
Analysis of Forward Error Correction Methods for
Nanoscale Networks-On-Chip

Teijo Lehtonen
Turku Centre for Computer

Science (TUCS)
Turku, Finland
tetale@utu.fi

Pasi Liljeberg
University of Turku

Department of Information
Technology

pakrli@utu.fi

Juha Plosila
Academy of Finland

Research Council for Natural
Sciences and Engineering

juplos@utu.fi

ABSTRACT
The amount of errors in future nanoscale technologies is ex-
pected to increase dramatically when compared to technolo-
gies that have line width larger than 90 nm. In nanoscale
CMOS circuits fault tolerance is one of the most impor-
tant design constraints to sustain system reliability at an
acceptable level. We analyze different error correcting cod-
ing methods for on-chip communication networks of future
nanoscale multiprocessor systems. The implemented com-
munication circuits are compared in terms of error correction
capability, circuit area and power consumption. In addition,
performance of implemented systems is evaluated under dif-
ferent error scenarios by taking into account variable number
of single bit errors, burst errors, and their combinations.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability—Reliabil-
ity, Testing and Fault-Tolerance

General Terms
Design, Reliability

Keywords
fault tolerance, forward error correction, nanoscale circuits,
on-chip communication

1. INTRODUCTION
It is expected that the number of both manufacture-based

and run-time generated errors will dramatically increase in
future nanoscale systems [1]. Errors originate from noise,
process variations and joint effect of these. Impact of differ-
ent noise sources such as crosstalk, power supply and timing
noise is profound in future nanoscale systems due to lower
supply voltage, proximity of wires and smaller sizes of ac-
tive devices. In nanoscale technologies probability of errors
caused by neutrons [5], alpha particles and electromigration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Nano-Net 2007 Catania, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

increases [9]. Furthermore, random dopant fluctuations, the
impact of which will increase with technology scaling, cause
threshold variations that in turn lead to random variations
in delays [6]. Hence, fault tolerance of nanoscale systems
needs to be one of the most important design metrics.

The reliability of nanoscale systems is strongly affected by
the reliability of communication links, a single malfunction-
ing link may paralyze a large portion of a system. The errors
can be classified into three categories: permanent, intermit-
tent and transients [4]. An efficient fault tolerance method
needs to take into account all of these.

There is a number of solutions to cope with the increas-
ing number of errors. For on-chip communication links such
as network-on-chip (NoC) links information redundancy ie.
coding is the most feasible solution. For now the research
has focused on tolerating a very limited number of simul-
taneous errors, commonly one or two [2, 7, 8, 9]. When
considering future chips it is likely that there are more simul-
taneous errors, some of them are permanent and the others
transient, and the probability for burst errors is expected to
increase. An efficient fault tolerance approach should take
into consideration both multiple simultaneous single errors
and burst errors where several adjacent bits are erroneous.

There are two possible ways for the error recovery when
an error has been detected. In automatic repeat query
(ARQ) the receiver informs transmitter about the errors
and requests a retransmission. Other approach is forward
error correction (FEC), where the information carried by
the check bits is used to correct the error. Both of the ap-
proaches have their pros and cons. ARQ has been reported
to be more power-efficient [2]. This is based on the assump-
tion that since the error detection capability td of a code is
higher than the error correction capability tc (td = d − 1,
tc = b(d − 1)/2c, where d is the code distance), the link
can use lower voltage for getting the same bit error rate.
Also the FEC decoder is more complex than the one for
ARQ and thus consumes more energy. On the other hand
the time needed for retransmissions is the drawback of the
ARQ approach. If errors occur infrequently the additional
delay may be acceptable, but the approach cannot guaran-
tee certain throughput. In the presence of permanent errors
the retransmission principle does not work, while FEC with
a code strong enough still works.

We study several FEC codes beyond simple codes that
correct only single errors. We analyze their error tolerance
against multiple simultaneous single errors, different lengths
of burst errors and mixtures of both. We present hardware
realizations for the codes and report the performance values.

peri
Callout

peri
Callout

peri
Typewriter
Nano-Net 2007 September 24-26, 2007, Catania, Italy.

