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Abstract—Wireless Sensor Networks (WSN) are considered to
be the key-enabler for low cost highly distributed applications
in the area of homeland security, healthcare, environmental
monitoring etc. A necessary prerequisite is reliable and efficient
event detection. This paper introduces a novel approach for
event configuration and in network processing, called Event
Decision Trees (EDT). An EDT enables every node to self-divide
event queries according to its resources. EDT autonomously
adapt to the tasks assigned, even though it requires to organize
collaboration between nodes to deliver expected results. The
effort for maintain formal EDT is evaluated by analysis and
simulations. OQur results show that the proposed lease-based
mechanism for maintaining producer/consumer pairs in an EDT
outperforms even idealized Acknowledgment-based approaches.

I. INTRODUCTION

Detection of real-world phenomena using wireless sensor
networks (WSN) provides a basis for a variety of applica-
tions. Sensor networks can supply habitat and environment
monitoring, context-awareness for personal services, smart
homes, battlefield scenarios etc. [1], [2], [3], [4]. Traditionally
sensor networks report their sensor readings to a global sink
either continuously or if certain conditions are matched, e.g.
a threshold is reached. Usually sinks are special nodes that
provide more resources and take the final decision about
sensed phenomena based on received sensor readings. Such
data gathering applications exchange huge amounts of data,
cause much traffic and large energy consumption and hence
reduce the lifetime of the network.

Thus, only certain changes in sensor readings, called events,
are transmitted. Events provide a suitable abstraction for
sensor networks to state real-world phenomena [5]. We distin-
guish primitive and composite events. Primitive events usually
describe the exceedance of a configured threshold by a single
sensed value within the capabilities of a sensor node. Many
applications demand detecting the simultaneous occurrence of
several primitive events, particularly if identifying complex
real-world phenomena is necessary. A combination of several
primitive events is a composite event. For example, the oc-
currence of an event fire should be denoted as a combination
of the primitive events (temperature > 80°C) AND (smoke
> 1,1%) instead of using the primitive events only. Further
composite events based on different sensing capabilities indi-
cating the same phenomena enhances the reliability of event
detection [6].
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Many approaches require the sensor nodes to provide all
sensing capabilities needed for event detection. If that as-
sumption cannot be granted the detection of composite events
becomes much more difficult. In that case, sensor nodes must
collaborate and share their sensing capabilities to continue
with event detection. For reliable event detection we consider
it a necessity to adapt the sensor nodes to different con-
ditions automatically, i.e. heterogeneous distributed sensing
capabilities, node mobility, changed network topologies, failed
sensors or sensing units etc. We demand a suitable approach
for composite event detection in sensor networks to consider
the following design criteria:

Adaptivity - The capability of sensor nodes and applications
to continue event detection when the context changes, sensors
fail or nodes move. In particular, we focus on adapting
collaboration between sensor nodes for automatic resource-
oriented task distribution.

Autonomy - In addition to the autonomous nature of sensor
nodes, every node in the network must be enabled to perform
all necessary tasks for event detection. Thus, a fully decentral-
ized approach is required since the usage of nodes acting as
special entities like gateways [7] or fusion centers [8] results
in potential Single Point of Failures (SPoF).

Transparency - Changing situation may trigger necessary
adaptation and collaboration between sensor nodes to con-
tinue performing the configured task. Such changes must be
transparent to the application, which is solely interested in
events defined. Thus, changes must be provided automatically
without concerning the specified event or the user.

Energy efficiency - Since collaboration simultaneously re-
quires communication between sensor nodes, it increases the
energy consumption and hence decreases the maximum reach-
able node lifetime. Thus, reducing the number of transmissions
and the amount of exchanged data is of primary concern.

Applicability - Event detection schemes must be capable
of dealing with heterogeneous nodes and network structures
to support a maximum of multi-purpose applications and
different hardware.

Convenience - We are interested in providing means that
even allows the non-professional user to make use of sensor
networks. Therefore a straightforward method to define events
and configure sensor nodes without requiring knowledge about
operating systems or programming languages for sensor net-



works is in demand.

We are aware of the fact that fulfilling all criteria up to
a level of 100 percent is almost impossible and existing
approaches usually tackle only a subset of those. We developed
a concept for sensor network configuration considering all
mentioned criteria. It allows to ignore low-level details like
node resources, network structures, node availability etc., and
enables the programmer to work on a high global abstraction
level only, i.e. the event itself including related constraints. If
an event is defined, our system autonomously and transpar-
ently assures that this event is configured and monitored, even
though it requires to organize collaboration between nodes to
deliver the results.

The contribution of this paper is an intuitive XML-based
event definition language that simplifies event configuration
to a level that is even suitable for non-professionals, who are
usually short on experience of programming languages and
sensor networks. Based on that, we introduce a novel fully
decentralized mechanism to autonomously set up distributed
event detection called Event Decision Tree (EDT) and a
cost efficient means to maintain such EDT. An EDT enables
every node to self-divide event queries according to its own
resources and self-adapt to the tasks assigned. Simultaneously,
the EDT provides the interface for efficient collaborative event
detection between neighboring nodes using a lease-based pub-
lish/subscribe approach. EDT can be efficiently constructed on
every device by using a tiny Generating Finite State Machine
(GFSM) requiring ten states only. The simulations clearly
show that our concept works well and the applied collaboration
scheme outperforms even idealized ACK-based approaches.

The next section presents related work and discusses respec-
tive advantages and drawbacks. Section 3 gives an overview of
our system architecture. Section 4 introduces our event speci-
fication language for sensor network configuration. It features
hardware independent description elements that allow corre-
lating heterogeneous sensing capabilities to specify composite
events for sensor networks. Section 5 presents our distributed
event detection scheme based on adaptive pruning of EDT’s.
Section 6 examines our collaboration scheme, compares its
efficiency to an idealized ACK-based approach and points out
simulation results. Finally we examine our contributions and
conclude with a summary and an outlook on future work.

