protect not only the medical
information but also the application components from hackers.
We have illustrated how the proposed four-tier architecture
imparts security, flexibility and robustness into the application.
We also present an analysis of the security of the proposed
system in the context of some common web-application
vulnerabilities. Emphasis on application security has been
given due to the recent rise in hacking incidents at the web
application level. Thus, our approach looks into the four-tier
architecture from an attacker’s viewpoint and presents a simple
road map for developing secure e-health application.

The rest of the paper is organized as follows. Section II
gives us an overview of the architecture of proposed system
followed by a description of the security module and its
analysis in Section III. Implementation details of the system are
highlighted in Section IV. In the succeeding section, a
comparison of the proposed architecture with the three-tier
architecture has been presented. Finally Section VI concludes
the paper by highlighting ongoing works in this direction.

II. SYSTEM ARCHITECTURE
Developed with the requirements of security, flexibility,

robustness and availability, iMedik enhances existing three-tier
web application development architecture [10, 11] by
introduction of an additional layer of security. During our
development phase it was observed that the generic three-tier
architecture consisting of Database Tier, Application Server
and Client Tier [Refer Fig. 1] is an ideal development model
where the different tiers reside within the perimeter firewall of
an organization. In the Internet environment, the Client is
typically replaced by a Web Browser and the Application
Server is placed behind a firewall with the introduction of a

This project is supported by grant No. 1 (23)/2006-ME&TMD of the
Ministry of Communications and Information Technology, Govt. of India.

ziglio
Typewritten Text
PERVASIVEHEALTH 2008, 30 Jan - 1 Feb. Tampere, Finland
Copyright © 2008 ICST 978-963-9799-15-8
DOI 10.4108/ICST.PERVASIVEHEALTH2008.2518

create-net
Typewritten Text

public HTTP Server [12, 13]. However, in both these
configurations, some portion of the application logic resides on
the public server outside the firewall and is vulnerable to
hacking attempts. The HTTP Server, which resides in the
Demilitarized Zone (DMZ), consists of presentation codes
written as scripts (asp/jsp/php/perl etc.). If this layer is
compromised, the hackers can view the script codes and learn
about sensitive implementation details. Moreover, in such
situations, the security system at HTTP Server may be
bypassed to access arbitrary components at the Application
Server.

Figure 1. Typical web-application deployment scenario

A. The Four-tier Architecture:
To overcome the shortcomings of the three-tier

architecture, we have customized the generic architecture to a
four-tier model composed of Database Layer, Business Logic
Layer, Presentation Layer and Web Proxy Layer [Refer Fig. 2].
As the client in our case is a standard web browser, it is not
considered as a component layer of the iMedik system. The
Database Layer is the lowest layer of the application. Since it
is the most sensitive segment of the application, database is
always protected by a firewall. Connection to database can only
be established by Business Logic Components. No other
machine or application is allowed to communicate with the
database directly. The second layer in our proposed
architecture is the Business Logic Layer which contains most
of the application logic. This layer is essentially the core of the
application. It performs all the database operations and carries
out computations on the fetched data. The layer above the
Business Logic Layer is termed as the Presentation Layer. It
intercepts all requests and responses to and from the Business
Logic Layer. Depending on the user request, this layer
performs filtering and formatting operations on the input and
output respectively. All these layers reside behind a Firewall
and hence can be termed as Private Layers or Internal Layers.
The firewall protects the Internal Layers from hacker attacks.

The fourth and outermost layer of the application which
distinguishes our approach from generic three-tier applications

is the Web Proxy Layer. This layer acts as the point of entry
to the proposed system. The Web Proxy resides in the
Demilitarized Zone (DMZ) outside the firewall and intercepts
all the http requests from users and forwards them to the
Internal Layers. The Web Proxy Layer also provides a single
point for validating user requests. It plays important role in
maintaining user sessions. Moreover, the presence of Web
Proxy allows us to hide all the application components behind
the firewall.

Figure 2. Layout of the proposed system.