Copyright 2007 ICST ISBN 978-963-9799-10-3

DOI 10.4108/ICST.NANONET2007.2035

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of single errors per transmission

C
or

re
ct

 tr
an

sm
is

si
on

s

1;2 2;2 1;3
0

0.2

0.4

0.6

0.8

1

Number of single errors and the length of burst errors per transmission

C
or

re
ct

 tr
an

sm
is

si
on

s

2 3 4 2x2
0

0.2

0.4

0.6

0.8

1

Length of burst error per transmission

C
or

re
ct

 tr
an

sm
is

si
on

s

2 3 4 2x2
0

0.2

0.4

0.6

0.8

1

Length of burst error per transmission

C
or

re
ct

 tr
an

sm
is

si
on

s

Hamming 1
Hamming 2
Hamming 3
BCH 1
BCH 2
BCH 3
Reed−Solomon 1
Reed−Solomon 2

Figure 1: Error correction capability of the coding approaches under different fault scenarios.

2. CODING APPROACHES
For finding the codes for the analysis we need to set some

objectives. The code must correct at least two simultaneous
single errors (t ≥ 2). In this way the system still tolerates
single transients in the presence of a single permanent error.
The coding approach must also correct at least burst errors
of length 3 (b ≥ 3). This takes care of the situation when a
single erroneous wire affects its adjacent wires. The coding
approach must not introduce too much redundancy. The
limit for extra wires is set to 50 % of the original number
of wires, thus the code rate (width of dataword / width of
codeword) must be at least 2

3
(R ≥ 2

3
). Since the target

is on-chip communication link, the encoding and decoding
should be easily and effectively implementable using stan-
dard logic. The width of the data link is set to 64, thus data
width k = 64 and code length n ≤ 96.

Hamming codes [3] are the most widely used codes in the
previous research of NoC link error protection [2, 7, 8, 9].
The distance of Hamming codes is 3 or 4 for extended Ham-
ming code, so it can correct single errors (t = 1). Therefore,
the Hamming codes do not fill the minimum requirements
set. Nevertheless, we take Hamming code (n = 71, k = 64)
with rate R = 0.90 as a reference to our other codes.

Interleaving is an efficient way to cope with burst errors.
It means partitioning the data word into parts and encod-
ing each of them separately and after that taking one bit of
each at a time to get the final code word. The interleaving
affects mainly the burst error tolerance but it also has an
effect on tolerance against simultaneous single errors. Many
single errors can be corrected if they affect separate inter-
leaving sections. Therefore, Hamming codes together with

Table 1: The analyzed codes.
Code n k Rate Notes
Hamming 1 71 64 0.90
Hamming 2 79 64 0.81 2x(26,21)+(27,22)
Hamming 3 84 64 0.76 4x(21,16)
BCH 1 88 64 0.73 2x(44,32)
BCH 2 85 64 0.75
BCH 3 92 64 0.70
Reed-Solomon 1 85 65 0.75 RS(17,13)
Reed-Solomon 2 95 65 0.67 RS(19,13)

interleaving could be a possible solution. Two approaches
are analyzed. In the first one there are three interleaving
sections. The data has been divided to them 22+21+21=64
and the used codes are 2x(26,21)+(27,22) resulting to rate
R = 0.81. In the other approach the data is divided into
four 16-bit parts and each of them is coded with Hamming
code (21,16). The rate for this approach is R = 0.76.

The Bose-Chaudhuri-Hocquenghem (BCH) codes [3] are
a class of linear block codes that can be easily constructed
according to specifications for correcting as many errors as
is required. We analyze two different BCH codes. One with
error correcting capability of three and the other with four.
The codes are (86,64) and (92,64) and their rates 0.75 and
0.70 respectively. BCH codes can also be combined with
interleaving. An approach with two interleaving sections,
both encoded using double-error correcting code (44,32), is
analyzed. The rate of this approach is 0.73.

The abovementioned BCH codes are binary but also non-
binary BCH codes exist. The most interesting ones of these
are the Reed-Solomon (RS) codes [3]. The RS codes are
optimal meaning that they provide the maximum distance
at the used number of check symbols. The use of a nonbi-
nary code with binary coded symbols is an effective way for
battling against burst errors. On the other hand it is not
very effective in single error tolerance. Two RS codes are
analyzed. The both codes use elements of Galois Field 25

as symbols, so five bits are needed to encode each symbol.
The first code is (17,13) having n = 85, k = 65 and rate
R = 0.75. The second one has one larger error correction
capability and it is (19,13) Reed-Solomon code resulting to
n = 95, k = 65 and R = 0.67.

