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Abstract-Unattended Wireless Sensor Networks (UWSNs)
operating in hostile environments face great security and per
formance challenges due to the lack of continuous real-time
communication between senders (sensors) and receivers (e.g.,
mobile data collectors, static sinks). The lack of real-time
communication forces sensors to accumulate the sensed data
possibly for long time periods, along with the corresponding
signatures for authentication purposes. Moreover, non-real-time
characteristic of UWSNs makes sensors vulnerable especially to
active adversaries, which compromise sensors and extract all data
stored in them. Hence, it is critical to have forward security
property such that even if the adversary can compromise the cur
rent keying materials, she cannot modify or forge authenticated
data generated before the node compromise. Forward secure and
aggregate signatures are cryptographic primitives developed to
address these issues. Unfortunately, existing forward secure and
aggregate signature schemes either impose substantial computa
tion and storage overhead, or do not allow public verifiability,
thereby impractical for resource-constrained UWSNs.

In order to address these problems, we propose a new class of
signature schemes, which we refer to as Hash-Based 5..equential
&gregate and Eorward Secure 5..ignature (HaSAFSS). Such a
scheme allows a signer to sequentially generate a compact, fixed
size, and publicly verifiable signature at a nearly optimal com
putational cost. We propose two HaSAFSS schemes, Symmetric
HaSAFSS (Sym-HaSAFSS) and Elliptic Curve Cryptography
(ECC) based HaSAFSS (ECC-HaSAFSS). Both schemes integrate
the efficiency of MAC-based aggregate signatures and the public
verifiability of bilinear map based signatures by preserving
forward security via Timed-Release Encryption (TRE). We
demonstrate that our schemes are secure under appropriate
computational assumptions. We also show that our schemes are
significantly more efficient in terms of both computational and
storage overheads than previous schemes, and therefore quite
practical for even highly resource-constrained UWSN applica
tions.

Index Terms-Unattended Wireless Sensor Networks
(UWSNs), security and privacy, digital signatures, forward
security, signature aggregation.

I. INTRODUCTION

An Unattended Wireless Sensor Network (UWSN) [1]-[5]
is a Wireless Sensor Network (WSN) in which continuous end
to-end real-time communication is not possible for sensors
(senders) and their receivers (e.g., mobile collectors, static
sinks). In other words, receivers might not be available for
sensors from time to time, sometimes for long time periods.
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In these time periods, sensors accumulate the sensed data
and then transmit it to the receivers, whenever they become
available to sensors. Receivers can collect the sensed data
from sensors via, for example, mobile collectors visiting the
network periodically [2], [5].

Examples of UWSNs can be found in military WSN appli
cations (e.g., [1], [6]), where sensors are deployed to an adver
sarial and unattended environment to gather information about
enemy activities (e.g., underground, underwater and airborne
UWSNs to detect enemy vehicles as well as nuclear/chemical
activities). One illustrative example is LANdroids [7], a recent
U.S. Defense Advanced Research Projects Agency (DARPA)
research project, which designs smart robotic radio relay nodes
for the battlefield deployment. These nodes are deployed in
hostile environments, gather military information and then
uploads it to ally vehicles (e.g., UAV, tank or soldier) upon
their arrival.

The lack of real-time communication and the resource con
straints of the UWSNs bring several security and performance
challenges, especially when an UWSN is deployed in a hostile
environment as described above. In particular, inability to off
load the sensed data forces sensors to accumulate a large
amount of data along with their authentication information.
More importantly, unattended settings make the UWSN highly
vulnerable to active [5] and/or mobile adversaries [1], [2].
Such an adversary can physically compromise sensors and
gain access to the accumulated data as well as the existing
cryptographic keys. When a sensor is compromised, the ad
versary can always use the cryptographic keys learned from the
sender to generate forged messages after the attack. However,
it is critical to prevent the adversary from modifying the
data accumulated before the adversary takes control of the
sender [5]. Such a security property is referred to as forward
security [8].

Forward secure signatures have been proposed to provide
forward security for pre-accumulated data [8]. In a forward
secure signature, a sender digitally signs each data item as
soon as it is accumulated. The sender then evolves its secret
key (which implies the deletion of the previous keys) and
uses the new key to sign the next data item. Consecutively
signing accumulated data items also brings significant storage
and communication overheads because of the accumulation of



the signatures of individual data items. Aggregate signature
schemes [9] were developed to address this issue by aggregat
ing the signatures of different data items into a single small
size signature.

All the above properties of forward secure and aggregate
signatures make them ideal cryptographic tools for achieving
data integrity and authentication for UWSN applications in
the presence of active adversaries [5]. However, almost all
existing forward secure and/or aggregate signature schemes
(e.g., [5], [8], [9]) impose extreme computational, storage,
and communication overheads on the network entities, which
are intolerable for resource-constrained UWSN applications.
The only exception is FssAgg-MAC [5], which achieves
computational efficiency through hash chains and symmetric
key distribution. Unfortunately, despite its computational ef
ficiency, FssAgg-MAC has high storage overhead and does
not allow the signatures to be publicly verifiable, limiting its
applicability. Thus, it is necessary to seek more flexible and
efficient forward secure and aggregate signatures for UWSN
applications.

