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Abstract- The increasingly deployed IEEE 802.11 wireless
LANs (WLANs) challenge traditional network management sys­
tems because of the shared open medium and the varying channel
conditions. There needs to be an automated tool that can help
diagnosing both malicious security faults and benign performance
faults. It is often difficult, however, to identify the root causes
since the manifesting anomalies from network measurements are
highly interrelated. In this paper we present a novel approach,
called MOdel-based self-DIagnosis (MODI), for fault detection
and localization.

Our solution consists of Structural and Behavioral Model
(SBM) that is constructed using both structural causality from
wireless protocol specifications and behavioral statistics from
network measurements. We use logic-based backward reasoning
to automate fault detection and localization based on SBM,
by comparing observed network measurements with expected
network behaviors and by tracing back causality structures. The
reasoning algorithm and the model description are decoupled
so a SBM model can be easily updated for varying WLAN
configurations and changing network conditions. Compared to
previous work, the contribution of this paper is the architecture
and the algorithm of the diagnosis core, rather than the WLAN
measurement techniques.

We built and deployed MODI-embedded wireless APs that
can detect both security attacks and troubleshoot performance
problems. These MODI-enabled APs can also cooperate to
diagnose cross-AP problems, such as those caused by device
mobility. The evaluation results demonstrate that the proposed
model-based diagnosis is fast and effective with little overhead.

I. INTRODUCTION

The ubiquitously available IEEE 802.11 Wireless LANs
(WLANs) boost work productivity and increase user mobility.
The open shared wireless medium and the varying chan­
nel condition, however, often challenge mobile users with
malicious security attacks or benign performance problems,
which are difficult for network administrators to manually
troubleshoot the root causes because the manifesting anoma­
lies from network measurements are highly interrelated. Thus
an automated fault diagnosis system for 802.11 WLANs is
necessary.

There are existing solutions aiming to manage complex
802.11 WLANs [2], [3], [24]. These tools allow detailed
WLAN network measurements and provide low-level statis­
tics, such as packet throughput, MAC layer retransmissions,
and device signal strength. While they are helpful to moni­
tor WLAN operation conditions and detect anomalies, they
usually cannot determine the internal dependencies across
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network behaviors, thus providing little help on high-level fault
diagnosis and remedy for WLANs.

Other WLAN management approaches integrate various
network measurements statistics and employ ad hoc rules for
specific fault diagnosis, such as detecting MAC-layer misbe­
haviors [27] and unauthorized rogue access points (APs) [5],
[33], locating physical-layer errors [30], isolating delay­
causing components [11]. These rules are often unstructured
and may become unmanageable when considering a compre­
hensive set of faults and as network configurations change.
While distributed dependency can be automatically learned to
some degree to assist network diagnosis [4], this technique
is limited to application level and WLAN problems are often
localized.

In this paper we present the MODI (MOdel-based self­
DIagnosing) system that addresses the fault diagnosis chal­
lenges in WLANs. The focus of our approach is how to struc­
ture the diagnosis rules to reason a diverse set of WLAN faults,
instead of proposing new WLAN measurement methods. We
require that the reasoning process be human understandable so
it can be used to take remedy actions. The system must also
be tunable since new faults may be introduced and WLAN
configurations may be changed.

MODI consists of three components. Firstly, MODI uses
an explicit fault model that represents protocol and functional
components (Section III-A). The model's causality structure
comes from the "knowledge" of 802.11 protocol specifications
and WLAN configurations, and the model's expected behav­
iors comes from statistical observations and state inferences
from WLAN measurements. Secondly, MODI employs the
logic-based backward reasoning that can recursively traverse
the fault model for automated diagnosis (Section III-B). Fi­
nally, MODI uses a rule-based engine to decouple the model
representation and reasoning algorithm, thus the model can
be easily updated to include additional faults or to reflect
configuration changes (Section IV).

For demonstrative purposes, we built and deployed an
office-based testbed with MODI-embedded self-diagnosing
APs. MODI enables these APs to detect both malicious secu­
rity attacks and benign performance problems. The evaluation
results suggest that MODI is effective in fault diagnosis and
imposes little overhead. We also demonstrate that MODI can
be deployed outside of APs to diagnose, for example, cross-AP
problems such as those caused by device mobility.



Fig. 1. Ad hoc rule based diagnosis.