The codes are listed in Table 1.

3. FAULT TOLERANCE ANALYSIS
In order to compare the error correction capability of the

presented codes, we have run simulations on different error
scenarios. The scenarios include 1 to 4 single errors, bursts
of length 2 to 4 and combinations of them. The results
are presented in Figure 1, where the probability for correct
transmission is presented for different codes under different
error scenarios. In the top-left graph the single error cor-
rection capability is illustrated. We see that all presented

data
F

64

C=Error correction
error vector extraction

Fi=Inverse Fourier transform /
syndrome calculation

F=Fourier transform /

64

5656
92

64
data

64
C

ready_out
valid_outcontrol

Fi

65

controlready_in
valid_in

92

=0

65

control

Berlekamp−Massey

Figure 2: Structure of the decoder for code BCH 3.

codes manage single errors but only one (BCH 3) corrects
four simultaneous single errors in all cases. The codes that
use interleaving correct more errors than the codes with sim-
ilar error correction capability but no interleaving. This is
due to the fact that in some cases the errors hit different
interleaving sections and the code can correct them. See for
example the codes Hamming 2 and Hamming 3 with two
simultaneous single errors. Hamming 2 has three interleav-
ing stages and therefore statistically every third case is such
that the two errors hit the same interleaving section, which
cannot be corrected. Similarly there are four interleaving
stages in Hamming 3 and in one fourth of all the cases the
error cannot be corrected.

Interleaving is an efficient way for tolerating burst errors
as are also the Reed-Solomon codes, which can be seen from
the bottom-left graph of Figure 1. BCH codes correct bursts
as long as the total number of errors does not exceed their
error correction capability. An interesting result is the case
where instead of one long burst there are two smaller bursts
(2x2). The codes with Hamming coding and interleaving
are not effective in this scenario, since only seldom the two
bursts hit the code so that there is only one error per section.

The combined cases presented in the third graph give a
deeper insight into the correction abilities of the codes. From
the graph it can be seen what happens when there is one
permanent error in the link and a burst error occurs. The
BCH and RS codes can handle the situation better than
Hamming codes even with extensive interleaving.

4. CIRCUIT REALIZATIONS
The on-chip communication links are typically parallel

links while the most commonly presented encoding and de-
coding circuits are designed for serial transmission and based
on linear feedback shift registers. Therefore, other methods
besides these have to be used for the encoding and decod-
ing. On the other hand interleaving for parallel links is much
simpler than for serial links. As for serial links a memory
block would be needed, in parallel links the interleaving is
just routing the wires in a specific manner.

The encoding of linear block codes can be done with ma-
trix multiplication c = aG, where a is a dataword vector of
length k, G is a k× n generator matrix and c is a codeword
vector of length n. Since we are using systematic (separa-
ble) codes, only the first n−k codeword symbols have to be
calculated and the rest are just the symbols of the dataword.
The binary matrix multiplication is simply calculating par-
ity bits, which in hardware means trees of xor gates.

The decoding can be done by first calculating the syn-
drome by matrix multiplication s = uHT , where u is a re-
ceived code word vector of length n (u = c+ e, where c is a
transmitted codeword and e an error vector, both of length
n), HT is a transpose of (n−k)×n parity check matrix and

s is a syndrome vector of length n− k. The syndrome gives
the index of error vector in the coset leader table, so the
error vector e (length k) can be easily determined. A coset
is the set of all the error vectors that produce a same syn-
drome and the coset leader is the one having the minimum
weight, ie. the minimal number of errors. The correction is
done by taking xor function separately for each bit from the
data part of the received codeword and the error vector.