In this paper, we propose a new class of digital signa
ture schemes for UWSN applications, which we call Hash
Based §.equential dggregate and Eorward §.ecure §.ignatures
(HaSAFSS, pronounced "Hasafass"). We develop two specific
HaSAFSS schemes, a symmetric HaSAFSS scheme (called
Sym-HaSAFSS) and an ECC-based HaSAFSS scheme (called
ECC-HaSAFSS). A nice property of these schemes is that
they achieve three seemingly conflicting goals, computational
efficiency, public verifiability and forward security, at the same
time. To achieve this, HaSAFSS schemes introduce asymmetry
between the senders and receivers using the time factor via
Timed-Release Encryption (TRE) [10]. Using this asymmetry,
our schemes achieve high efficiency by avoiding costly Public
Key Cryptographic (PKC) operations, while still remaining
publicly verifiable and forward secure.

We summarize the properties of our schemes as follows:
• Our schemes achieve near-optimal computational effi

ciency and public verifiability at the same time. They
achieve the computational efficiency by adopting crypto
graphic hash functions to compute aggregate and forward
secure signatures, and thus are much more efficient than all
the existing schemes (e.g., [9], FssAgg-BLS in [5]), with
the exception of FssAgg-MAC in [5]. When compared with
FssAgg-MAC [5], our schemes achieve public verifiability
by eliminating symmetric key distribution, and therefore are
much more applicable for ubiquitous systems. Note that our
schemes preserve the computational efficiency of FssAgg
MAC [5], while achieving these goals.

• In our schemes, both senders and receivers get equal
benefits of computational efficiency, while most existing
schemes incur extremely heavy computational overhead on
the receiver side. This property is especially useful for the
UWSN applications in which the receivers need to verify
large amounts of data efficiently.

• Besides the computational efficiency, our schemes are
also storage and bandwidth efficient: (i) Since HaSAFSS
schemes achieve the signature aggregation, a sender always
stores and transmits only a single compact signature, regard-
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less of the number of time periods or data items to be signed.
This property provides an advantage for the bandwidth
limited systems. (ii) ECC-HaSAFSS is a sender friendly
scheme that requires storing only one key per sender. In
contrast, Sym-HaSAFSS requires storing one key for each
receiver by offering an alternative receiver friendly scheme
(the storage overhead on the sender side is still plausible).
Hence, ECC-HaSAFSS and Sym-HaSAFSS complement
each other in terms of storage overhead.

HaSAFSS schemes utilize already existing verification de
lays in the envisioned UWSN applications as an opportunity
to achieve the aforementioned properties. Thus, they are ideal
solutions for UWSN applications in which high computa
tional/storage/bandwidth efficiency are more important than
immediate verification.

The remainder of this paper is organized as follows. Section
II briefly presents related work. Section III discusses notation,
security and data models. Section IV describes the proposed
schemes in detail. Section V provides the security analysis of
the proposed schemes. Section VI gives performance analysis
and compares the proposed schemes with previous approaches.
Section VII concludes this paper.

II. RELATED WORK

In this section, we first give an overview of the existing
forward secure and aggregate signature schemes and then
review the notion of Timed-Release Encryption (TRE) used
in our schemes. We then briefly compare our schemes with
TESLA [11], which also uses the time factor to achieve
efficient source authentication. Last, we give a short review
of self-healing schemes proposed for the UWSNs.

Forward Secure and Aggregate Signatures: A forward
secure signature aims to minimize the effect of key compro
mises. The first forward secure signature scheme was proposed
in [12]. In this scheme, each signature is associated with a time
period in addition to the signed data item. After each time
period, the secret key of the signer is changed and cannot be
used for previous time periods. Several new schemes were later
proposed to improve storage requirement, signature size, and
computational cost (e.g., [8], [13], [14]). However, all existing
forward secure signatures are either computationally expensive
or introduce high storage overhead.

Another important digital signature primitive is aggregate
signature, which aggregates n individual signatures associ
ated with n different data items into a single, compact sig
nature. The first aggregate signature scheme was proposed
in [9], which utilizes the BLS (Boneh-Lynn-Shacham) signa
tures [15]. Various new aggregate signature schemes have been
developed to offer different properties such as sequentiality
(order preserving) [16], low storage overhead [17], and for
ward security [5]. Despite their attractive properties, all these
schemes are also computationally expensive due to the heavy
use of BLS operations.

Recently, Ma et al. [5] proposed the first signature schemes
that achieve signature aggregation and forward security simul
taneously, motivating them for the efficient data integrity and
authentication in UWSNs: FssAgg-BLS and FssAgg-MAC.



FssAgg-BLS uses hash chains and BLS based signatures [9]
to compute and verify aggregate signatures, thereby extremely
costly and impractical for the envisioned UWSN applications.
In contrast, FssAgg-MAC archives high computational effi
ciency by utilizing hash chains and MAC functions to com
pute and verify signatures via symmetric key pre-distribution.
Despite its effectiveness, FssAgg-MAC does not allow the
signatures to be publicly verifiable and incurs significant
storage overhead. Inspired by FssAgg-MAC scheme [5], our
approach achieves low storage overhead, public verifiability as
well as computational efficiency.