Fig. 2. Probability-based dependencies.
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III. MODEL-BASED FAULT DIAGNOSIS

When fault diagnosis rules are organized in an ad hoc
fashion, such as Snort-Wireless does [31], the rules need to
be checked sequentially. On the other hand, the rules are
usually built either based on packet headers or statistical
measurements from WLAN traffic, such as the number of
MAC-layer retransmissions and the packet throughput, as
shown in Figure I. Thus matching rules against such detailed
measurements can be quite wasteful if irrelevant rules are also
needed to be checked.

It is possible to learn which rules are more likely to
be triggered given current measurements based on historical
information, thus rule-checking can be ordered in such a
way that diagnosis process may stop quicker when a high­
probability rule triggers. For example, Sherlock system learns
the inference graph automatically based on application com­
munication patterns [6]. When a fault occurs, such as the
failed client access shown in Figure 2, the highest probable
cause Domain Controller (DC) will be checked first. While this
approach imposes semi-structure to rule space, the diagnosis
process is stochastic at best, can only handle one fault at a
time, and the model structure has to be frequently re-learned
to cope with the dynamic traffic.

In this paper, we present a new approach MODI (MOdel­
based self-DIagnosis), which borrows the modeling technique
from traditional hardware troubleshooting domain. The core
reasoning method relies on explicitly-constructed causality
structural and expected behavioral model [13], and uses back­
ward reasoning for automated diagnosis over this model,
achieving a balance between diagnosis speed and accuracy.

Next we describe the Structural and Behavior Model (SBM)
that represents the functional components in WLANs and the
Effect-Mismatch Algorithm (EMA) for the fault localization
process using SBM. Note that SBM and EMA are decoupled
so the model can be updated independent of the reasoning

The remainder of this paper is organized as follows. Sec­
tion II discusses related work. In Section III, we present
MODI's fault model and backward reasoning algorithm. Sec­
tion IV describes the system design and implementation and
Section V describes the system evaluation results. Finally,
we discuss the limitations and scalability issues of MODI in
Section VI and conclude in Section VII.

II . RELATED WORK

Existing work on WLAN management has focused on
building new architectures integrating wireless measurements
and/or other wired monitors, such as using all server, AP,
and client modules [I], using client-only cooperative compo­
nents [10], using desktop as wireless monitors [5], or using
dedicated wireless sniffers [28]. New measurement techniques
have also been proposed to address channel coverage problem,
such as using different channel sampling strategies [IS] , using
nearby wireless sniffer cooperations to increase frame cap­
tures [16], and using centrally scheduled channel allocation to
increase AP coverage [34], [32]. Since a single wireless sniffer
may not be able to capture all the frames in the range, either
due to resource constraints or frame collisions, traffic merging
from distributed sniffers and frame recovery from captured
traces have also been proposed [12], [22], [28].

To diagnose individual faults, researchers have studied
what measurement data is necessary, such as to detect
MAC-layer misbehaviors [27], to detect physical-layer prob­
lems [30], to detect unauthorized rogue APs [5], [34], and
to isolate delay-causing WLAN components [II]. Most of
these fault-diagnosis approaches employ ad hoc rules based
on statistical measurements. While they may work well for
individual fault, ad hoc rules are unstructured and may be­
come unmanageable when considering a comprehensive set of
interrelated faults or as network configurations change. More
structured approaches may involve statistical modeling, match­
ing measurements against previously learned statistical model,
such as to detect wireless spoofing [29]. Other approaches
include learning application-level dependency-graph models
from passive network measurements [6], or learning decision­
tree models from detailed simulation [26].

Applying learning-based models in WLANs, however, may
require frequent model re-learning given dynamic wireless
environment. Thus it is more desirable to have stable model
structures for WLAN diagnosis. Davis describes a diagnostic
reasoning technique, called constraint suspension, to establish
an explicit causality model [13], which provides a power­
ful troubleshooting tool based on dependency structures and
expected behaviors. Kleer and Williams further develop a
general diagnostic theory using the perspective of diagnosis
as identifying consistent modes of behaviors [14]. While
these modeling techniques have been mostly used for trou­
bleshooting hardware problems, we believe that they are also
suitable for WLAN diagnosis. Although the model's "expected
behaviors" may change as WLAN operations change, the
model's causality structure remains the stable as long as the
WLAN configurations do not change.
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Fig. 3. Structural and behavioral model for a circuit board.

algorithm.

A. Structural and Behavior Model

The idea of SBM is simple and we use an electronic circuit
as an example, shown in Figure 3. An SBM describes behavior
of a functional model using logical level interrelations of the
components in the structure [13]. Clearly the behavior of the
adder 1 can be expressed by the logical causality of its inputs
X, Y, and its output F. Namely, the expected value of F is
equal to the sum of the values of X and Y. If the measured
value of F is different than the expected value, either the adder
itself or the inputs have errors . Similarly, the output X of
multiplier 1 also has an expected value to be the multiplication
of the input values of A and C. Thus an SBM consists of
functional modules connected with inputs and outputs, and
each output has an expected value that can be used to check
against measured value for determining potential malfunctions.