The abovementioned decoding method is limited by the
size of the coset leader table. When the number of check
bits n − k is high, the table is impractically large. In the
BCH 1 code there are 12 check bits, so the table has 4096
rows, which is quite at the upper limit of this method. For
the other BCH codes the table row count would be over 220

and therefore another method must be used for them.
The decoding of BCH codes can be done using Berlekamp-

Massey (B-M) algorithm [3]. The algorithm is iterative and
it needs 2t iterations, where t is the error correction capa-
bility of the code. The calculations are done in Galois Field
2m, where m = 7 for the codes BCH 2 and BCH 3. In
addition to the actual algorithm a pre-processing circuit is
needed. Using Fourier transform in GF (2m), 2t syndromes
are calculated. This basically means quite similar trees of
xor gates in hardware as for the syndrome calculation ex-
plained above. The error vector e is extracted by using a
method called Chien search to find the zeros of polynomial
Λ(x) output by B-M algorithm. [3]

The decoding of RS codes is also based on B-M algorithm.
The main difference is that in addition to error vector e also
the error values are needed to do the error correction. The
error vector e points the erroneous GF(25) symbol (5 bits)
and the actual correction is done by adding the error value
of that particular symbol and the transmitted symbol itself.
The error values can be extracted using Forney algorithm
with inputs Λ(x) and Γ(x), both gained from B-M algo-
rithm. Also the Fourier transform requires slight changes
compared to the one used for BCH decoding. In RS coding
all the calculations are done with GF(25) symbols while for
binary BCH codes the syndrome calculation is just calculat-
ing parities of different sets of bits. [3]

The target in the design approaches is to achieve a high
throughput. Therefore the designs are pipelined. The en-
coding is done in one pipeline stage but the decoder units
have at least two pipeline stages. In the simpler decoders
the first pipeline stage is for deinterleaving (if necessary)
and for calculating the syndrome. The error correction is
done in the second pipeline stage. In the decoding approach
using B-M algorithm three pipeline stages are identified: the
Fourier transform ie. syndrome calculation, the actual algo-
rithm and the error vector extraction and correction.

The throughput in the case, where there is no errors is
maximized. This means that the parts which are needed
only for error correction (not for detection) are bypassed

if it results to higher throughput. For the codes based on
Hamming coding, there is no benefit in bypassing the er-
ror correction part, so the decoders consist of simply two-
stage pipeline and the throughput and latency are always
the same. For the BCH and RS codes it is beneficial to by-
pass the correction part, if no errors are present and thus
resulting in two different throughput and latency values, one
with and the other without errors in the received codeword.

Because the throughput varies, signals for indicating when
data is ready (valid) or when the circuit is ready for taking
in new data (ready) are introduced. The same signals are
convenient for indicating breaks in data transmission. For
the sake of compatibility, the signals are inserted to every
encoder and decoder.

The structure of the decoder for the BCH 3 code is pre-
sented in Figure 2. The three pipeline stages can be seen
clearly. The first stage (Fourier transform) takes one clock
cycle. However, if the following stages are not ready, the
first stage holds the data until it can be forwarded. The
outputs of the first stage are the syndromes 56 (2tm) bits,
data word 64 (k) and 1-bit information indicating if correc-
tion is required. The indication for the need of correction is
obtained by checking if all the syndromes are zero.

The second stage either passes the data directly to the
next stage or goes through the B-M algorithm and passes
its result together with the data. The algorithm takes 8 (2t)
clock cycles but if no errors are present the data is forwarded
in only one clock cycle. The final stage either forwards the

Table 2: Characteristics of the designed circuits.
Circuit area [(µm)2]
Code Encoder Decoder Total (gate eqv.)
Hamming 1 4683 8881 13564 (3090)
Hamming 2 3628 8837 12464 (2839)
Hamming 3 3335 8280 11645 (2653)
BCH 1 4626 61616 66242 (15089)
BCH 2 5023 74682 79704 (18156)
BCH 3 5807 107679 113486 (25851)
RS 1 6054 36688 42743 (9736)
RS 2 8090 56624 64714 (14741)

Power consumption [mW]
Code Encoder Decoder Total
Hamming 1 0.27 0.45 0.73
Hamming 2 0.17 0.39 0.56
Hamming 3 0.14 0.31 0.44
BCH 1 0.19 2.01 2.20
BCH 2 0.14 3.11 3.25
BCH 3 0.15 4.68 4.83
RS 1 0.26 1.57 1.82
RS 2 0.40 2.85 3.25

Clock frequency [MHz], throughput [MWord/s] and
decoder latency [clock cycles]

Clock Throughput / Latency
Code frequency no errors when errors
Hamming 1 1800 1800 / 2 1800 / 2
Hamming 2 2000 2000 / 2 2000 / 2
Hamming 3 2000 2000 / 2 2000 / 2
BCH 1 1800 1800 / 2 900 / 3
BCH 2 1100 1100 / 3 183 / 9
BCH 3 1100 1100 / 3 138 / 11
RS 1 1300 1300 / 3 325 / 9
RS 2 1300 1300 / 3 217 / 10

data to output (1 clock cycle) or extracts the error vector
and does the correction before outputting (2 clock cycles).