II. RELATED WORK

Event based sensor networks become very popular in the
research community. Many approaches that tackle the special
problems of composite event detection in sensor networks
have been published recently. We head for two directions,
the event specification and decentralized collaborative event
detection, and discuss both fields. Below we present published
approaches and point out advantages and drawbacks before
introducing our composite event detection scheme.

Many higher abstractions for sensor network programming
and configuration are already available. One of the most
famous is TinyDB [9] extending SQL to support in network
data queries. It provides a good abstraction layer to specify
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data collection in database-query style but still works on
the node level. Thus, the application programmer still re-
quires knowledge about node resources, locations, etc. Further,
TinyDB requires a complex query interpreter on the nodes and
uses a centralized topology with at least one coordinating node
to interpret received data. That creates a SPoF and requires
a huge amount of traffic to continuously collect raw sensor
reading. Macro programming languages such as STOP [10]
allow to create data queries from a global viewpoint without
considering details of single nodes. Based on agents, which
migrate through the network and collect data according to
the query, STOP provides a more comfortable data collection.
But it requires a complex runtime environment and virtual
machines on every node. Even here, collected data must be an-
alyzed by central nodes (SPoF). Furthermore both approaches
require to use scripting or programming languages, which
is not feasible for non scientific deployment. We demand a
straightforward configuration concept that is tailored to the
user. Thus, the user only needs to define what he is interested
in, i.e. the event and event-related constraints. In other words,
the user need not to take care of hardware, software and node
deployment because every node is enabled to self-configure to
the event defined.

In addition, we focus on enhancing autonomous collabo-
ration for reliable composite event detection, even in case
of missing resources, mobile nodes or failures in sensors
and connectivity. We present some approaches for collab-
orative event detection, point out their basics and evaluate
these approaches against the introduced criteria in Table I.
Vu et al. introduce a composite event detection scheme for
sensor networks composed of different nodes with varying
sensing capabilities [7]. They split the problem of composite
event detection among different nodes into sets of atomic
events, which are similar to threshold values. Atomic events
are reported to a special gateway node (SPoF) that finally
checks whether a composite event has emerged. This approach
provides configurable levels of fault tolerance by selecting an
appropriate k for k-watching sets of sensors while taking care
of the energy consumption and the event notification time
but requires an expensive setup phase. Kumar et al. present
a similar collaboration scheme [11]. They create event based
trees for each composite event, which contain all participating
sensor nodes. Connection between all nodes is established
using a content-based publish/subscribe method from chil-
dren to parent nodes. Even here, the root node obtains all
sensed measurements and comes to a final decision about the
monitored event (SPoF). Kamiya et al. describe a composite
event detection system [12] where heterogeneity is given by
using several heterogeneous sensor networks. They apply a
P2P network of special sensor gateways each accessing and
managing a certain sensor network. To define composite events
over one or more networks, the sensor gateways provide an
XML-event description parser that registers and subscribes the
needed atomic events at the corresponding gateway nodes.
Atomic events are determined by the gateway nodes only
and hence, the underlying sensor networks have to report
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resources, events are monitored in certain monitoring context
only. The context description is defined by a propositional
logic, which evaluates to true as long as a specified context
is given. Combinations of primitive events may form global
(and maybe distributed) composite events, which are observed
by a composite event detection engine. That engine seems
to adapt automatically to current network situations but the
general question of how to distribute and process composite
events on several devices is left open. This approach was not
implemented so far.

All presented approaches lack means in meeting every
requirement listed in Section I. As seen in Table I, most pro-
vided is adaptivity and applicability whereas energy efficiency,
autonomy and convenience are marginally taken into account
or are completely missing. To the best of our knowledge there
exists no approach that associates all introduced requirements.
Nonetheless, some ideas of these approaches inspired us to
combine them in a new suitable event detection scheme that
tackles all design criteria mentioned.

III. ARCHITECTURE

To give an overview of our approach, Figure 1 displays the
architecture of our event detection system. Our system consists
of two major components, the event packet generator on the
server side and the event configuration environment on every
sensor node. Please note, we provide a detailed description of
all necessary steps for event configuration in the next sections.

At the server side, the application programmer uses our
XML event specification language to define events she is
interested in. Every XML event specification passes three
automatic steps before being distributed in the sensor network.
First, an XML parser generates the respective XML tree
representation. Thereafter the human readable XML elements
of that tree are adapted to the targeted sensor system, i.e.
conversion of values for sensing, renaming of identifiers and
functions etc. Finally the adapted XML-tree is converted and
compressed into a minimal deployable event definition, called
event packet. These are distributed in the sensor network for
initial event configuration, updates and deletion as well.
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(Server side)

(Sensor node)

Fig. 1.  Architecture of our event detection system. It consists of two
major components, the event packet generator on the server side and the
event configuration environment on every sensor node. Defined events are
disseminated in the network as event packets.

On the sensor nodes, every incoming packet is processed to
generate the respective event representation as EDT. According
to the sensing features and resources provided at the node, the
EDT is split into local and remote parts. Local parts can be
evaluated by the node itself, whereas remote parts have to
be requested from external sources, e.g. neighboring nodes.
After further adaptations and configurations of event related
constraints, the final EDT is integrated to the EDT processing
unit. The EDT processing unit autonomously collects required
sensor readings, frequently evaluates the EDT with respect to
the configured detection interval, manages necessary collabo-
ration with other nodes and triggers associated handlers in case
of positive event evaluation. Please note, the EDT processing
unit is enabled to administrate and process several EDT at the
same time.

IV. SPECIFYING COMPOSITE EVENT DETECTION

In this section we introduce our event specification lan-
guage. The major goal is to provide means, which allow
to define event detection in a straightforward and intuitive
way. Our approach is an enabling technology for easy event
definition and in-network processing. It allows the programmer
to ignore all low-level details and to concentrate on a high
global abstraction level, that is the event itself and its related
constraints. By that it can be used by human users but might
as well become part of a “middleware” like approach.