SBM can also be applied in a similar fashion to trou­
bleshoot WLAN problems. Take diagnosing wireless con­
nectivity problems as an example. The connectivity between
client and AP relies on several other functional components:
good physical-layer connection, good MAC-layer connection,
successful authentication, and successful association. Whether
the physical-layer connection is good (output) in turn depends
on signal strength and noise level (inputs). Whether the MAC­
layer connection is satisfying (output) depends on channel
congestion level [19] and whether there are MAC misbehaviors
(inputs) [27]. We can use some MAC-layer measurements to
estimate current MAC-layer connection quality, such as the
number of frame retransmissions and the frame transmission
delay (time between placed in transmission queue and trans­
mitted over the air) [11]. If the value of these metrics exceed
a threshold determined by empirical experience, we consider
the (output of) the MAC-layer connection is not as expected
(malfunction) and start checking its inputs (channel congestion
and MAC misbehaviors).

The above example is by no means to be comprehensive.
The root causes of wireless connectivity issues may also reside
at higher layers, such as that the AP is overloaded, the client
fails to obtain a DHCP address, or the DNS request fails to
resolve . Fortunately SBM is fairly general and easy to extend,
as long as the new functional module has a measurable output
that can be checked against an "expected" value to determine
whether the output is abnormal or not. In Figure 4 we give
an extended SBM model for wireless connectivity diagnosis.
The functional modules are represented by non-shaded boxes,
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the root causes of faults are shaded boxes, and the measurable
metrics are labeled on the causality links.

B. Effect-Mismatch Algorithm

Given a SBM and the symptoms of malfunctions, fault
diagnosis process determines which components in the SBM
is the root cause of the malfunction. Instead of postulating
a possible fault and matching its consequences against mea­
surements, we use discrepancy detection [13] that looks for
mismatches between the expected values and the operational
measurements. If a mismatch has been found for a functional
component's output value, we recursively check its upstream
inputs for any mismatches.

Again we use Figure 3 as an example, and we assume that
the inputs A, B, C, D, E have the values 3, 2, 2, 3, 3 as shown.
If all the multipliers and adders work correctly, the expected
values of F and G should both be 12. If the value of F turns out
to be 10, there is a mismatch between the expected value (12)
and the measurement (10). Instead of concluding adder 1 is
broken, we have to trace back to its inputs along the causality
links.

The causality structure of adder 1 indicates that it depends
on the output values X and Y from multiplier 1 and 2. The
expected values of X and Y should both be 6. If X, Y, and
Z are not measurable, it may be difficult to determine which
multiplier is faulty. On the other hand , since the value of G
is as expected (12) , we may conclude that it is most likely
multiplier 1 has malfunction because adder 2 and its inputs
(Y and Z) work correctly.

In Figure 4 we rearrange the model so all the potential faults
are listed as sources without inputs . The effects of the faults
will propagate through the causality structure and manifest
as behavioral mismatches of some output values. The middle
unshaded boxes act as virtual functions that aggregate their
inputs : if their output value has discrepancy, one of their inputs
must have some malfunction. This generic definition allows
decoupling of the diagnosis algorithm, so the model itself
can be updated (either the causality structure or the expected
values) separately.

Formally, we call the diagnosis procedure Effect-Mismatch
Algorithm (EMA) , which differentiates SBM modules as three
types, surface , cause , and middle modules. The surface mod­
ules correspond to functional components, whose failures are
observable to end-users or monitoring tools, such as connec­
tivity, performance, or malicious attacks. Once the failure is
detected, it triggers fault diagnosis process, shown as follows .

function em.t r i qqer (module)
if (is_triggered (module)) then

to_check (module) = true
endif

The cause modules are directly related to the root causes
of malfunctions that determine the failures of the surface
modules. If the EMA inference has reached one of such
module, the fault is localized and returned.