We now illustrate the functioning of the application by
analyzing the processing sequence of a sample request [Refer
Fig. 2]. Assume that a Doctor D1 wants to view the list of
patients under him. So he sends a request for the page
“patList.aspx” to the system. The request is first intercepted by
the Web Proxy which verifies whether D1 is already
authenticated to the system. If so, the request is passed to the
Presentation Layer. The Presentation Layer now validates the
user inputs (form data, cookies, querystring etc.) and then calls
the appropriate Business Logic Component, say
DisplayModule.getPatientList(), for retrieving the patient list
from the database with doctorID as an argument. The Business
Logic Layer initially checks the access permission and then
returns the result of the database query to the Presentation

Layer. The result is now formatted as html output and returned
to the Web Proxy by the Presentation Layer. Finally the Web
Proxy forwards the response to D1. It is to be mentioned that all
communications between the Client and the Web Proxy and
between the Web Proxy and the Presentation Layer are
protected by SSL.

B. Advantages:
The four-tier architecture discussed above presented the

developers with a significant set of advantages. These are –

1) Enhanced Security: It increases the overall security of
the system by distributing the application components over
physically disjoint machines. Moreover, it incorporates
component security in the system. Details on other aspects of
security will be presented in the next section.

2) Cleaner Segregation of Application Logic and
Presentation Code: This architecture segregates the Presenta-
tion Logic from Business Logic, thus increasing the managea-
bility of the application.

3) Flexibility: The four-tier architecture also increases the
flexibility of the system. Modifications in the Presentation
Layer and the Web Proxy Layer is independent of the
Business Logic Layer. We can have multiple presentation
code communicating with the same Business Logic Layer
thereby allowing seamless integration of various user access
modalities. Such integration is a significant step towards the
development of a pervasive healthcare system.

4) Scalability: It increases the scalability of the overall
system. If all the layers are placed on a single computer, the
application will be able to support lesser number of concurrent
users than it can in the four-tier configuration.

C. Wireless Access:
Since handheld devices (PDA and Cellular Phones) have

very small screen resolution we have developed a special
module in iMedik for access over these devices. The Wireless
Rendering Module is a part of the Presentation Layer and it
uses the same Business Logic Components as the Desktop
Presentation Module. The wireless module is a direct example
of the flexibility of the proposed system and an initial step for
supporting pervasive healthcare services. Fig. 3 displays the
architecture of iMedik in conjunction with the Wireless
Rendering Module. The equivalence sign in the picture depicts
that the presentation modules for desktop and wireless access
may be hosted on the same server computer.

III. SECURITY SYSTEM DESIGN AND ANALYSIS
To protect an application effectively it is necessary for the

designers and security administrators to think like a hacker.
Otherwise, an application may be easily compromised due to
flaws in the application code. Hence we present the description
of the security module of our proposed system in this section
by considering common vulnerabilities and then discussing
about the countermeasures incorporated into the system to
address the same. In a web-based application such as ours,
security is essentially dependent on three components namely
Host Security, Network Security and Application Security. We

shall mostly focus our attention to the Application Security
aspects in this paper.

Figure 3. Access over wireless devices

A. Protection Against Web Application Vulnerabilities
With the advent of new web development technologies,

application level vulnerabilities are gradually increasing in
number. Presence of multiple platforms and browsers allows
these vulnerabilities to be exploited by an array of attack
vectors. Protection against all known web application
vulnerabilities is thus an arduous job. During the development
of iMedik, we considered a limited set of common web
application vulnerabilities for designing the security module.
The vulnerability list was prepared by consulting the OWASP
Top Ten [14] list, Microsoft STRIDE [15] model and some

other articles [16–19]. Table I lists the set of vulnerabilities that
have been addressed in the proposed system.

TABLE I. COMMON WEB APPLICATION VULNERABILITIES

Sl No. Vulnerability Name

V01 Cross-Site Scripting (XSS)

V02 Injection Flaws

V03 Authentication and Session Management

V04 Insecure Communication

V05 Insecure Direct Object Reference

V06 Information Leakage

V07 Insecure Cryptographic Storage

V08 Failure to Restrict URL Access

V09 Error Handling

V10 Auditing and Logging

V11 Buffer Overflow

V12 Denial of Service (DOS)

V13 Broken Caching and Reuse

V14 Logical Attacks

Among the listed vulnerabilities, V01, V02 and V11
normally arise due to improper user inputs and faulty input
validation routines. On the other hand, V03, V05, V08 and V10
are results of poor designing. Improper configuration of the
web application leads to V06, V07 and V09. Vulnerabilities
V12–V14 can be mitigated by careful design and
implementation, whereas, V04 requires the developer to use
some existing network security protocols like SSL/TLS.
Detailed description about these vulnerabilities can be found at
[14–16, 20].