Timed-Release Encryption (TRE): The purpose of TRE
is to encrypt a message in such a way that no entity in
cluding the intended receivers can decrypt it until a pre
defined future time. The majority of modem TRE schemes are
based on Trusted Agent (TA), in which a time server provides
universally accepted time reference and trapdoor information
to users [10]. Hence, users can decrypt the ciphertext when
its related trapdoor information is released by the TA. Most
of the recent TRE schemes are based on Identity-Based
Encryption (IBE) [18] and bilinear map (e.g. [19]). In order
to achieve efficient solutions, we avoid using expensive IBE
TRE schemes. Instead, we only use the basic TRE concept to
fulfill our requirements.

TESLA: TESLA [11] is an efficient broadcast authentica
tion protocol that also uses delayed disclosure of the keying
material, assuming that senders and receivers are loosely syn
chronized. However, our schemes provide important properties
that are not available in TESLA. For example, TESLA cannot
achieve forward security and signature aggregation, thereby
cannot address requirements of the aforementioned UWSN
applications. Also, TESLA cannot be used for UWSN appli
cations when loose time synchronization cannot be guaranteed
for the network entities.

Self-Healing Techniques: Recently, a series of studies [1]
[3] based on self-healing techniques have been proposed to
achieve data survival in UWSNs. They first propose mobile
adversary models, in which the adversary compromises the
sensors and deletes the data accumulated in them. To confront
such an adversary, they propose collaborative techniques,
in which non-compromised sensors collectively attempt to
recover a compromised sensor [2], [3] by introducing local
randomness (with a PRNG) to their neighborhood. DISH [2]
assumes a read-only adversary and targets the data secrecy.
POSH [3] allows constrained write-only adversaries and tar
gets the data survival. Pietro et. al. [1] elaborates the adversary
models given in [2], [3] and provides experimental/analytical
results for them.

Note that the adversary models and security goals in [1]-[3]
are different from ours. In our schemes (similar to FssAgg [5]),
the goal of the adversary is to forge data and/or destroy the
authentication. However, the goal of the adversary in [1]-[3]
is to prevent the data from reaching the sink (not modifying
or forging it).

III. NOTATION, SECURITY AND DATA MODELS

Notation: G is a generator on an Elliptic Curve (EC) over
a prime field Fp , where p is a large prime number and q is the
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order of G. kG, where k is an integer, denotes a scalar multi
plication. HI and H 2 are two distinct cryptographic hash func
tions, which are both defined as H I / H 2 : {a, I}" ---+ {a, 1}IHI,
where n denotes the bit length of randomly generated input
key and IHI denotes the output bit length of the selected hash
function. H 3 is used to compute aggregate signatures and is de
fined as H 3 : {a, 1}* ---+ {a, l}IHI. H4 is used to map an input
key to a point on the EC, Le., H4 : {a, I}" ---+ aGoWe also use
a secure MAC to compute individual signatures of data items,
defined as MACsk : {a, l}n x {a, 1}* ---+ {a, l}IHI. Last, we
use E, D, II, and [z] to denote symmetric encryption function,
symmetric decryption function, concatenation operation, and
the bit length of variable x, respectively.

Security Model: The security model of our schemes based
on the following assumptions and definitions:

Definition 1: Adversary A is a resourceful but Probabilistic
Polynomial Time (PPT) bounded adversary having the fol
lowing abilities: (i) passive attacks against output of crypto
graphic operations, (ii) active attacks including packet inter
ception/drop/modification, and (iii) physically compromising
senders/receivers (called as "break-in") and extracting the
cryptographic keys from the compromised nodes. A aims to
forge the extracted data using cryptographic keys obtained
from all senders and receivers.

Assumption 1: HI, ..., H4 are secure, strong collision-free
hash functions producing indistinguishable outputs from the
random uniform distribution. MAC cannot be forged by A
without knowing sk. Symmetric encryption function E is an
ideal cipher, which cannot be decrypted by A without knowing
the secret key. We also assume that the Elliptic Curve Discrete
Logarithm Problem (ECDLP) [20], [21] is intractable with
appropriate parameters.

Assumption 2: We assume a Trusted Third Party (TTP),
which is trusted by all network entities. (i) A cannot com
promise the TTP; (ii) A may jam the TTP, but if an entity
continuously tries, its messages can eventually reach the TTP;
(iii) the TTP releases time trapdoor keys (secret cryptographic
keys) with which the receivers verify the forward secure and
aggregate signatures generated by the senders. We assume that
time trapdoor keys released by the TTP reach the receivers
eventually. Details of the time trapdoor key delivery are given
in data models.

Definition 2: The forward security objective of our schemes
is to achieve the per-data item forward security. That is, in a
given time interval tw , senders sign each collected data item
as soon as it is received and updates the signing key. This
strategy provides forward security of each individual data item
collected in a given time interval tw (not across intervals),
which is different from the per-time period forward security
objective of FssAgg schemes [5] 1. Detailed security analysis
of this approach is given in Section V.