Fig. 4. Structure and Behavior Model for wireless connectivity problems.

function em.Loca Ldz e (module)
if (no.Lnput s (module)

and t o.chec k (module » then
fault_localize (module)

endif

The middle modules connect the surface modules and the
cause modules, which contain different behaviors cross multi­
ple layer protocols and services that indicate the relationships
between malfunctions and their causes. EMA simply checks
individual inputs and continues a depth-first search if an input
mismatch is found.

function ern.d i aqno s e (modu l e.out )
for modu Le.zi n in inputs (modu l ecout.)

if (is_linked (moduLe.d n , rnoduLecou t )
and t o . c h e.ck (modu Leiout )
and is...misbehavior (moduLe.d n ) then
to_check (module_in) = true

endif
next

Note that we list three separate functions here only for the
illustration purpose. The EMA is not implemented using a
procedural programming language. Rather, it is implemented
as a set of rules like logic programming (Section IV-C). The
execution order is not predefined and is solely dependent on
the model structure. For example, if an anomaly is detected
and the is_triggered( module) is set to true, the rule in
em .diaqnose will run to check that module's inputs. Setting
to.check to be true in the conditional statement may recur­
sively trigger em.sliqanose towards upstream input modules
until no.inputs satisfies in em .localize.

The order of checking a module's inputs is not spec­
ified by EMA. It can be optimized, however, that inputs
are assigned with priorities so EMA can check them in a
priority-descending order, so the more likely faulty input
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Fig. 5. Architecture of the MODI system.

will be checked earlier than others. The actual priorities can
be assigned manually according to WLAN administrator's
experience or they can be learned and adjusted automatically
based on historical diagnosis results. Currently EMA triggers
diagnosis from the surface modules, and it can be further opti­
mized by jumping directly to certain middle module based on
its historical faulty probability and backtrack if this heuristic
guessing is wrong.

IV. SYSTEM DESIGN AND IMPLEMENTATION

Figure 5 shows the basic architecture of the proposed MODI
system. A knowledge base holds the SBM model representa­
tion and the inference engine implements the EMA algorithm.
The network monitor is a general term, which can be PCAP­
based network sniffers or other relevant measurement points,
such as log analyzers. The measurements are used to compare
against with SBM's expected behaviors for EMA-based infer­
ence. As the WLAN configurations or the understandings of
the WLAN operations change, administrators can update the
text representation of the SBM model in the knowledge base
without touching the inference engine.

A. Self-Diagn osing APs

For evaluation purposes, we enhanced existing APs with
MODI to build self-diagnosing APs (SAPs). Many existing
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Fig. 6. The structure of self-diagnosing AP.

approaches use dedicated wireless sniffers to obtain detailed
physical and MAC-layer measurements [5], [23]. We decided,
however, to run MODI inside the AP to avoid a separate
wireless sniffing infrastructure and MODI can better correlate
wireless and wired measurements inside the bridging AP.

It is possible to time-share a single wireless card so it
can perform two tasks simultaneously: serving clients and
sniffing the air, such as using MultiNet [9]. This approach,
however, disrupts normal client communication and provides
poor measurement fidelity. Thus we built SAPs with two
wireless cards, one dedicated for serving clients and the other
for wireless sniffing .

We used the MadWifi 1 driver that supports both AP and
sniffing modes, in which it allows wireless cards with Atheros
chipsets to capture IEEE 802.11 frames . We chose wireless
cards with Atheros AR5212 chipset for the SAPs. Figure 6
shows the structure of a SAP. There are three network cards
in a SAP. The Ethernet card works as the WAN interface. One
of the wireless cards is running in AP mode as LAN interface,
and the other is running in sniffing mode for packet sniffing
over the wireless channel. We can easily observe network
traffic from three interfaces to calculate traffic statistics and
infer protocol states for MODI.

Running MODI inside SAP raises the concern of its over­
head, and we evaluate MODI's impact on embedded devices
like SAPs in Section V.

B. Information Collection

The MODI inside a SAP runs two threads, one sniffing
the wireless interface and the other sniffing the wired one, so
it is possible to correlate the wired and wireless events. For
example, if the TCP connection is observed on the wired side
to have prolonged congestion window, MODI should be able
to tell whether this is caused by poor wireless transmissions.
Note that , however, the communication between a client and
the SAP may be encrypted if WEP, WPA, or 802.11 i is used .
This poses a challenge to associate wireless clients, identified
by MAC addresses on the wireless interface, with higher­
layer communication end points, identified by the IP addresses
on the wired side . It may be too resource consuming or
even infeasible to get the key for MODI to decrypt wireless
packets on the fly. Instead, depending on whether SAP runs in

1http.z/madwifi-project.org
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Fig. 7. Time consumption for rule matching.

switching or routing mode, MODI can either snoop the ARP
packets or to query Linux kernel tables to find the MAC-IP
address mappings.