1) Security Functionality at Various Layers: In this section
we present the security measures incorporated in each of the
layers to handle the vulnerabilities mentioned above. It is
followed by a discussion on the reasons for segregating the
security routines into four layers. We also present a brief
example illustrating how the mentioned security routines are
enforced when a particular webpage is requested.

a) Web Proxy Layer:
• It plays important role in managing and verifying user

sessions. When a user requests for a particular
webpage, this layers checks if the session specified by
the session cookie is valid. A request is passed to the
Internal Layers only if the session is valid. Apart from
preventing cookie replay attack, it also saves the
resources of Internal Layers by blocking invalid user
requests.

• The system manages two different session objects for a
user. The Web Proxy maps the local session to the
internal session (i.e. session at Presentation Layer). In

this scheme the reference of the internal session is
never revealed to the user.

• Limits simultaneous user connections to the server
thereby reducing the risk of DOS attacks.

• Restricts user access to known file extensions and a
specific set of resource locations. Thus, Web Proxy
Layer prevents execution of arbitrary files and blocks
path traversal attacks.

• The presence of this layer allows the developer to mask
the names of the internal objects (i.e. internal urls). It
incorporates indirection for various resources by
default.

• Depending on the type of content being requested by
the user (static/dynamic or sensitive/non-sensitive) this
layer can mark the response page as cacheable or not.
It provides protection against broken caching and
reuse vulnerability.

• When a user uploads a file to the system (e.g. patient
image), this layer checks the uploaded file for
malicious contents. It thus protects the Internal Layers
from being infected.

b) Presentation Layer:
• The most important security functionality of the

Presentation Layer is input validation. This layer
checks user inputs for data type, maximum and
minimum size, allowable character set and regular
expressions. In case an input violates these positive
specifications, it is rejected.

• This layer also contains filters for XSS and SQL
Injection. All user input is verified on the basis of
known XSS and SQL Injection signatures.
Computation on the user inputs is done only after
filtering.

• Presentation Layer plays important role in performing
URL access control in the system. It maintains a role-
based access control (RBAC) list specifying user
permissions and allows or denies requests to different
resources on the server.

• It maintains the user’s session information when a user
is logged in. This session information is internal to the
server and it’s not sent to the client. The session is
expired after a specified period of inactivity or log out
by the user, whichever is earlier.

• Hidden form values and querystring values are
encrypted by the Presentation Layer using a session
key. The encryption key is generated by the .Net
framework and saved in machine key store during
session initiation. It is deleted when the session
expires. This scheme protects the application from
parameter tampering attacks to a large degree.

• Before sending the output to the user, this layer
performs output encoding of the untrusted data

elements. Thus the system is protected against XSS
attacks.

• The Presentation Layer also limits resources used by
different users, thereby mitigating risks of DOS
attacks.

• Moreover, automated submissions of forms for
important user activities like prescription writing,
patient referral, and image upload etc. are blocked by
employing graphical confirmation schemes [21].

c) Business Logic Layer:
• This layer performs a component level access control

for user requests. When a particular webpage is
requested, the Business Logic Layer checks which
components are being used by the user. It then takes
necessary access decisions depending on the policy.

• Hashing of user passwords and encryption of sensitive
data in the database are other functionality of the
Business Logic Layer. It also incorporates strong
password enforcement routines into the system.

Figure 4. Security functionality at various layers

• While connecting to the database, this layer always
uses low-privileged database accounts depending on
the user’s role. Moreover, the use of parameterized
SQL eliminates risks of SQL Injection attacks.

• Blocks user accounts after a maximum number of
failed login attempts. Thus it protects the system
against dictionary attack on user passwords.

• Since this layer is responsible for encryption of
sensitive data, it secures the encryption key by splitting
the key and storing it in machine key stores. Thus the
system protects itself against insecure cryptographic
storage vulnerability.

• Furthermore, the Business Logic Layer is configured
properly to restrict access to configuration files, policy
files, log files, key stores etc.

d) Database Layer:
• The Database Layer enforces confidentiality and

integrity of patient records by allowing access to
different database tables and views based on the
requesting users’ roles.

e) Common Functionality: Apart from the functionality
mentioned above, each of the first three layes also have some
common security features which are very essential for overall
security of the system.

• Logging: Each of the layers in our proposed system
contains a logging module which helps the
administrators to analyze unusual user behaviours.