Remark 1: The per-data item forward security objective
requires that senders should transmit the aggregate signature
computed in tw to the receivers, before the TTP releases the

1In FssAgg [5] schemes, the signing key is updated once for each time
period, not for the each collected data item. Thus, if A breaks-in in tw , then
she can forge all data items accumulated-so-far from the beginning of t-».
However, A cannot forge data items accumulated in t < t-».



time trapdoor key associated with tw • Such a requirement is
compatible with the periodic data collection characteristic of
the envisioned UWSN applications [5]-[7]. Details of how
our schemes handle data/time trapdoor information are given
in data models and Section IV-B.

Data Models: We consider two data delivery models for
our envisioned UWSN applications:

(a) Synchronous Data Delivery Model: This model ad
dresses applications in which senders/receivers and the TTP
can agree on a prospective data delivery schedule so that
data/trapdoor delivery can be performed based on this pre
determined schedule. In this model, the TTP passively broad
casts time trapdoor keys periodically, and it is assumed that
the receivers (e.g., mobile collectors) are able to visit sensors
based on this pre-determined schedule.

(b) Asynchronous Data Delivery Model: This model ad
dresses applications where the nature of application does not
allow a prospective delivery schedule. In this case, the TTP
provides the time trapdoor information to the receivers on
demand. A representative scenario would be a military UWSN
application, in which soldiers gather information from sensors
from time to time and then request time trapdoor keys from the
TTP (e.g. UAV/satellite). Note that in the worst case, receivers
can obtain time trapdoor keys from a high-end and mobile
TTP directly (e.g., MTC (Mobile Tactical Center) [22]). Thus,
Assumption 2-(iii) is realistic.

Remark 2: Senders do not need to communicate with the
TTP. Receivers communicate with the TTP only in asyn
chronous data delivery model, only once for each time period
(the TTP is offline majority of the operation time).

IV. PROPOSED SCHEMES

In this section, we present the proposed schemes, Sym
HaSAFSS and ECC-HaSAFSS. Before giving the detailed
description, we first give an overview of these schemes.

A. Overview

The main goal of the HaSAFSS schemes is to create a
forward secure and aggregate signature scheme, which is as
efficient as a MAC-based signature scheme and is publicly
verifiable at the same time. Our schemes achieve this goal
based on the following observations: (i) Delays are already in
trinsic to the envisioned UWNS applications; such delays can
be used to introduce asymmetry naturally between the sender
(signer) and the receivers (verifiers) in order to bring both
public verifiability and efficiency to the envisioned UWSN
applications. (ii) HaSAFSS introduces this asymmetry with the
aid of TRE concept, instead of offloading this task simply to
the senders. Hence, even when the senders are compromised,
such asymmetry can still guarantee the forward security and
signature aggregation in a publicly verifiable way.

The HaSAFSS schemes consist of four phases: Initializa
tion, signature generation, time trapdoor release, and signature
verification.

Initialization Phase: In this phase, the TTP prepares and
distributes necessary cryptographic keys to the senders and
the receivers. In HaSAFSS, the TTP divides the time-line into
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multiple time periods, each of which is associated with four
types of cryptographic keys: time trapdoor keys, per-interval
keys, per-data item keys and session keys.

(i) Time trapdoor keys: Time trapdoor keys are the essential
instrument to introduce the desired asymmetry, utilizing the
basic TRE concept. Each time trapdoor key tkw is associated
with the time period tw and is released according to the ap
plication requirements. Time trapdoor keys introduce desired
asymmetry via per-data item, per-interval, and session keys.

(ii) Per-interval keys: Each sender uses a per-interval key
for each time period. The first per-interval key is given to
the sender by the TTP. The sender then "evolves" (with a
hash operation) the per-interval key as the time goes from one
period into the next. The objective of the per-interval key is
to provide a fresh initialization key for each time period, from
which the other required keys are derived for that time interval.

(iii) Per-data item keys: Each sender uses a per-data item
key for each data item. The first per-data item key in each
time interval, called the chain root of the per-data item keys
in that time interval, is either derived from the per-interval
key (Sym-HaSAFSS) or randomly generated (ECC-HaSAFSS)
at the beginning of the time interval. The per-data item key
also "evolves" through hash operations on a per-data item
basis. Each sender computes individual signatures of the
accumulated data items with a MAC operation using the per
data item keys, which provide forward security of these data
items for the given time period.

Sym-HaSAFSS and ECC-HaSAFSS complement each other
in terms of storage overhead by computing these keys in
different ways. In Sym-HaSAFSS, the TTP directly provides
the per-data item keys to the senders in the encrypted form.
In ECC-HaSAFSS, the senders can compute their own session
and per-data item keys themselves. Figure 1 illustrates the
computation of these keys in HaSAFSS schemes.

Time Trapdoor Release: Receivers need the time trapdoor
keys to verify aggregate signatures. The TTP releases time
trapdoor keys in two modes following the two data delivery
models, whose details are given in Section III: (i) In the
synchronous mode, the TTP can release the time trapdoor keys
based on a pre-determined data delivery schedule periodically,
without requiring an interaction with the receivers. (ii) In the
asynchronous mode, the TTP releases the time trapdoor key
if and only if it is requested by a sufficient number of valid
rec,.eivers.. .

signature Generation Phase: HaSAFSS schemes achieve
computational efficiency, since the aggregate signature gen
eration/verification steps rely on symmetric primitives only
(signature generation step 2). Figure 2 summarizes signature
generation/verification phases.