The wireless sniffer captures the MAC-layer frames on the
same channel operated by the SAP, including the low-level
physical-layer information in the radiotap header provided by
the MadWifi driver. It can estimate client's signal strength,
channel congestion level [19], frame retransmissions, frame
transmission delay [11], detect MAC-layer misbehaviors [27],
and infer current protocol state based on the IEEE 802.11
specification, such as whether the client is being authenticated,
is associated, is transmitting data, or is in the power-saving
mode.

C. Diagnosis Engine

MODI is built upon a logic-based rule system, CLIPS (C
Language Integrated Production System) [18], which is a
software tool that is often used to develop expert systems.
CLIPS contains facts and rules, which have text representa­
tions and follow first-order logic formalism, thus supporting
both forward and backward reasoning. The rules are evaluated
when new facts are inserted or existing facts are updated.
To avoid the naive evaluation of every rule against all facts ,
CLIPS uses an efficient pattern-matching algorithm RETE to
pre-compile the conditions of the rules [17]. Figure 7 shows
the comparison of the time consumption of matching one rule
with sequential evaluation and with CLIPS' RETE evaluation.
Clearly CLIPS scales well in terms of the ruleset size.

MODI's network sniffers extract statistical traffic summaries
and state inferences, and insert them into CLIPS' knowledge
base as facts regarding current WLAN operations. The SBM
model is also specified as facts describing the structural
connections and expected output values. The EMA reasoning
algorithm is implemented as rules in CLIPS' inference engine,
which will be triggered if there is a mismatch between the
measurements and the expected values. The diagnosis results
are saved into an HTML file that can be viewed by WLAN
administrators remotely.

D. Fault Injection

There are a variety of faults , either malicious or benign,
that may disrupt WLAN operations [7], [1], [27], [5], [28].
Here we describe several representative faults that we have
implemented and injected into the WLAN to test MODI.



The 802.11 header of MAC frames has a "duration" field
containing a value of the time the sender wants to reserve
the channel for its transmission. All other stations hearing
this frame will set their network allocation vector (NAV) and
wait until the reserved time passes. Thus a greedy transmitter
can manipulate the protocol parameters when sending RTS or
DATA frames to increase the included NAV value in order
to prevent the stations in range from contending during this
time [27]. We call this "NAV Attack."

The 802.11 MAC frames can easily be spoofed, meaning
the source MAC address in the frames can be set to arbitrary
value [29]. Thus an attacker can spoof a Disassociation frame
from an AP to disconnect an associated client, resulting a type
of Denial-of-Service attack [7]. We call this "Disassociation
Attack." To be effective, an attacker needs to send multiple
spoofed Disassociation frames to keep the client from re­
association.

If a wireless channel is congested [19], the perceived
application performance at a client may degrade significantly,
because a frame may need to wait a long time before it can
grab the channel for transmission [11]. To evaluate the MODI's
ability to detect channel congestion, we used a dedicated
laptop that can inject wireless frames at a controlled rate. This
fault and previous two attacks can all be implemented using
a frame injection tool, such as File2Air.2

At the physical layer, the signal strength plays an important
role on wireless transmission performance [30]. The signal
strength may vary due to distance, environment changes,
or device mobility. This fault is relatively easy to detect
since MODI captures frame-level signal strength from wireless
sniffers and there is a direct relationship between average
signal strength and MAC-layer throughput [8].

Besides wireless issues, the perceived performance prob­
lems may be caused at the wired components that is part of the
WLAN infrastructure. For example, a slow DNS server may
force a HTTP session to wait a long time. We implemented a
"DNS Query Flooding" attack to achieve this effect.

V. EXPERIMENTAL RESULTS

In this section we present the evaluation results of the pro­
posed MODI system. First we describe the testbed deployed
in our department building. Then we evaluate the system
overhead when running MODI in the self-diagnosing APs.
We also discuss the effectiveness using MODI to diagnose
several common WLAN faults. Finally we deployed MODI
outside of APs to diagnose cross-AP problems, such as those
caused by device mobility. In this paper we focus on the IEEE
802.11 MAC layer faults and have not implemented detection
methods for TCP problems, which are addressed by Adya and
others [1].