• Error Handling: By default the layers are configured
to send only custom error messages in case of
exception. This prevents the attacker from getting
sensitive information about the implementation details
of the system. Moreover, the Web Proxy Layer always
traps errors from the Internal Layers and sends “200
OK” message to the client, thereby masking error
conditions.

• Communication Security: The communication between
user client and the Web Proxy Layer is done using SSL
to prevent network eavesdropping. Messaging between
different layers in iMedik is also SSL protected.

• Server Configuration: Each of the layers of iMedik is
configured to release minimal information about the
server platform and block arbitrary path traversal.

 Let us not illustrate how the security functionality are
enforced at various layers when a webpage is requested [Refer
Fig. 4]. Suppose a doctor wants to view a medical image of a
particular patient. When he clicks on the image link a request is
generated for the webpage

“https://website/displayModule/writeBinaryData.aspx”.

This webpage takes five inputs: the patientId, image type,
image serial no., the date on which the image was entered and
the doctorId. Among these, the first four inputs are supplied as
querystring parameters whereas the doctorId is retrieved from
the current session object. The querystring for the Url request

looks as “id=VHOS1208070001&ty=BLD&sl=01&dt=12/8/
2007”. However, the security module in the Presentation Layer
encrypts the querystring to prevent it from being modified.
Thus the encrypted string as displayed to the user is

“https://website/displayModule/writeBinaryData.aspx?
ShUyU6zqzx5yCLH%2bq...TpJ1mIN%2b4%3d”.

This request is first intercepted by the Web proxy Layer
which verifies the user’s session, maps the external session
identifier with the internal session, converts the url mentioned
above to the internal url and then sends the request to the
Presentation Layer. The Presentation Layer first checks the
user’s access permission for this particular page. Then the
querystring is decrypted with the session key. After verifying
the input parameters, a request is made to the Businees Logic
Components for retrieving the specified image from the
database. The Business Logic Layer checks the permission of
the user on the requested component and then issues a database
query with the input values as SQL parameters. Finally the
image is displayed only if the requesting doctor has viewing
permission on the patient records. During processing each of
the layers maintain log of the objects being accessed. Error
situations, if generated, are also handled appropriately.

2) Advantages of the Four-tier Security Module: The
security system of iMedik, which is distributed over the
different layers, presents us with a rich set of functionality and
greater advantages over typical three-tier systems. The four-
tier security module presented in this paper works as a
composition of the functionality embedded at various layers.
Removing the security modules of any layer may render the
application vulnerable to certain types of attacks. The strength
of the four-tier security module derives from the following:

a) Redundancy: Due to the four-tier architecture some
of the security modules could be replicated at various layers
(e.g. access control at presentation and business logic layer,
session management at web proxy and presentation layer etc.).
As a result of this, if an attacker escapes security checks at a
particular layer, the system can still block the request at deeper
level.

b) Component Security: Introduction of the Web Proxy
allows a developer to hide all the components of the
application including the Presentation Logic and the Business
Logic behind the firewall. The Web Proxy which is exposed in
the DMZ contains only minor Validation Logic. This ensures
that even if the Web Proxy is compromised, the core of the
application will still be unaffected. Moreover the
communication from the External Layer to the Internal Layers
is authenticated by client certificate. Thus any malicious
program running on Web Proxy must have access to a valid
client certificate to establish connection with Presentation
Layer.

c) Sandboxing: The Web Proxy Layer, which can
intercept all requests (responses) coming to (from) the system,
also acts as a virtual sandbox for the entire application. It can
filter any of the requests or responses depending on the
security requirements.

d) Ease of Implementation: The four-tier architecture
also gives us a great degree of flexibility for implementing
many of the security modules. E.g. we can implement error
handling very easily in this system by trapping all exceptions
at the Web Proxy Layer. This scheme hides error conditions
from the user even if the Internal Layers do not have an error
handling module in place.

e) Performance: Since the security functionality are
distributed over four-layers the overhead at each of the servers
is less. If the entire security code is placed on a single machine
(say Business Logic Layer), the response time for that server
may increase leading to a degradation of performance for the
entire system. Moreover, correct functioning of that layer
becomes crucial for security of the system.