The designs were created using VHDL, mapped to 90 nm
technology, synthesized and simulated to verify their oper-
ation. The place and route phase was omitted since the
synthesis results give enough information for structure com-
parison and indicate the feasibility of the proposed struc-
tures. The timing margin was set to 20 % so the circuits
were designed for a clock frequency 20 % higher than the
one reported in Table 2 and they were also synthesized to
meet the timing requirements of that higher clock frequency.
For instance, Hamming 2 and Hamming 3 can operate at
2.4 GHz in normal operating conditions. This gives a rea-
sonable margin for process variance and changes in the op-
eration environment. Additionally, the outputs were set to
stabilize 90 ps before the next clock edge, which is enough
to satisfy the setup time constraints of the next module’s
input buffers (flip-flop setup time in the used technology is
typically 70 ps). The design results are presented in Table 2.

5. DISCUSSION
Based on the results above, we now discuss the suitability

of the coding approaches for the error protection of on-chip
links in future nanoscale technologies. At the moment there
is no clear data available that could be used to model the
wires in nanoscale technologies, especially the relation of
single and burst errors in them. We can only conclude that
there will be multiple single errors as well as burst errors. So
based on this we cannot rank out any of the coding approach,
except the one using Hamming coding over the whole word
width. This approach was in fact taken as a reference to the
analysis, since it is the most commonly presented approach
in previous research.

One possible way to compare the approaches is to consider
their effectiveness under different types of errors. What hap-
pens to the error correction capability if one of the wires is
permanently corrupted, e.g. due to electromigration. Al-
most all of the circuits (excluding Hamming 1) maintain at
least somehow their tolerance against single errors (2 single
errors) but for burst errors (combined 1;2) the approaches
based on Hamming codes do not perform that well. All the
approaches (again excluding Hamming 1) perform reason-
ably well under burst errors. However, it cannot be seen
from the graphs that Reed-Solomon codes are the best ones
for burst error tolerance. If the graphs were plotted for
bursts of length 6, the Reed-Solomon codes would show er-
ror tolerance of 100 % while the result for all the others
would be nearly zero.

The area overhead of the circuits should be considered in
their target context. For instance in a mesh-shaped NoC
with bidirectional links, there are six unidirectional links
per resource, thus six encoder/decoder pairs. If a resource
is of size 2 mm x 2 mm, the area overhead of the coding
approaches in 90 nm technology is 2 %-17 %. Quite often,
area overhead of 17 % is unacceptable. On the other hand,
as the scaling proceeds towards nano regime, the size of
logic gates is decreasing. This enables integration of more
functionality to resources, still maintaining their size. In this
scenario, the relative area overhead of codecs will decrease.

One of the main concerns in on-chip communication is
the throughput. This is also one of the good features of
the FEC scheme, since no time consuming retransmissions
are needed. The circuit realizations show a huge variation

0 1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of single errors per transmission

E
ffe

ct
iv

e
th

ro
ug

hp
ut

 [M
H

z]

Ham 1
Ham 2
Ham 3
BCH 1
BCH 2
BCH 3
RS 1
RS 2

(a) The results on 90 nm technology.

0 1 2 3 4
0

500

1000

1500

2000

Number of single errors per transmission

E
ffe

ct
iv

e
th

ro
ug

hp
ut

 [M
H

z]

Ham 1
Ham 2
Ham 3
BCH 1
BCH 2
BCH 3
RS 1
RS 2

(b) The speculated results for nanoscale technology.