At the beginning of each time period tw , the sender updates
her per-interval key and either derives the first per-data item
key (Le., the chain root) from the per-interval key (Sym
HaSAFSS) or generates it randomly (ECC-HaSAFSS). Using
this per-data item key, the sender computes aggregate signa
tures of individual data items as follows: The sender signs
each accumulated data item individually by computing its
MAC using the corresponding per-data item key and updates
her per-data item key with a hash operation (and deletes the
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Fig. 2. Overview of the signature generation/verification phases of HaSAFSS schemes

previous one). The sender folds individual signature of the
newly collected data item into the existing aggregate signature
by concatenating and hashing them together. This procedure
is shown in Figure 2 signature generation step 2.

Signature Verification Phase: In the signature verification
phase , the receivers obtain and verify the time trapdo or key
from the TTP. Using the identity of the sender and the time
trapdoor key, each receiver computes the session key and
decrypts the encrypted chain root of the sender for the given
time interval. At this stage, the receivers possess per-data item
keys of the sender for the time interval , which were used to
compute the aggregate signature. Thus, they can verify the
aggregate signature by following the same procedure as in
the signature generation phase . This allows both senders and
receivers to equally benefit from the computational efficiency.

Remark 3: After the release of the time trapdoor key, the
receivers never accept any signature associated with this time
trapdoor key from any sender. This condition (the timing
condition in the synchronous mode and the request condition

in the asynchronous mode) prevents A from forging data items
accumulated in the previous time intervals. At the same time,
regularly updating per-data item keys prevent her from forging
data items accumulated in the given time interval. Detailed
security analysis of this approach is given in Theorem 1.

B. Sym-HaSAFSS

The motivation behind Sym-HaSAFSS is to achieve three
seemingly conflicting goals at the same time without using
any PKC operations: Public verifiability, high efficiency, and
forward security. To achieve this, Sym-HaSAFSS protects per
data item keys via encrypted chain roots , which are decrypted
and publicly verified by the receivers with the release of time
trapdoor keys.

The TIP generates the initial per-interval key zb for sender
i. The per-interval key is updated when the time goes into a
new time interval. In each time interval tw , the per-interval
key is used to derive the chain root k~'w (i.e., the first per-data
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item key in tw ) , which is then used to compute the aggregate
signatures in tw • The per-data item. key is refreshed for each
new data item. In order to protect k~'w, the TTP encrypts each
k~'w with tk~ to obtain the encrypted chain root c~.

As a result, only using the cryptographic hash and symmet
ric encryption functions, Sym-HaSAFSS generates publicly
verifiable, forward secure and aggregate signatures. Signa
ture generation/verification cost of a single data item in
Sym-HaSAFSS is only three hash operations, which are
extremely efficient when compared with all PKC-based al
ternatives. Near-optimal computational efficiency of Sym
HaSAFSS makes it an ideal choice for resource-constrained
UWSN applications.

Besides its computational efficiency, Sym-HaSAFSS is also
a storage efficient scheme. Different from the PKC-based
approaches, in which receivers are required to store a large
number of public key sets, the storage requirement of Sym
HaSAFSS for each receiver is only one key. The storage re
quirement of Sym-HaSAFSS for each sender is also plausible
for the envisioned UWSN applications ((L - w) keys in time
period tw ) .

We present the detailed description below:
Initialization Phase:
1) The TTP chooses the maximum clock synchronization

error as 8t and the trapdoor release times as °< To < T 1 <
... < TL - 1 according to the application requirements. Every
two consecutive time points Ti - 1 and T; form the i-th time
interval ti.

2) The TTP randomly generates a hash chain Vw =
H1(vw-l) for w = 1, ...,L - 1, whose elements will be
used as the secret time trapdoor keys in the reversed order as
tkw = VL-l-w for w = 0, ... , L - 1. Each tk., is associated
with time interval tw for w = 0, ... , L -1. The TTP computes
the encrypted chain roots for each sender i as follows:

a) Generate the n-bit initial per-interval key zb for each
sender i. The chain root for each time interval tw is derived
as k~'w = H2(Z~) and Z~+l = Hl(Z~) for w = 0, ... , L - 1.

b) Compute the session key as tk~ = H3(tkwI11Di) and
the encrypted chain root of sender i for time period twas
c~ = Etk~ (k~'W), where w = 0, ... , L - 1.

3) The TTP gives the commitment and maximum clock
synchronization error (HI (tko), 8t ) to all receivers, and the
per-interval key, encrypted chain roots and maximum clock
synchronization error (1Di, zb, cb ,ci, ...,Ci-l' 8t ) to each
sender i.