3) Compliance with Security and Privcy Regulations:
Various countries in the world have developed their own set of
regulations for protection of individuals’ privacy and their
healthcare records. Among these the HIPAA regulations [22,
23] set by the US Department of Health and Human Services,
the EU Directive on Personal Data Protection [24], European
Standards and Guidance on Privacy and Confidentiality in
Healthcare [25] and the Personal Information Protection and
Electronic Documents Act [26] in Canada are notable. Due to
the lack of security and privacy regulations for e-Healthcare
data in India we decided to assess iMedik against HIPAA
Security Standards. HIPAA was chosen as “a reference
guideline” for medical data security because of the wide-scale
availability of HIPAA related documents over the Internet.
During the development of our application we followed some
of these guidelines and implemented the ‘Required’ as well as
the ‘Addressable’ safeguards. Our work mostly pertains to the
“Technical Safeguards” section of the “HIPAA Security
Standards” which specifies Access Control, Audit Control,
Integrity, Person or Entity Authentication and Transmission
Security as some of the requirements for achieving HIPAA
compliance [23]. On the basis of the preceding analysis it can
be clearly stated that our proposed system meets all these
requirements. Moreover, to ensure the integrity of medical
records stored in the database, users are not allowed to modify
or delete any data without administrator’s approval.

IV. IMPLEMENTATION
iMedik, our prototype four-tier telemedicine system, has

been developed using Microsoft .Net framework. The medical
database has been hosted in an MS SQL Server. It contains
various clinical data in well structured format. All the other
layers of the application are hosted in IIS Servers. These layers
have been deployed on physically separate machines. The Web
Proxy Layer consists of executables for accepting http requests
whereas the Presentation Layer is composed of Asp, Html and
Asp .Net pages. The Business Logic Layer has been developed
in C# and it contains .Net Remoting objects. The user interface
is completely browser based and hence the user need not install
any separate software for using our application.
Communication between the Client and the Web Proxy Layer
is done using HTTP(S) messages. The Presentation Layer also

processes HTTP(S) requests. The communication between the
Presentation Layer and the Business Logic Layer is SOAP
formatted. It is to be noted that SSL alone is inadequate to
support non-repudiation of user activities in an application. Our
current system incorporates non-repudiation by monitoring and
analysis of log files. However, we are in the process of
implementing existing XML-Security based non-repudiation
schemes into our system.

Apart from the browser-based user interface and the
security functionality, iMedik also has the following features:

• It complies with the Electronic Patient Record (EPR)
standards draft proposed by National Task Force for
Telemedicine Standards, Ministry of Communication
and Information Technology, Govt. of India. [27]

• Supports uploading and display of textual (txt, doc, pdf
etc.), multimedia (image, audio, video, Dicom) as well
as graphical data (ecg data).

• Incorporates functionality for visualization and
annotation of human profiles and medical images to
facilitate medical discussions.

• Supports creation of electronic whiteboards for online
consultation among multiple doctors.

• The system includes utilities for Patient Information
Backup and Restore.

• Supports generation and display of patient statistics as
part of the administrative module.

During implementation of the system, the technical
guidelines for secure web application development described in
[17] were consulted. The article presented us with a brief
overview of secure application development methodology and
a checklist for verifying the same. At different phases during
the implementation the system was tested for logical
correctness as well as for certain types of vulnerabilities. The
Nessus tool [28] was used extensively for scanning the servers
for open ports and related vulnerabilities. Appropriate
corrective measures were taken according to the scan results.
We also used Paros Proxy [29] for testing the application for
different types of Input Injection and Parameter Manipulation
attacks.

Figure 5. Dicom viewer utility in iMedik

Figure 6. Blood test report displayed on PDA

Fig. 5 illustrates the Dicom Viewer tool of iMedik whereas
Fig. 6 shows a patient’s blood test report as displayed on a
PDA. Note that in Fig. 6 common words have been abbreviated
to fit in the small screen size of PDA.

V. COMPARISON WITH THREE-TIER SYSTEMS
It is to be emphasized that the proposed four-tier

architecture presents several advantages over existing three-teir
applications. Firstly, let us consider the case of a typical three-
tier web application where the application logic / presentation
logic is hosted on a public computer [Refer Fig. 1]. This
computer communicates with an Internal Database which is
protected by a firewall. Since the web server is always hosted
in the DMZ it is vulnerable to hacking attempts. If this server is
compromised, the database is no longer hidden to the attacker.
The attacker can easily modify the application components to
perform arbitrary operations on the database. Moreover if the
web application consists of codes written in the scripting
languages the entire application logic is exposed to the hacker.