Our language enables to specify primitive and composite
events. It defines precise operating thresholds for heteroge-
neous sensing capabilities and enables to combine those by
logic operations to specify composite events. Configurable
execution intervals and appropriate event handlers can be
assigned to events. Further a region of event can optionally



be defined for each event. Our approach also supports multi-
event evaluation on sensor nodes. This is a basic feature
to ensure self-adaptability in case of changing situations. In
other words it is a prerequisite to ensure flexibility. Thus,
sensor nodes must be enabled to store and process several
event specifications simultaneously. We integrated an updating
mechanism analogous to code update means as those provided
e.g. by Contiki [14]. Such a feature allows easy reconfiguration
or recalibration of already deployed sensor networks.

A. Event specification structure

Our language uses an XML-styled structure! and specifies
an event within a tag <EVENT>. An event specification
consists of four main elements. The <SENSORDATA > element
defines the required sensing capabilities for primitive or com-
posite events respectively. Each event specification contains
an <EXECUTION> element that states the frequency of event
detection. Appropriate processes, which are triggered upon
positive event evaluation are listed in the <CONSEQUENCE>
element. The optional <DIMENSION> element defines the
expansion of the region of a certain event. The event region
is given by a configurable radius around the initiating node
and contains all devices, allowed to participate in a distributed
event detection. IF this element is omitted, the 1-hop neigh-
borhood is considered the default event region.

For configuring several event specifications simultaneously
we embedded further attributes in every <EVENT> element.
An event-“id” assigns a globally unique identifier to events,
which enables to associate requests and updates to a certain
event. The “version” number identifies different versions of
the same event specification. It reduces maintenance and on-
line reprogramming complexity. Incoming event specifications
with higher version numbers substitute all older versions of
the targeted event specification, i.e. those with lower version
numbers. Due to scarce memory resources all older versions
are deleted and only the current version is stored. Our language
supports multi-event evaluation by providing a means to
assign priority levels to every event by using the “priority”
attribute. Consider a sensor network that is used for gathering
temperature measurements for climate control but is used in
parallel to detect forest fires. In such a setting the detection
of forest fire would have the higher priority because it is a
safety-critical event.

The “lease” parameter and the ‘“reliableMode” attribute
allow the programmer to customize the adaptiveness and
efficiency of the communication scheme used for collaboration
between neighboring nodes. A “lease” defines the frequency
of adaptation between neighboring nodes. In other words, it
specifies the time lag between two adaptation phases where
usual event processing takes place. Self-adaptation is required
to overcome the problems of varying context, fluctuating
environment and node mobility but consequently requires an
communication overhead. Short lease intervals (small lease

IWe are aware of the fact that XML is not well suited for use on sensor
nodes. We pre-parse the specifications into appropriate packets, introduced in
an extra section, before deploying them on sensor nodes.
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factor) provide a high adaptation rate whereas long lease
intervals can significantly reduce the number of messages and
energy consumption. The “reliableMode” attribute allows the
programmer to choose between a higher reliability in data
exchange or a reduced energy consumption. Enabling the
“reliableMode” instructs to explicitly acknowledge every data
exchange that is correlated to a certain event. Thus the reli-
able mode consequently requires a communication overhead
but enhances the reliability of detection. Thus, safety-critical
events should make use of the reliable mode, whereas simple
data collecting scenarios could omit the required overhead
in favor of less energy consumption. It is quite obvious
that configurations of both parameters strongly depend on
the application as well as the application context. Further
descriptions of this parameter is given in Subsection VI-A.

B. Combining heterogeneous capabilities

Heterogeneous sensing capabilities offer great advantages to
enhance the reliability of event detection in sensor networks.
Combinations of different sensor features enable more precise
and complex event detection capabilities. Almost all sensor
network applications define threshold values for certain mea-
surements, called primitive events, and fire an event if current
sensor readings match or exceed these values.

Our approach provides means to combine several sens-
ing capabilities and their respective threshold values. The
<SENSORDATA> element enables to list sensing capabilities
and to configure corresponding primitive events for their
measurements. Primitive events can be defined as exact values
or quantified as single-bounded scopes by using relational
elements, such as <EQUAL>, <LESS>, <GREATER> etc.
Relational elements define respective relations between two
elements, which are variables and/or constants. A variable
identifies a sensing capability and is defined by the <VARI-
ABLE> element. Thus, the value of a variable is given at
run-time by sensor readings. In contrast to that, the <CON-
STANT> element defines a constant value and a respective
unit, which is used as threshold. The “unit” attribute allows
for assigning different units, e.g. time and distance units like
“seconds”or “meters”. Converting the specified constants with
respect to the hard- and software used on the sensor nodes,
e.g. converting seconds to milliseconds if necessary, is task of
the language interpreter and is not of concern for the user.

To support composite and even heterogeneous event specifi-
cations, primitive events can be composed by logic operations.
Logic operations are specified by own tags called <AND>,
<OR> and <NOT>. Additionally it supports defining 2-
bounded scopes for certain sensing capability by defining
several primitive events for the same capability. For example,
defining an event for measuring a temperature between 20 and
25 would result in a combination of two primitive events, i.e.
(temp > 20) AND (temp < 25).