Time Trapdoor Release Phase: This phase can be executed
in two different modes:

(1) Synchronous Mode: According to the pre-determined
delivery time schedule, at the end of each tw , the TTP releases
the secret time trapdoor key tkw •

(2) Asynchronous Mode: Each receiver sends a request to
the TTP for the release of the secret time trapdoor key, when
she is ready to transmit the data (or, a mobile TTP visits and
requests the data from the receivers). When the TTP receives
more than a threshold number of (authenticated) requests (e.g.,
T = 90%), the TTP releases the secret time trapdoor key.

Signature Generation Phase:
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1) At the beginning of time interval tw , sender i derives the
per-data item key as k~'w = H2(Z~), updates the per-interval
key as Z~+l = Hl(Z~) and deletes z~ from memory.

2) Assume that sender i has accumulated data items
Do, D1 , ••• , DZ- 1 and computed the aggregate signature
a~'r-l in two When sender i collects Di, she first computes

the individual signature of Di as at'w = M ACki,w(Dz),
.. . l.

where k;'w = Hl(k;~~), and then folds a;'w into a~',r-l

as a~',r = H3(a~',r_lllat'W). In the synchronous mode, all
keys and signatures associated with tw expire at the end of
two Thus, sender i must transmit (Do, D1, ... , Di, a~'r, c~
, tw , 1Di ) before tw ends. In the asynchronous mode, s~nders
can transmit it any time before the TTP releases tkw (However,
the sender transmits it too late, she may miss the opportunity to
have receivers accept it if the transmission is after the trapdoor
release.).

Signature Verification Phase:
1) Assume that a receiver has received (Do, D1 , ••• , Di, tw ,

a~'r, c~, 1D i ) at time t. In the synchronous mode, the receiver
checks whether the timing condition (t + 8t ) ~ tw holds for
a~'r. If yes, the receiver buffers the aggregate signature and
data set and waits for the end of tw to obtain tk.; from the
TTP. In the asynchronous mode, the receiver sends a request
to the TTP to obtain tkw • Note that due to the nature of
UWSN applications, there may be a delay before this request
is delivered to the TTP (or, the TTP might not be able to
visit the receivers for a long time). In this mode, the receiver
can buffer the received data and signature as long as they are
received before the release of tkw •

2) When the TTP releases tkw , each receiver verifies tk.; by
?

checking whether tkw ~ HI (tkw- 1). If tkw is verified, then
the receiver verifies a~'r as follows: The receiver decrypts c~

by computing tk~ = 'H3(tkwIIIDi ) and k~w = Dtk:"(C~).
Using the per-data item key, the receiver computes individual
signatures of Dj as a;i,W = MACk~,w(Dj) and updates
•• J

k;~l = H1.(kj'W) for 1 = 0,: .. , l. Finally, the receiver

computes ag,jW = H3(ag,j~11Ia;t,W) for j = 1, ... ,l, where
ri.u: li,w li,w? i,w h

0'0,0 = 0'0 ,and checks ao,z = ao,z . If they match, t e

receiver accepts a~'r; otherwise, reject.,

C. ECC-HaSAFSS

ECC-HaSAFSS addresses the applications where the
senders are highly storage constrained, while the receivers
can afford certain storage [5]. In this context, ECC-HaSAFSS
offers a sender friendly scheme, in which each sender stores
only one key, while preserving the computational efficiency of
Sym-HaSAFSS. To achieve this, ECC-HaSAFSS uses a simple
ECC-based approach, which requires only a single ECC scalar
multiplication for each time interval two The key idea behind
this approach is to give the ability to compute her own session
and per-data item keys to each sender after the deployment.
Thus, instead of storing a pre-computed encrypted chain root
for each time interval like Sym-HaSAFSS, each sender can
compute her own encrypted chain roots using her per-interval
key (single key storage).



In ECC-HaSAFSS, the TTP generates the initial per-interval
key rb for each sender i before the deployment. Each sender
i updates the per-interval key at the beginning of each time
interval tw and computes the session key K~ using the per
interval key r~ with an ECC scalar multiplication. Sender i
then randomly generates a per-data item key kh'w. (i.e., the
first per-data item key in tw). In order to protect kh'w in tw,
sender i encrypts it with K~ to obtain the encrypted chain root
c~. After this stage, sender i computes the aggregate signature
using the per-data item kh'w following the signature generation
step 2 in Sym-HaSAFSS. In order to verify the aggregate
signature, a receiver first recovers K~ from the public key
of sender i using tk., with an ECC scalar multiplication. The
receiver then decrypts the per-data item key of sender i and
verifies the aggregate signature following the same steps of
the signature generation.

Note that ECC-HaSAFSS preserves the computational effi
ciency of Sym-HaSAFSS, since the signature generation and
verification costs of a single data item in ECC-HaSAFSS are
similar to that of Sym-HaSAFSS (only three hash operations).
We present the detailed description of ECC-HaSAFSS below:

Initialization and Time Trapdoor Release Phases:
1) The TTP generates the time trapdoor keys tk.; associated

with the time period tw for w = 0, ... , L - 1 following the
Sym-HaSAFSS initialization steps. The TTP then generates
the public key of each sender i in each time interval twas
follows: The TTP randomly generates the n-bit per-interval
key rb and computes the public key for each tw as V~ =
tkw(r~-cxw)G, where cxwG = H4(tkw) ~or w = 0, .. :, L-1.
The per-interval key is then updated as r~+l = Hl(r~) after
each interval two The TTP provides rb to each sender i and
gives the public keys V~ associated with each sender i for
w = 0, ... , L - 1 to all receivers.