In comparison, the proposed four-tier system hosts the
application components securely behind a firewall. The Web
Proxy Layer consists of only executable codes. Hence the
application logic is never visible to the attacker. Even if the
Web Proxy Layer is compromised, the medical database is
never directly accessible to the attacker. The database can only
be accessed using the Business Logic Components. Thus the
difficulty of hacking the medical database increases manifold.

Secondly, in a three-tier system, access control decisions are
usually taken at the Application Server as this resides in the
private network and is considered hack proof. However, in the
proposed system we can have two-level access control
mechanism (on physically separate machines) behind the
firewall which is not possible in three-tier configurations. This
two-level scheme ensures that a request need not travel as far

as the Business Logic Layer before an access violation is
triggered.

Thirdly, the four-tier architecture gives us cleaner
segregation of presentation logic and business logic. Separate
modalities for access over various devices can be seamlessly
integrated with a single business logic server. The decision
about which module at the Presentation Layer should be
accessed can be taken intelligently by the Web Proxy Layer by
monitoring the client resolution. In a three-tier system, this
segregation is typically done by assigning separate domains
(sub-domains) for different modalities.

Fourthly, the proposed architecture presents a custom-built,
secure gateway for the entire application in the form of Web
Proxy Layer which is missing in a three-tier application.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper we have so far presented the design and

security analysis of a four-tier web-based telemedicine
application. iMedik, the proposed system, differs from existing
web-based telemedicine services due to its architecture and its
emphasis on application level vulnerabilities. We have
illustrated how the introduction of the fourth layer of iMedik or
the Web Proxy Layer reduces the risk for many types of
attacks. The advantages of the proposed four-tier architecture
over existing three-tier architecture have also been highlighted.
The security measures incorporated at various layers of the
application shows how such a four-tier application can be
protected against common web application vulnerabilities.
Furthermore, how users can access healthcare data in the
proposed system from any location using desktop computers as
well as handheld devices has been discussed. The authors
firmly believe that the security measures combined with the
four-tier architecture presented here gives a simple but elegant
road map for secure web application development for
anywhere, anytime availability.

The four-tier telemedicine system, as described in Section
II, has each layer hosted on a single computer. This scheme
works perfectly so long as all the servers are running without
failure. However, if any of the servers crashes, the entire
system becomes unavailable. To eliminate such faulty
situations and to improve server performance, we are presently
working towards a high-availability cluster-based implementa-
tion of iMedik where each of the layers will form individual
clusters. It is to be noted that the authentication module of
iMedik having custom routines for user identification, may be
replaced by SAML authentication (SIM based authentication
for wireless access) in future. Such schemes will help us in
performing identity federation of users among multiple
hospitals and insurance providers in a flexible and secure
manner. We are also integrating a HL7 module into the existing
system for ensuring interoperability of our system with other e-
Healthcare applications.

ACKNOWLEDGMENT
 The authors would like to express their gratitude to the

members of the Project Review Committee for their
suggestions during the course of the project and to the

personnel of WEBEL ECS, Kolkata, India for their help in the
deployment of the system. Acknowledgements also go to Dr.
Sangeeta D. Bhattacharya, School of Medical Science and
Technology, IIT Kharagpur for her continued help and
guidance. The contributions of Mr. Debkumar Pradhan, Mr. D.
Durga Prasad, Mr. Partieswar Rao, Mr. Abhijit Bhosale and
Mr. Suman Kundu during the implementation phase are highly
appreciated.

REFERENCES
[1] A.R. Al-Ali, A.O. Abdul Salam, L. Al-Zohlof, M. Manna and R.

Zakaria, “A cyber medical center,” Computer Methods and Programs in
Biomedicine, 80(1), pp. S85–S94, December 2005.

[2] M. Masseroli, A. Visconti, S. G. Bano and F. Pinciroli, “He@lthCo-op:
a web-based system to support distributed healthcare co-operative
work,” Computers in Biology and Medicine, 36(2), pp. 109–127,
February 2006.

[3] E. D. Lemaire, D. Deforge, S. Marshall and D. Curran, “A secure web-
based approach for accessing transitional health information for people
with traumatic brain injury,” Computer Methods and Programs in
Biomedicine, 81(3), pp. 213–219, 2006.

[4] J. Zhang, J. Sun, Y. Yang, X. Chen, L. Meng and P. Lian, “Web-based
electronic patient records for collaborative medical applications,”
Computerized Medical Imaging and Graphics, 29(2), pp. 115–124,
March–April 2005.