C. Execution intervals and associated handlers

Energy consumption is an essential issue when designing
WSN based applications. Therefore we are providing means



that help to adjust the energy consumption of the event
evaluation process. Sensor nodes provide different modes of
operation that result in significant different energy consump-
tion. Active modes like data processing or data transmission
are draining the energy resources much more than passive
modes such as sleeping [15]. Thus, active periods must be
kept as short as possible in favour of passive periods in order
to reduce energy consumption to a very minimum. On the
other hand, extensive passive periods may reduce the accuracy
and reliability of event detection. Real-world phenomena are
usually subject to different temporal resolution, which must
be considered for event specification as well. For example,
the acoustic wave of an explosion can only be detected within
a few milliseconds and hence require a short sensing interval.
When a node may switch to a power saving mode de-
pends highly on the application running. Thus, an event
specification contains an <EXECUTION> element that allows
configuring application-oriented execution intervals. It enables
the definition of separate time-oriented execution intervals
for each event. These time intervals can be quantified by
acceptable periods or exact time slots that must be adhered.
Intervals are set using a relational attribute and a constant as
threshold. We additionally intend to integrate means that allow
configuring resource-oriented execution intervals, e.g. scaling
the event evaluation interval due to expiring energy resources.
Finally the <CONSEQUENCE> element links procedures to
an event. The procedures, called event handlers, have to be
executed in case of a positive event evaluation. Every event
handler is listed by a <TRIGGERHANDLER> element, which
contains the name of the event handler. Specifying several
event handlers for a single event is allowed and all of them
are executed in the sequence as listed, if that event occurs.

D. Example

To illustrate our event specification language we discuss an
example of a composite event specification in this subsection.
In this example a sensor network is used for fire detection.
Beside other criteria, a fire can be detected by monitoring the
ambient temperature or the emission of smoke. Widely used
fire detectors set off a fire alarm if monitored smoke emissions
exceed a given threshold. Also changes in temperature can
be analyzed to detect a fire [16]. In spite of using well-
engineered sensing devices both methods are still vulnerable
to false alarms. Appropriate combinations of several different
detection methods - in our example temperature and smoke -
allow to enhance the reliability of detection and to decrease
the false alarm probability at the same time.

Listing 1 displays an event specification that can be used in
fire detection scenarios. It defines a fire event as a combination
of temperature and smoke readings. Therefore an ambient
temperature limit of at least 353 Kelvin and a smoke emission
limit of 1.1 percent are defined as primitive events. Hence, if
and only if the measurements for both parameters exceed their
threshold values the measuring sensor node has detected the
composite event fire. We assume a radius of 2.5 meter around
the sensor node as a suitable region for distributed detection

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6856
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6856

<EVENT id="fire” version="1" priority="high”
lease="6" reliableMode="yes”>
<SENSORDATA>
<AND>
<GREATER>
<VARIABLE> temperature </VARIABLE>
<CONSTANT unit="Kelvin”> 353 </CONSTANT>
</GREATER>
<GREATEROREQUAL>
<VARIABLE> smoke </VARIABLE>
<CONSTANT unit="percent”™ 1.1 </CONSTANT>
< /GREATEROREQUAL>
</AND>
</SENSORDATA>
<DIMENSION>
<REGION—CIRCLE relation="LessOrEqualTo”>
<CONSTANT unit="meters”>2.5</CONSTANT>
</REGION—CIRCLE>
</DIMENSION>
<CONSEQUENCE>
<TRIGGERHANDLER> sendalert </TRIGGERHANDLER>
</CONSEQUENCE>
<EXECUTION>
<TIMEINTERVAL relation="EqualTo”>
<CONSTANT unit="seconds”>10</CONSTANT>
</TIMEINTERVAL>
</EXECUTION>
</EVENT>

Listing 1. Example of an event specification for fire detection scenarios in
sensor networks

of the fire event. Hence, the dimension element defines that
region by specifying a maximum distance of 2.5 meters. In
case of having evaluated the composite event fire to be positive
the sensor node triggers the “sendalert” event handler.

V. DEPLOYMENT ON SENSOR NODES

XML-styled event specifications provide flexible and easy
to use configuration means for developing sensor network
applications, even for non-experts in the field. We consider this
a necessary issue for widely using sensor networks beyond the
scope of research, e.g. by medical employees adapting them
for customized patient monitoring. Nevertheless, strict energy
and memory constraints in WSN demand further processing
of event specifications for node configuration. This section
presents all steps required for configuring sensor nodes accord-
ing to event specifications. This includes separating complex
events into less complex ones based on the sensing facilities
of individual sensor nodes as well as means to detect nodes,
which can provide the missing information to evaluate the
complex events. Please note, every process described from
now is autonomously done by our system and remains fully
transparent to the application programmer.

A. Pre-Parsing and Packaging

Since XML is oversized for direct use on sensor nodes,
event specifications are pre-processed before in-network de-
ployment. Therefore event specifications have to pass our
XML-parser. Similar to the event specification, an event packet



| fire1h6y | 10 | <=D$2.5 | sendalert | &>temperature,353.0>=smoke, 1.1 |

Fig. 2.
Listing 1.

Pre-parsed event packet of the fire detection example provided at

consecutively describes all basic elements. Keeping a given
order allows to describe all elements by their content only.
Event packets are applied for initial event configuration as
well as for event updates, i.e. reconfiguration or deletion.

To minimize the calculation effort on the sensor nodes,
our XML-parser converts event specifications into appropriate
packets for deployment. At this point, the parser allows to
create hardware-specific event packets of every universally
valid event specification. It is quite obvious, that general
event descriptions cannot be uniformly transferred to every
sensor platform due to different hardware used, e.g. equal
sensing capabilities measured by different sensors with varying
physical units. To overcome these problems, the XML-parser
converts given values in the specification into required ones
for the target sensor platform. For example, temperature values
given in centigrade are converted to Kelvin or time data is
converted from minutes to milliseconds if necessary. To keep
the event specification quite simple and intuitive for the user,
conversions are fully-transparent to the user and automatically
done by the parser.