A. Test Environment

We deployed a MODI testbed in our department building,
a six-story concrete structure. Each floor is 260 feet long and

2http://www.willhackforsushi.comIFile2air.html
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85 feet wide, with hallway walls and floors made of concrete.
We built three MODI-enabled self-diagnosing APs (SAPs) on
the third floor of our building. These APs are RouterBOARD
532A devices, installed with OpenWrt Kamikaze 7.09 with
Linux kernel 2.6.21-5. Each SAP has MIPS 400MHz CPU,
64MB RAM, 2GB Compact Flash disk. We chose Wistron
Neweb CM9 with Atheros AR5212 chipset as our wireless
radio cards, and installed MadWifi 0.9.4 (r2568-20070710
svn snapshot) for serving clients in the AP mode and for
frame captures in the sniffing mode. Furthermore, We used
omni-directional antennas that have 3dbi gains on the 2.4GHz
frequency channel. Besides these three SAPs, we also used a
set of T42 laptops installed with Debian Linux or Windows
XP as wireless clients, which generate network traffic through
SAPs or inject faults for testing purposes. Each wireless client
can access the backbone network through SAPs with which
the clients are associated.

We implemented several WLAN faults as described in
Section IV-D. We used File2Air to inject attacking frames
into our testbed. File2Air is a command-line utility, which
allows to specify and inject arbitrary 802.11 frames into a
wireless channel using many wireless drivers. We customized
the header fields to create specific 802.11 frames with large
duration values for NAV attacks or the victim's MAC address
for the Disassociation attacks.

B. System Overhead

Wireless access points are typically embedded devices with
limited resources. For example, our SAPs have 400MHz CPU
and 64MB RAM. Therefore, the fault diagnosis system run­
ning on wireless APs should have low resource consumption.
In addition to serving clients as a normal AP function, MODI
on the SAPs also sniffs the wireless and Ethernet interfaces,
decodes captured packets, calculates traffic summaries and in­
fers protocol states, and interacts with CLIPS-based diagnosis
engine.

To determine the impact on incoming and outgoing traffic
when running MODI directly on APs, we considered a sce­
nario in which a wireless client is associated with a SAP and
generates UDP traffic to a desktop PC connected to the wired
backbone network. The wireless client used iperf 3 for traffic
generation and throughput reporting. In this scenario, both the
AP and the client's wireless card are likely to be continuously
busy and the packet loss of the UDP traffic is not caused by
the weak transmission signal.

We first measured the capacity of the SAPs without running
MODI. After allowing iperf to generate different traffic loads
from 2Mbps to 54Mbps, we found that the maximum band­
width of these APs was about 17Mbps while the packet jitter
was up to 3ms and the average packet loss was up to 1fps
(frame per second). On the other hand, we repeated the same
experiments while running the MODI on the SAPs. As shown
in Figure 8-10, the impact of running MODI on SAPs was
minimal, and the bandwidth, packet jitter, and average packet
loss were close to the normal APs without running MODI.

3http://iperf.sourceforge.net/
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Fig . 13. CPU utilization of self-diagnosing AP with frame injection

As shown in Figure 13 and 14, CPU utilization by MODI
increased significantly due to increased frame processing
load while the memory utilization remained low. While CPU
utilization may be high, MODI itself did not reduce AP's
throughput. Rather, it may drop sniffed frames as discussed
below. Thus we conclude that MODI consumed reasonable
resources on SAPs and imposed little performance overhead.
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Next we set the UDP traffic generated by the wireless
client to be 20Mbps, which allowed the SAPs to achieve
their maximum throughput. We then monitored the CPU and
memory utilization on the SAPs for ten hours and recorded
their average values every 30 minutes . The results suggested
that the CPU utilization mostly stayed below 50% during the
whole experiment period, shown in Figure 11. After running
MODI, CPU utilization increased from 50% to 75%, and
stayed below 80%. In Figure 12, memory consumption always
stayed below 30% even if the needed memory increased when
MODI was running . It shows that MODI consumed less than
3% additional memory during the entire experiment period .

To increase the load targeting against MODI, we set up
another wireless station that injected arbitrary frames into the
air. These frames were not destined to SAP's client-serving
wireless interface, whose radio firmware directly dropped any
frames not for itself. On the other hand, the MODI's sniffing
interface picked up these frames and did all normal processing.