[5] C. Caceres, E. J. Gomez, F. Garcia, J. M. Gatell and F. del Pozo, “An
integral care telemedicine system for HIV/AIDS patients,” International
Journal of Medical Informatics, 75(9), pp. 638–642, September 2006.

[6] N. Maglaveras et al., “The citizen health system (CHS): a Modular
medical contact center providing quality telemedicine services,” IEEE
Transactions on Information Technology in Biomedicine 9(3), pp. 353–
362, 2005.

[7] M. Wang, C. Lau, F. A. Matsen III and Y. Kim, “Personal health
information management system and its application in referral
management,” IEEE Transactions on Information Technology in
Biomedicine, 8(3), 287–297, 2004.

[8] Y. Xiang, Q. Gu and Z. Li, “A distributed framework of web-based
telemedicine system,” In Proceedings of the 16th IEEE Symposium of
Computer-Based Medical Systems 2003, pp. 108–113, 26–27 June 2003.

[9] G. K. Matsopoulos, V. Kouloulias, P. Asvestas, N. A. Mouravliansky,
K. K. Delibasis and D. Demetriades, “MITIS: a WWW-based medical
system for managing and processing gynecological-obstetrical-
radiological data,” Computer Methods and Programs in Biomedicine
76(1), pp. 53–71, 2004.

[10] L. Desmet, B. Jacobs, F. Piessens, and W. Joosen, “A generic
architecture for web applications to support threat analysis of
infrastructural components,” In Proc. Eighth IFIP TC-6 TC-11

Conference on Communications and Multimedia Security (CMS 2004),
September 2004, UK.

[11] “Application architecture: an n-tier approach,” http://www.15seconds
.com/issue/011023.htm

[12] P. V. Sickel, “Hardware configurations for WebSphere application
server production environments,” ftp://ftp.software.ibm.com/software/
dw/wes/pdf/0212_vansickel.pdf

[13] A. K. Maji, A. Mukhoty, A. K Majumdar, J. Mukhopadhyay, S. Sural,
“Secure healthcare delivery over the web: a multi-tier approach,” In
Proc. Indian Conference on Medical Informatics and Telemedicine
(ICMIT 2006), 18–20 December, 2006, Kharagpur, India.

[14] OWASP, “The ten most critical web application security vulnerabilities,
2007 Update,” OWASP Whitepaper, 2007.

[15] J.D. Meier, A. Mackman, S. Vasireddy, M. Dunner, R. Escamilla and A.
Murukan, “Improving web application security - threats and counter
measures,” Microsoft Press, P. 13–43, 2003.

[16] “Web Application Security Consortium: Threat Classification,”
http://www.webappsec.org/projects/threat/v1/WASC-TC-v1_0.pdf

[17] Watchfire, “Developing and deploying secure web applications,”
Watchfire Whitepaper, 2004.

[18] SPI Labs, “Hybrid analysis: an approach to testing web application
security,” SPI Dynamics Whitepaper, 2006.

[19] D. Gritzalis, C. Lambrinoudakis, D. Lekkas and S. Deftereos, “Technical
guidelines for enhancing privacy and data protection in modern
electronic medical environments,” IEEE Transactions on Information
Technology in Biomedicine, 9(3), pp. 413–423, 2005.

[20] “Common Weakness Enumeration (CWE),” http://cwe.mitre.org/
[21] “CAPTCHA,” http://en.wikipedia.org/wiki/Captcha
[22] “Medical Privacy - national standards to protect the privacy of personal

health information,” http://www.hhs.gov/ocr/hipaa/
[23] “HIPAA overview,” http://www.nchica.org/hipaaresources/ev/hipaa

overview.pdf
[24] “Directive 95/46/EC of the European Parliament and of the Council of

24 October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data,”
Official Journal of the European Communities, No L. 281, pp. 31,
November 1995.

[25] “European standards and guidance on privacy and confidentiality in
healthcare,” http://www.eurosocap.org/eurosocap-standards.aspx

[26] “The Personal Information Protection and Electronic Documents Act,”
http://www.privcom.gc.ca/legislation/02_06_01_e.asp

[27] “Recommended Guidelines & Standards for Practices of Telemedicine
in India,” Ministry of Information Technology, Government of India,
http://www.mit.gov.in/telemedicine/Report of TWG on Telemed
Standardisation.pdf

[28] “Nessus vulnerability scanner,” http://www.nessus.org/ download/
[29] “Paros – for web application security assessment,” http://www.paros

proxy.org/index.shtml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