Event specifications are first parsed into the respective
XML-tree representation. Constants and variables are adjusted
to meet the requirements of the target sensor platform, as
mentioned. It is important to omit all redundant information
to keep an event packet as small as possible to save resources
during packet transmission and processing, particularly to re-
duce the energy consumption of the sensor nodes. Using short
notations for compound elements and a strict packet layout
can reduce the size of event packets by more than 90 percent
compared to the event specification. Starting with the event
header, all specified elements are successively transformed into
minimized descriptions. The event header consists of the event
id, the version number as well as the priority, the lease and
reliableMode parameters. In the shortened form, all elements
are associated to one string. The tags of the XML-language
elements are represented by symbols. The sensor data and the
dimension element are converted to a minimized prefix (or
polish) notation of the respective XML subtree. The prefix
notation places operators to the left of their operands. Since the
arity of the logic and relational operators is fixed, which is here
one for the NOT and two for all other elements, the result is a
syntax without brackets. This syntax can still be parsed without
ambiguity. Listed event handlers and the execution interval are
also added to the packet. Event handlers are consecutively
listed and separated by comma. The execution interval is
determined as number specifying the time between triggering
two successive event evaluation processes. Depending on the
target sensor platform it is usually specified in seconds or
milliseconds.

Event packets are transmitted as Byte-Streams to the sensor
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nodes whereby each element is separated by a colon. That
reduces the size of the fire detection example by a factor of 9
from 560 Bytes + whitespace down to 63 Bytes, provided
as packet displayed in Figure 2. Using Boolean bit arrays
representing the sensing capabilities can decrease the packet
size further. Since the variety of sensing features is large and
differs from platform to platform, we refrained from specifying
the bit arrays but considered that as an extension in the design
of the language parser.

B. Generating Event Decision Trees (EDT)

Event packets must be parsed at the sensor nodes to generate
evaluable event configurations. Therefore the sensor node
establishes Event Decision Trees (EDT) representing the event
based on the sensor data element of the event packet. The
EDT enables every node to self-divide event queries according
to its resources and to execute the complete event evaluation
process. Nodes cannot only be used as data source for sensing
and distributing raw data. In fact, every node is qualified to
analyze and process its sensor readings and hence, to come to
a final decision about the occurrence of events, which is “yes”
or “no”. Further, the EDT is a fully distributed concept that
does not require special nodes for data collection. We consider
this mandatory to prevent from single point of failures, which
are naturally arising if only one or a few nodes are enabled to
execute the complete process.

To parse the prefix notation of the sensor data element into a
congruent representation as EDT, we developed a tiny GFSM
that can parse the complete language using only ten states.
That enables to implement the parser on every available sensor
platform. Relational elements provide the basis of the EDT. A
relational element is described as a tree structure, where the
parent node constitutes the respective relation to its children
nodes. According to the specification of primitive events,
children of relational nodes can either identify a sensing
capability or a constant value (threshold). If composite events
are specified, the primitive events are respective subtrees.
Logic nodes, representing the logic combinations of several
primitive events, are generated as parent nodes on top of all
relational ones. In the fire detection example, the root node of
the EDT represents a Boolean AND between both primitive
events regarding smoke and temperature. The equivalent EDT
is depicted in Figure 3. For further processing the tree nodes
are pre-order numbered during their creation from the event
packet. That assures the same initial tree-node labeling on
every device in the network, which is necessary for efficient
exchange of event information later.

C. Evaluation of EDT

EDT nodes can be automatically evaluated in a bottom-up
manner starting from the leave nodes in order to determine a
Boolean value at the root node, i.e. the final event evaluation
result. EDT evaluation is triggered by internal event-related
timing constraints (sensing interval) or by requests from other
devices. All nodes of the EDT representing sensing capabilities
are assigned with actual sensor readings. In our example these



T: Temperature
S: Smoke

Fig. 3. Pre-ordered Event Decision Tree of the fire detection example.

are the nodes ”T” for temperature and ’S” for smoke readings.
Afterwards the EDT is bottom-up evaluated by comparing the
children of each node according to the function defined at
the parent node. As a result, Boolean values are assigned
to relational and logic nodes. If the value of the EDT root
node was evaluated to TRUE, i.e. the event was detected, all
specified event handlers are triggered for further processing.

D. Pruning of distributed EDT

Until now, it was assumed that sensor nodes possess all
sensing capabilities to evaluate the complete EDT on its own.
Additionally we focus on enabling sensor nodes to evaluate
the EDT even if they do not provide all or no sensing
capabilities needed. That could be either by design or by
failed sensing units. Hence certain branches or subtrees and the
corresponding nodes of the EDT cannot be evaluated. In that
case, sensor nodes need to collaborate to exchange information
about sensor readings. The exchange of sensed raw data, which
is done by most approaches, is very inefficient from two point
of views. First, permanently exchanging sensor reading leads
to a huge number of transmissions and hence, consumes much
energy and reduces network performance. Second, transmitting
raw sensor data includes to use large data packages, depending
on the number of readings and their accuracy, i.e. the size
of every value usually varies from 1 to 4 bytes. Since one
of our main goals is to remain very energy efficient, we
concentrate on minimizing the number of transmissions and
the amount of data to be exchanged. Instead of exchanging raw
sensor readings we propose to process sensor readings first and
finally submit 1 bit only, which states whether the threshold
for the sensor reading is exceeded or not. Please note, there
already exist some approaches that share information in a
“yes” or “no” style, but these can only state the occurrence
of the complete event. We are focusing on efficiently sharing
information about both, complete and partial events.

In our case, we only need to transfer the Boolean value
of a certain EDT node. Missing node values may be deliv-
ered by neighboring nodes that share the specified region of
event. To prepare these data exchanges, every sensor node
has to determine which node information is missing at the
locally generated EDT. The following algorithm prunes the
established EDT until it contains the minimum required EDT
for local event processing:

1) Mark each leave as pruned that represents a sensing

capability which is not supported.
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Smoke
Sensor

Temperature
Sensor

Fig. 4. Pruned Event Decision Trees for smoke and temperature sensors
monitoring the introduced fire detection event. “Undecidable” nodes are
marked by a “?”.

2) Search all nodes that possess at least one marked child
excluding the root node?.