C. Fault Diagnosis

Diagnosing WLAN faults is particularly challenging since
the basis for detecting these faults is most likely the anomalies
found in various network measurements. There are often
no precise "signatures" that can be defined for individual
faults, unlike the well-specified rules used by wired intrusion
detection system such as Snort ." Differentiating anomalies
caused by faults or by natural traffic variations from workload
and environment sometimes can only rely on thresholds, which
are learned from historical observations. The focus of this
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Fig. 10. Packet Loss test for self-diagnosing AP 4http://www.snort.org)
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Fig. 14. Memory utilization of self-diagnosing AP with frame injection

TABLE I

RESULTS OF INDIVIDUAL FAULT DIAGNOSING

Faults Occurred Detected Accuracy
DNS Query Flooding 200 200 100%

NAY Attack 200 192 96%
Disassociation Attack 200 198 99%
Channel Congestion 200 200 100%

Weak Transmission Signal 200 190 95%

3.07%
11.11%

Loss Ratio
4500352
3907172

Our system
4642639
4395746

wireless card
stop

running

diagnosing state

Faults Occurred Detected Accuracy
DNS Query Flooding 80 80 100%

NAY Attack 40 37 92.5%
Disassociation Attack 40 36 90%

Channel Busy 40 40 100%
Weak Transmission Signal 80 76 95%

Total 280 264 96.1%

than the rate of inbound frames.
Frame loss is inevitable for wireless sniffers, thus having

an impact on diagnosis accuracy. Previous work has described
how to merge frames captured from nearby cooperating snif­
fers [28], to improve frame capture efficiency by directly
modify the MadWifi driver without passing through PCAP
library [12], or to recover lost frames using 802.11 MAC
protocol state machine [22]. We plan to look into integration
of some of these techniques as future work.

We also challenged MODI by injecting all five faults simul­
taneously to see whether MODI was capable of diagnosing
multiple faults. The results are shown in Table III, suggesting
MODI is also quite effective in catching simultaneous faults.
In particular, the diagnosis accuracy for DNS Query Flooding,
Channel Congestion, and Weak Transmission Signal remained
similar to single-fault diagnosis, while the accuracy for diag­
nosing NAV and Disassociation attacks decreased due to their
sensitivity to the frame loss.

Weak transmission signal is inherently difficult to diagnose,
because signal strength fluctuates all the time even if the
transmitter is stationary [29]. Interestingly, the fluctuation of
signal strength may cause a station to swing back and forth
between APs, sometimes called Ping-Pong effect [20] . Thus
it may be difficult for a single AP to determine whether the
signal strength changes are caused by channel variations or by
device mobility. To address such problems, it is important for
APs to cooperate for cross-AP diagnosis as we discuss in next
section.

TABLE III

RESULTS OF MULTIPLE FAULTS DIAGNOSING

TABLE II

THE IMPACT OF DIAGNOSIS ON ON SNIFFING LOSS

D. Cross-AP Diagnosis

Here we demonstrate MODI can be deployed outside of
APs, which serve as measurement collection points while the
diagnosis engine is centralized [5], [23] to address the cross­
AP faults, such as those caused by device mobility. Today's en­
terprise WLANs employ thin-AP switched architecture, where
APs are light-weight devices that forward frames to centralized
WLAN switch for all the processing. This is sometimes called
split-MAC design, so time-sensitive tasks (such as ACK) are
performed at the APs, while all management and data frames
are handled at the switch. It is thus feasible to run MODI
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paper is the diagnosis architecture, rather than the techniques
finding most appropriate thresholds for individual problems,
which we discuss elsewhere [29], [34].

To demonstrate the diagnosis effectiveness of the proposed
MODI system, we set up a SAP through which two wireless
clients were continuously downloading a 304GB file using
HTTP. We used additional wireless stations to inject various
faults as described in Section IV-D. We repeat each fault
injection separately for 200 times, and each fault injection
last for about 1 second. The results of the MODI diagnosis
reported on the SAP are shown in Table I. MODI achieved
reasonable diagnosis accuracy, catching most of the injected
faults .

MODI did miss some injected faults , such as 8 NAV attacks,
2 disassociation attacks, and 10 weak transmission signal
cases. While the thresholds we chose for these faults may not
be the best ones, we found that another contributing factor of
mis-diagnosis was frame loss by the wireless sniffers. SAP
is an embedded device and MODI's CPU utilization may
become high as it processes more captured frames. When the
processing capability lags behind the rate of incoming frames,
the PCAP buffer in the Linux kernel starts to drop captured
frames . Loss of wireless frame by wireless sniffers will thus
reduce the MODI's diagnosis effectiveness.

We can determine the frame loss ratio by comparing the
number of frames captured by the radio interface, available
through a system call, and the number of frames captured
by MODI sniffers. The difference is the number of frames
dropped by PCAP library. Table II shows that the frame loss
ratio may reach 11% when running MODI on the SAP. Note
that the frames for the wireless interface serving clients in AP
mode did not suffer such losses , since the frame processing
by the driver is quite efficient. Rather, frames on the sniffing
interface were lost because MODI needed CPU cycles to
analyze captured frames and its speed may become slower
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Fig. IS. An example of Wireless Mobility

sniffers on the APs, which send traffic summaries to the switch
who runs MODI diagnosis engine, since MODI architecture
is flexible so it can run either on a single device or run in a
distributed fashion.