Figure 3: Effective throughput: the throughput of
correctly transmitted words.

in throughput. The comparison of combined throughput
and error correction capability would be interesting. We do
this by calculating the throughput of correctly transmitted
words in different error scenarios. We call this the effective
throughput. The effective throughput for circuit realizations
done at 90 nm technology are presented in Figure 3(a). It
can be seen that the effective throughput of Hamming 1
drops to zero as the number of errors is more than one, and
that the effective throughput of BCH 2 and BCH 3 is rather
low the whole time because their base throughput is low. An
interesting thing to notice are the reasonably high values for
the interleaved codes. Hamming 3 gives the highest effective
throughput for error count below four, while for four errors
BCH 1 gives the best effective throughput.

As the technology is scaled down further into nanoscale
dimensions, it is expected that the delay of logic will de-
crease, while the delay of wires, especially longer on-chip
links, stays the same. This means that we could expect our
encoders and decoders to work faster, but at the same time
there is a limit for the speed of the link. In Figure 3(b)
we have speculated a situation, where the speed of the logic
would double in some technology smaller than 90 nm and
at the same time the link throughput would be limited to
2 GHz. Now BCH 1 becomes the most attractive approach
already at two simultaneous errors and also BCH 3 is better
than the Hamming approaches with four errors.

The circuits were designed to minimize the error-free op-
eration latency: the decoding takes only 2-3 clock cycles in
all the designs. In the presence of errors the decoding la-
tency increases. For BCH 2, BCH 3 and RS decoder the
latency is approximately 10 clock cycles. In a system using
ARQ, a single retransmission takes at least 4 clock cycles: 1

for decoding, 1 for retransmission request, 1 for retransmis-
sion and 1 for decoding, so the 10 clock cycles is quite a lot.
However, in the presence of permanent errors retransmission
becomes useless.

The power consumption is an important criterion in de-
signing on-chip communication. Most of the power is con-
sumed in driving the long capacitive wires. In this work we
have concentrated on the encoder/decoder circuits while a
complete analysis should take into consideration the number
of wires in different architectures and the energy consumed
by the drivers. This will be a part of our future research.

6. CONCLUSIONS
Future digital systems implemented with nanoscale tech-

nologies are very sensitive to errors emerging from various
sources. In order to construct a reliable and fault toler-
ant system, efficient error correction methods are needed.
In this paper, different forward error correcting methods
for nanoscale network-on-chip were studied and analyzed
in terms of error correction capability, power consumption,
throughput and area. The focus was on error scenarios
where several single error and burst errors could occur si-
multaneously and independently of each other.

It was shown that the complex methods, such as BCH
with interleaving and Reed-Solomon based methods, were ef-
ficient but the drawback was larger area and reduced through-
put. However, such complex methods are feasible in future
nanoscale technologies with a reduced cost per transistor
and a reduced delay of logic.

7. REFERENCES
[1] International technology roadmap for semiconductors

2005. http://public.itrs.net.

[2] D. Bertozzi, L. Benini, and G. D. Micheli. Error control
schemes for on-chip communication links: The energy-
reliability tradeoff. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
24(6):818–831, June 2005.

[3] R. E. Blahut. Algebraic Codes for Data Transmission.
Cambridge University Press, 2003.

[4] C. Constantinescu. Trends and challenges in vlsi circuit
reliability. IEEE Micro, 23(4):14–19, 2002.

[5] M. Lajolo, M. Reorda, and M. Violante. Early
evaluation of bus interconnects dependability for
system-on-chip designs. In International Conference on
VLSI Design, pages 371–376, 2001.

[6] H. Mahmoodi, S. Mukhopadhyay, and K. Roy.
Estimation of delay variations due to random-dopant
fluctuations in nanoscale cmos circuits. IEEE Journal
of Solid-State Circuits, 40(9).

[7] S. Murali et al. Analysis of error recovery schemes for
networks on chips. IEEE Design & Test of Computers,
22(5):434–442, Sep.-Oct. 2005.

[8] S. Sridhara and N. Shanbhag. Coding for system-on-
chip networks: A unified framework. IEEE
Transactions on VLSI Systems, 13(6), June 2005.

[9] H. Zimmer and A. Jantch. A fault model notation and
error-control scheme for switch-to-switch buses in a
network-on-chip. In IEEE/ACM/IFIP Int. Conf. on
Hardware/Software Codesign and System Synthesis,
pages 188–193, Oct. 2003.