2.1 Mark current node as pruned, if

a All children are marked as pruned or
b The unmarked child represents a constant
(threshold).

3) Repeat step 2 until no new nodes are marked. After that,
all undecidable subtrees are marked.

4) Prune all marked nodes except for the root nodes of the
marked subtrees.

5) Declare all left marked nodes as “undecidable”.

After pruning, the EDT may contain nodes which are
marked as “undecidable”. Respective Boolean values must be
obtained by suitable sources, e.g. neighboring nodes in the
region of event. Lets assume to use separate temperature and
smoke sensing nodes for the introduced fire detection example.
Hence the EDT depicted at Figure 3 must be pruned with
respect to the available sensing capabilities. The temperature
node cuts the branch containing the smoke readings and
the smoke node cuts the branch containing the temperature
readings respectively. That results in two different EDT at
the sensing devices, each containing one node marked as
“undecidable”. Thus, the temperature sensing device requires
information about tree node number 5 whereas the smoke
sensing unit requires information about tree node number 2.
The resulting EDT are displayed in Figure 4. We excluded the
EDT root node from the pruning algorithm to enable nodes that
possess no suitable sensing capability for event detection, to
serve as “bridge”. Such nodes are of interest if they are located
between two or more nodes required for event detection that
cannot communicate directly. Hence, all nodes deliver their
part of event information to the “bridge” node, which is finally
enabled to decide about the occurrence of that event. After
having identified the “undecidable” parts for event detection on
each sensor node, a suitable collaboration scheme is required
to efficiently share necessary information.

VI. COLLABORATIVE EXCHANGE OF EVENT INFORMATION

Wireless sensor nodes should communicate if and only if
it is absolutely necessary to save energy resources. A suitable

2Since an EDT is a binary tree, every node possesses at most two children.
Hence either one or both child nodes are marked as pruned in that case.



collaboration mechanism in sensor networks must self-adapt
to changing network situations and consider application re-
quirements. We propose to apply an adaptive and easy-to-scale
publish/subscribe scheme to maintain exchange of EDT node
values. To ensure a certain level of reliability for collaborative
event detection, some basic principles have to be discussed
from different points of view of subscribers and publishers.
How do subscribers know whether some other node received
the subscription, accepted it or is still providing publications.
On the other side, the publisher must know whether there is
still a subscriber requiring event information.

Most problems could be solved by using a simple Acknowl-
edgment (ACK) for every transmission to inform the sender
about the success. Unfortunately that produces a huge amount
of traffic and is therefore inefficient for sensor networks.
Furthermore we intend to reduce the traffic by submitting
changes of node states only to achieve longer time intervals
without any transmission. That case cannot be considered
by ACK schemes, which require to communicate at each
detection interval to renew the subscription interest. Due to
changing network conditions, publications and subscriptions
should either be removable or be valid for certain time
periods only. The latter is much more suitable for sensor
networks where changes mostly happen unforeseen and hinder
appropriate responses. Thus, we apply a lease procedure to the
publish/subscribe scheme that requires significantly less trans-
missions and enables fine-tuned event-defined lease intervals.

1) Subscribe a data interest: Missing values of “undecid-
able” EDT nodes must be obtained by suitable other sources
as mentioned. Thus, the sensor node broadcasts a data interest
(subscription) into the network. A subscription contains the
label of the EDT node and the event identifier. If the event
specification defines a region of event, the subscription must
also contain the location of the subscribing sensor node.
On receiving a subscription, the sensor node compares own
and received location data to determine whether both nodes
share a region of event. Only if that holds true or if the
request contains no location data, i.e. the default event region
determined by sending range, the received subscription is of
interest. The receiving sensor node searches its own respective
EDT to determine whether it can provide the requested infor-
mation. In that case, the requested EDT node is marked with
a “publish” flag and the sensor node answers the request by
providing the current state of the requested EDT node. In all
other cases the node discards the received subscription without
further processing. Subscriptions can further consist of many
concurrent data interests in case of requiring information about
several “undecidable”EDT nodes of one or more events. That
significantly reduces processing and communication effort
required for packaging, addressing, transmission etc.

2) Publishing EDT node information: On event evaluation
the current state of each EDT node is determined. Results
at nodes marked with the publish flag are also important for
other devices in the network and hence may be published.
To save resources these evaluation results are not transmitted
permanently. Only two cases demand transmitting the current
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node state, that are first-time subscriptions and state changes.
If a device accepts a received subscription for the first time, it
must answer with the current node state to provide an initial
value for the subscriber. Since a node state is of Boolean type,
only state changes must be submitted to update the current
node state later. If node states change rarely, the number
of required publications is significantly reduced. Even in the
worst case, i.e. the node state changes at each evaluation, this
scheme requires the same overhead as usual methods where
values are transmitted continuously at every evaluation period.

3) Minimizing the amount of exchanged data: Since every
bit to be transmitted is expensive in view of energy consump-
tion, the amount of exchanged data must also be minimized.
Our EDT allow to share event information efficiently by using
a few bytes only. In contrast to existing approaches that need to
share raw sensor data, here only the Boolean value of a certain
EDT node is of interest. Thus, a data transmission must only
contain the event identifier, the number of the respective EDT
node and the current Boolean value assigned to that node.
Please note, establishing and prefix-numbering the complete
EDT before pruning assures that the EDT at each sensor node
possess the same numbering.

We use an efficient labeling scheme that allows to describe
the node of interest and the assigned value with one byte only.
That byte consists of 1 bit representing the Boolean value and
7 bits representing the address (number) of the EDT node. That
way, 128 different nodes in one EDT can be numbered. If an
EDT contains more than 128 nodes, an extra byte for labeling
is used. In addition, the event identifier must be submitted
given that a sensor node is enabled to configure several events
and respective EDT concurrently. To simplify matters, here
we used readable event identifier (fire) for our examples. If
the event identifier is chosen to be a unique number less than
256, all necessary information can be transmitted by two bytes
only.