2) Time trapdoor release in ECC-HaSAFSS is the same as
in Sym-HaSAFSS.

Signature Generation Phase:
1) At the beginning of tw , sender i randomly generates

the n-bit per-data item key k~'w, and computes the session
key as K~ = Hl(r~G) and the encrypted chain r?ot as
c~ = EKi (k~'W). She updates the per-interval key as r~+l =
HI (r~) a~d deletes (K~, r~) from memory. .

2) Sender i computes the aggregate signature ah',r for

(Do, D1 , ••• , Dz) using the per-data item key k~'w and trans
mits it to the receivers following step 2 in Sym-HaSAFSS
signature generation.

Signature Verification Phase: When a receiver receives
(Do,Dl, ... ,Dz,a~'r,c~ ,tw,IDi ) , she first checks tim
ing/request conditions for the received packet and verifies tk.;
upon its receipt as in Sym-HaSAFSS signature verific~tion

(step 2). The receiver recovers the session key as K:n =
HI (tk:;; 1v~ + H4 (tk w)) and decrypts the per-data item key
as k~'w = DKi (c~). The receiver verifies a~',r using kh'w
following step '2 in Sym-HaSAFSS signature verification.

v. SECURITY ANALYSIS

HaSAFSS schemes achieve secure signature aggregation
and forward security simultaneously. We follow the example
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of [5] to analyze our schemes (i.e, authentication, integrity,
unforgeability [9], [16] and forward security properties [14]).

First, we prove that HaSAFSS schemes guarantee the
confidentiality of per-data item keys and authenticity of the
aggregate signature in a given time interval tw • They achieve
this goal by reducing the above security properties to the
secrecy and authenticity of tkw • That is, HaSAFSS schemes
compute the encrypted chain root c~ using tkw in such a
way that, no entity including sender i can decrypt it before
the release of tkw • Furthermore, the successful verification
of the aggregate signature a~'r with (k~'W, tkw, I Di ) directly

guarantees the authenticity o'f a~',r. Hence, the receiver can

trust a~'r, which was generated by sender i using kh'w before
the rele~se of tkw • Sym-HaSAFSS and ECC-HaSAFSS follow
different strategies to achieve this goal, which have different
storage demands on senders and receivers.

Second, we show that HaSAFSS schemes achieve forward
security, integrity and unforgeability of the accumulated data
items in a given time interval tw • HaSAFSS schemes achieve
these goals by regularly updating per-data item and per-interval
keys and obeying the timing/request conditions of the time
trapdoor key release modes.

Lemma 1: HaSAFSS schemes guarantee the confidentiality
of k~'w and authenticity of a~'r in the time duration between
the releases of tkw- 1 and tk~ as long as Assumption 1 and
Assumption 2 hold.

Proof: First, in both HaSAFSS schemes, each tkw can be
securely verified by all receivers, since they are elements of a
hash chain and are released in the reverse order.

Sym-HaSAFSS: Sym-HaSA~SS reduces the confidentiality
of k~'w and authenticity of a~',r to the secrecy and authen
ticity of tkw , without consulting a PKC primitive. Before the
deployment, the TTP derives the session key from the sec~et

time trapdoor key as tk~ = H3(tkwJIIDi ) and encrypts kh'w
with the session key as c~ = Etki (kh'W) for w = 0, ... ,L-1.

Assume that the receiver re;ived (Do,u; ... ,Dl, a~'r,
, c~, tw), before the release of tkw. At this stage, all tkj for
j = w, ... , L - 1 are only known by the TTP. Thus, no
entity can decrypt or generate a valid c~ without knowing
tkw , including the sender (even compromised by A). After
the release of tkw , the successful verification of a~'r with

(k~'w, tkw) guarantees that only sender i who knows k~'w
before the release of tkw could have computed this signature.
Hence, public verification and authentication of a~',r are
achieved.

ECC-HaSAFSS: We analyze ECC-HaSAFSS in two stages.
First, we show that ECC-HaSAFSS .guarantees the confiden
tiality of k~'w and authenticity of a~',r based on the secrecy
and authenticity of tkw • Second, we show that ECC-HaSAFSS
is key compromise resistant. That is, A compromising a sender
and a receiver cannot use the compromised keys to extract the
time trapdoor keys of the TTP or the secret key of a non
compromised sender. This property guarantees the secrecy of
tkw before its release. .

(1) Confidentiality of k~'wand authenticity of a ~',r: In ECC
HaSAFSS, each sender i computes her own session key using
her per-interval key as K~ = Hl(r~G), with which the



encrypted chain root is computed for each tw • In order to make
K~ recoverable for the receiver after the release of tkw , the
TTP computes a set of public key for each sender i. The TTP
embeds session keys into the public keys V~ by blinding them
with tkw as V~ = tkw(r~ -aw)G where awG = H4 (tkw) for
w = 0, ... ,L - 1. The algebraic structure of the public keys
guarantees that the session key K~ cannot be recovered from
V~ without knowing tkw • That is, r~G cannot be isolated
from V~ as K~ = tk~ 1V~ + H4 (tk w) without knowing tkw.