To demonstrate switch-based MODI, unlike previously dis­
cussed MODI-embedded SAP, we set up a mobility experi­
ment. In our department building, 802.11g provides only about
100 feet communication range, as the signal drops quickly as
it goes through concrete walls [21]. We deployed two APs A
and B on opposite sides of the third floor. These two APs had
the same ESSID and operated on the same channel, so that a
wireless client C can roam from one to the other. We deployed
MODI on a centralized server S to test mobility diagnosis. The
experimental setup is illustrated in Figure 15.

The client C, associated with A, moved towards B with a
speed of 3 feet per second, till it was re-associate with B. The
entire process took 30 seconds. To evaluate the performance
change during the roaming of C, we had it generate IMbps
UDP traffic to another client D (stationary). APs A and B
still ran the wireless sniffers, but not the CLIPS knowledge
base and inference engine, and sent traffic summaries and
state inference every 3 seconds to S who ran MODI diagnosis
subsystem.

After analyzing the traffic information obtained from A, we
found that the throughput between A and C decreased to 0
at the 21st second, as shown in Figure 16, and the average
transmission rate between A and C decreased to 0 at the
21st second. Intuitively, the degradation of the throughput
between A and C was caused by weak signal strength. By
analyzing the traffic information obtained from B, however, we
found the throughput between Band C increased at the 18th
second. That is, C disconnected with A and then connected
to B. Furthermore, according to C's disassociation state with

Throughput on C ­
Throughput between A and C -----.----­

-------""Th oughput between Band C ······· ·····

VII . CONCLUSION AND FUTURE WORK

VI. DISCUSSIONS

While MODI has not focused on WLAN measurements,
its performance will certainly be impacted by different mea­
surement techniques. For example, the detection accuracy
can usually be improved if the measurement component can
recover some missed frames by merging from nearby sniffers
or by recovering frames from existing wireless or wired
observations. Similarly, cross-layer measurements such as the
wireless/wired correlation used in the MODI-enabled SAPs
can also reduce inference complexity.

The EMA algorithm uses threshold values to detect mis­
matching anomalies and then trace back the SBM causality
structures. While threshold-based detection is quite general
and worked well in our cases, there may be other non-threshold
based techniques can achieve better performance . For example,
Bayesian or Neural networks encode their learning models
in graphical structures. To integrate such techniques, we may
need to modify SBM to have a binary module output (true or
false) matched against a separate anomaly-analysis component
(outside of SBMlEMA). It is, however, not difficult to make
such modifications since SBM has a text representation and is
decoupled from EMA.

Due to the limitation of our testbed, we have not conducted
large-scale evaluations. For a single MODI-enabled SAP, we
know the CPU can be a bottleneck and MODI may lose
frames if the channel or the AP becomes overloaded. This
calls for MODI deployment outside of APs, particularly for
the enterprise environment. We do not expect the network will
be the bottleneck as the periodic traffic summaries sent from
APs are small and the intervals can be adjusted to tradeoff
detection delays. For large campuses, we can deploy multiple
MODI systems, each covering a building or domain [28].

A and the re-association state with B, inferred by analyzing
management frame exchanges captured by the wireless sniffers
on A and B, MODI concluded that the wireless mobility
caused the throughput degradation between C and D.

To address the WLAN fault management challenge, we
propose MOdel-based self-DIagnosis (MODI) that leverages
both Structural and Behavioral Model (SBM) and logic-based
backward reasoning Effect-Mismatch Algorithm (EMA). The
novelty of this approach results in decoupled architecture
where SBM can be quickly updated independent of EMA,
which is often necessary for changing WLAN environment and
configurations. MODI is lightweight as demonstrated to run
on embedded device to build self-diagnosing APs, imposing
little overhead on the AP's normal client-serving functions.
While wireless sniffers may lose frames, MODI achieved
reasonable accuracy results when diagnosing both individual
and simultaneous faults. We also demonstrated that MODI
can be deployed with enterprise-scale switch-based WLAN
architecture, to address cross-AP diagnosis problem, such as
those caused by device mobility.
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As future work, we plan to investigate techniques that can
reduce frame loss by the wireless sniffers to improve the
diagnosis robustness. Based the on diagnosis results, we also
plan to integrate MODI with automatic remedy actions, such
as re-schedule APs' channels or re-allocate users for load
balancing [25], as a foundation for self-healing WLANs.
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