A. Applying lease periods for publications and subscriptions

Using a publish/subscribe scheme is rather simple if reliable
architectures and fixed network structures are provided, but
sensor networks are subject to unpredictable behavior triggered
by changes in context, connectivity, working mode etc. That
especially holds true if mobility of nodes is provided. Thus,
the publish/subscribe scheme must adapt frequently to reach a
certain level of reliability in event detection. Certainly, the
overhead needed for adaptation must be kept as small as
possible but still allow for balancing the adaptiveness with
respect to the application provided.

We propose to subscribe for a certain lease period only.
A lease-based subscription specifies a certain time interval
determining the validity period of subscriptions that is the
time during which associated publications have to be sent. On
receiving a subscription the node determines the expiration
date of publications. The expiration date e depends on the
event evaluation interval ¢ and the application-defined lease
factor k, which are both given by the event specification. e is
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Fig. 5. Sequence of information exchange between a single subscriber and
a single publisher over time of 4 event evaluation intervals i, to ip43. (a)
displays the performance of the ACK-based variant. (b) and (c) illustrate the
performance and the lease allocation in case of non-event (b) and event (c).
Both apply a lease factor of 3, i.e. every subscription is valid for 3 event
evaluation intervals.

calculated using equation (1).
e=ixk; k>1 1

The lease factor k allows the user to adapt the lease period
to the monitored event as well as to the expected conditions
in sensor networks. For example, sensor networks which are
subject to permanent changing situations or node mobility
require a high adaptiveness by using short lease intervals.
In contrast to that, sensor networks deployed at rather fixed
network structures could make use of larger lease intervals
to save energy and extend the overall network lifetime. The
expiration date is assigned to the corresponding EDT node
together with the “publish” flag. After initial publishing the
current node state, any further change is published as long as
the “publish”flag is set. Consequently, the flag is automatically
removed from the EDT node when the expiration date is
reached, i.e. the lease has expired.

To save more energy, we distinguish new and renewed leases
to save the initial respond of the publisher too, since it is
not needed if no change occurred. If earlier agreed leases are
to be renewed only, the publisher does not respond with the
initial node value but extends the lease period and continues
providing state changes until the newly assigned expiration
date is reached. In addition, publisher and subscriber renew the
lease period automatically upon notification of a state change.
Figure 5 displays sequence charts of both lease extension cases
as well as the ACK-based scheme for comparison.
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i event evaluation interval
lease factor (k > 1)
Ns number of subscriber
Np number of publisher
T sequence of detection intervals
Dt event probability (p: < 1)
ns | number of subscriber for a single publisher
TABLE II

PARAMETERS AND TERMINOLOGY USED FOR EFFICIENCY ESTIMATION.

B. Efficiency (Comparison)

In order to prove the efficiency of using a lease-based
distribution of event information, we compare the cost of
the introduced lease procedure to a communication scheme
based on Acknowledgments. The required traffic is analyzed
considering different points of view of a single subscriber and
a single publisher and finally estimated for the entire sensor
network. Additionally, we show that there exists a break-
even point for the lease procedure for almost all scenarios
in contrast to the ACK-based scheme. Even the worst-case
scenario, which exists in theory only, results in marginal
overhead for the lease procedure.

Many published projects have proven that links in WSN are
unreliable. According to this, the number of originally required
messages in the network increases by a certain amount. We are
aware of that fact, but since we are comparing two different
communication schemes under same network conditions, both
would assign such traffic increase. Thus, to simplify the
estimation, we do not consider unreliable links for direct com-
plexity comparison and calculate the essential required traffic
only. Consequently, the approach that performs better in the
idealized network condition case, does so with unreliable links
too. The simplest way to assure reliable collaboration among
sensor nodes is to use ACK-based communication. To provide
a proof of efficiency, we made a best case scenario assumption
of the ACK-based scheme. That is, it requires exactly two
messages per event detection interval. We neither regard that
several publisher may answer to the same subscription nor
that several subscriber may acknowledge the same published
value simultaneously. Obviously, both cases would increase
the required traffic. Explicitly confirming each subscription
or publication establishes a form of bilateral relationship.
It informs the subscriber that there really exists a suitable
publisher and that one gets a feedback that there is still some
subscriber requiring information. Disappearing subscribers or
publishers can be recognized immediately. The drawback
is that every data exchange requires two transmissions per
evaluation interval to reconfirm the relationship. According
to this, a subscriber either sends one subscription or one ac-
knowledgment for received publications per detection interval.
Publishing nodes respectively publish data as subscribed or
answer new subscription requests by one message per interval
i. Expression (2) determines the required messages within a
consecutive sequence of detection intervals 7' for distribut-
ing event information using an ACK-based publish/subscribe



scheme. Table II lists the parameters used for traffic estimation
here and later.

T#(Ng+ Np); T=nx*i,neN )

A lease-based approach eases the strong relation of ACK-
based communication in favor to less overhead. Due to the
fact that the validity of a subscription extends automatically,
the lease procedure assures that publishing event information
is performed if and only if it is necessary. That adapts
publications to subscriber requirements periodically and saves
a lot of energy at the publisher side. Since each subscription
assigns an expiration date a subscriber needs to renew a
subscription when the expiration date is reached. Hence a
subscriber sends a subscription message not at every interval
but after every e. A publisher sends a one-time message to
new subscribers to provide the initial node value. Afterwards
a publisher notifies its subscriber(s) if and only if the Boolean
node value changes. We consider a probability of changes p;.
If the last subscriber disappears during an active lease, there
exists a chance of unnecessary publishing data but only for a
maximum of (k—(T'modk)—1) intervals. Hence, the required
traffic for a lease-based publish/subscribe is calculated using
expression (3).

T
N+ Np(T=D)petng+ (k= (Tmodk) ~1)po)s pe <1 ()

To compare both approaches we analyze both schemes from
the points of view of subscribers and publishers. With regard
to subscribers the lease-based approach clearly outperforms
the ACK-based variant, see equation (4). Even considering
the worst-case, i.e. a lease extends after every interval k = 1,
results in equal cost of communication.

TstgNs@TZ%(:lSk “

From the view of publishers the cost analysis and comparison
is more complex. That requires evidencing the validity of
equation (5), which is equivalent to (6). To summarize, there
exists a T that satisfies equation (6), unless p; = 1. In other
words, after a certain number of intervals even here the lease-
based procedure performs better than the ACK-based. Only in
case of publishing data at every interval because of perma-
nently toggling events p, = 1, the lease procedure requires
a small overhead. With growing number of intervals, that
overhead becomes nearly irrelevant. Moreover, the probability
of p = 1 is not existent in real applications and therefore
becomes negligible.

TNy 2 Np((T = 1)ps + ns + (k — (T'modk) — 1)p;)  (5)
T —n, S

T+k— (Tmodk) —2 = P

Finally we carry out a break even point analysis to show that

the lease-based procedure always outperforms the ACK-based

approach after a certain number of intervals. Therefore the

validity of equation (7) has to be proven. The break-even
point for the lease-based scheme can be easily determined

©®
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by transformation to 7', see formula (8). As it is easy to see,
equation (8) is solvable except that kK = 1 and p, = 1 at
the same time. Whereas choosing £ = 1 is possible but not
reasonable, the case of p, = 1 is rather unlikely as mentioned.

T(Ns+Np) > Ns% +Np((T—1)pe+ns+ (k— (T'modk))pt)
@)
Np(ns + pi(k — (Tmodk)))
T>=-F 8
= TNED AN -m) ®

C. Simulation results

To give a proof of concept as well as to test our approach
under different conditions we implemented the EDT on the
discrete event simulator OMNeT++ [17] with an extension for
wireless sensor networks, called Castalia [18]. The introduced
fire detection scenario was simulated to measure the number
of messages needed for collaborative event detection.

We used the following parameters to test and compare
the performance with different lease factors k. The network
consists of 100 sensor nodes — 50 nodes measuring temper-
ature and 50 nodes measuring smoke. Since the detection of
the event fire requires smoke and temperature measurements,
all nodes play the roles of subscriber and publisher at the
same time. The nodes are uniformly distributed in a field
of 20x20 meters. According to the event specification, the
detection of the fire event ranges over a radius of 2.5 meters
around the related sensor node. A deterministic event generator
simulated the occurrence of events, i.e. appropriate smoke and
temperature readings, with an event probability of ten percent.
We applied two different network structures. The simulation
results for the first scenario, a regular uniform sensor grid,
are displayed in Figure 6. Please remember, one interval @
represents ten seconds in lifetime. Accordingly, k¥ = 6 means
that renewal of the leases and adaptation of the event detection
is done every minute.

The second test bed used different networks of random
uniform distributed sensor nodes to simulate more realistic ap-
plications. The simulation results for the second test bed vary
only marginally from the first test bed. Therefore we waived
to display the diagram for the second test bed. Comparing
the simulation results to the estimation shows that the number
of required messages closely meets the estimated traffic. Due
to changing network structure and varying node placement,
the second test bed required marginal less average traffic.
Altogether, no simulation run exceeded the estimated traffic.
Depending on the event probability and the lease factor, our
lease-based publish/subscribe approach significantly reduced
the number of required messages compared to the ACK-based
variant. For the given scenario, a lease factor of k£ = 6 reduces
the number of messages by a factor of 8, whereas £k = 60
reduces the required traffic by a factor of 18.

VII. CONTRIBUTIONS

Higher abstraction for convenient event definition. Our
event specification language hides low level details of WSN
to focus on pure event definition. The XML-styled language
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Fig. 6.  Simulation results of applying the lease-based publish/subscribe

approach to the fire detection scenario. Depending on the chosen k, the lease-
based approach requires significantly less overhead in communication.

enables to correlate required sensing features and assign event-
related constraints. All necessary processing and adaptation for
deployment remains fully transparent to the user.

A novel decentralized mechanism to autonomously set
up event detection and in-network processing on sensor
nodes, called Event Decision Tree (EDT). An EDT enables
every node to self-divide event queries according to its own
resources into local and remote parts by pruning. Using EDT
every node in the network can execute the complete evaluation
process without a single point of failure, even in case of
missing sensing features or failed units.

A cost efficient means to maintain such EDT. The EDT
provides the interface for efficient collaborative event detec-
tion between neighboring nodes using an lease-based pub-
lish/subscribe approach. It outperforms even idealized ACK-
based approaches and reduces the required traffic and energy
consumption. Appropriate on-node processing of sensed data
allows to efficiently share event information by a few bytes
only. Additionally it allows to configure the adaptiveness as
well as the energy consumption to the application.

VIII. SUMMARY&OUTLOOK

In this paper we identified missing features of composite
event detection in wireless sensor networks, particularly in
energy consumption, reliability and complexity, as a relevant
shortcoming. To remedy this shortcoming we combined a
flexible event definition language with a self-adapting event
detection scheme. Specified events are deployed on the sensor
nodes as Event Decision Trees (EDT). An EDT self-adapts to
varying network and node conditions by automatic pruning.
That enables reliable application, even in case of missing
sensing facilities or failures of nodes. A lease-based publish/-
subscribe scheme manages necessary collaboration between
sensor nodes. Our approach was successfully implemented
and tested. The simulation results show that the proposed
lease-based mechanism for maintaining EDT outperforms even
idealized ACK-based approaches.

By design, our approach also provides mobility of sensor
nodes. We are currently investigating whether self-adapting
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event detection in mobile sensor networks can be supported.
Further interesting areas of application are infrastructure sup-
ported networks and MANETS.
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