Note that sender i immediately deleted (K~, r~) from the
memory after computing c~ = EK:V (k~'W) at the beginning
of two Hence, before the release of tkw, no entity can decrypt
or generate a valid c~ without knowing tkw • Similarly, only
sender i could compute a valid c~, which can be correctly
decrypted by using tkw and V~. Thus, correct verification of
the aggregate signature guarantees its authenticity.

(2) Key compromise resistance: Assume that A compro
mises a sender (sender i) and a receiver in time interval tw •

A extracts r~+l from sender i and Vji for j = 0, ... ,L - 1
from the receiver. A has also accumulated pre-released tkj

for j = 0, ... , W - 1 up to now. The objective of A is to
recover the future secret time trapdoor keys of the TTP or the
secret per-interval key of a non-compromised sender using the
compromised keys as follows:

(a) A attempts to use the per-interval key r~+l of sender i
and the public keys Vji for j = w +1, ... , L -1 to extract any
future time trapdoor key tkj for j = w+1, ... , L-1. However,
recovering such a tkj is as difficult as solving the ECDLP
problem, since it requires to compute Xj = tkj(rj - aj) mod
q from Vji. Note that even if such a Xj would be found, both
(tk j, aj) are unknown to A. Thus, she cannot isolate tkj from
Xj for j = w + 1, ... ,L - 1.

(b) A attempts to use the pre-released tkj and the public
keys Vjm, j = 0, ... , w - 1, to recover the secret per-interval
key rj of a non-compromised sender m for any °:S j :S
w -1. (A can then easily compute the future per-interval keys
of sender m using the recovered rj, since they are elements
of a hash chain.) However, recovering such a rj as rj mod
q from rjG is as difficult as solving the ECDLP problem
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where rjG = tkjlVjm + H4(tkj) for j = 0, ... ,w -1. •
Theorem 1: HaSAFSS schemes achieve forward security,

integrity and unforgeability of (Do, D1 , ••• , Di, a~'r) in the
time duration between the releases of tkw- 1 and tkw as long
as Lemma 1 holds.

Proof: At the beginning of each tw , signature generation
step 1 in both Sym-HaSAFSS and ECC-HaSAFSS guarantees
that per-interval keys are evolved (by deleting the previous
one) and per-data item keys are derived. After the initial
updates, both HaSAFSS schemes regularly update their per
data item keys for each accumulated data item (Sym-HaSAFSS
signature generation step 2). Hence, if A breaks-in in the
duration of tw , she always faces the updated per-interval and
per-data item keys, which guarantee the forward security of
the data accumulated in the time duration between the releases
of tkw- 1 and tkw.

Both HaSAFSS schemes prevent A from forging the data
accumulated in the previous time periods by obeying the tim
ing/request rules of the time trapdoor release mode. The main
condition for the receiver to accept (Do, D1 , ••• , Di, a~'r) is
that it should be received before the release of tkw • Aft~r the
release of tkw , the timing condition of the synchronous mode
and the request condition of the asynchronous mode prevent
receivers from accepting any signature associated with tkw •

Thus, if A breaks-in after the release of tkw , she cannot use
any key associated with t :S tw , thereby cannot forge any data
item accumulated in these time periods.

HaSAFSS schemes achieve unforgeability and integrity in a
given tw by using per-data item keys to individually compute
MAC of each accumulated data item and fold them into the
previous aggregate signature by hashing (H3 ) them as shown
in Sym-HaSAFSS signature generation step 2. Lemma 1
guarantees confidentiality of k~'w and authenticity of a~'r,
while the forward security is achieved in the time duration
between the releases of tkw- 1 and tkw as shown above.
Hence, a~'r computed with k~'w is unforgeable and guarantees
the integrity of (Do, D 1 , ••• , Dl) in a given time interval. •

VI. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of
HaSAFSS schemes. We analyze and compare HaSAFSS

TABLE I
NOTATION USED IN THE PERFORMANCE COMPARISON OF HASAFSS AND FssAGG SCHEMES

Exp: Modular exponentiation with modulus p, where Ipl = 512 bit L: # of time periods
ECCMul: ECC scalar multiplication over t; S: # of senders w: Current time period
M ul: Scalar multiplication with modulus p f: #of data items P R: ECC pairing operation
MtP: Map-to-point operation H: Hash operation R: # of receivers

TABLE II
COMPARISON OF HASAFSS SCHEMES TO FssAGG SCHEMES

Criteria vs Scheme II Sym-HaSAFSS I ECC-HaSAFSS I FssAgg MAC [5] FssAgg BLS [5] & [9]

Computational Sender (3H)f ECCMul + (3H)f (3H)f (MtP + Exp+ Mul + nv
Overhead Receiver (3H)f ECCMul + (3H)f (3H)f (Mul + PR)f
Storage Sender IHI(L - w) IHI IHIR IHI

Overhead Receiver IHI Iql(L - w)S IHIS Iql(L . S)
Signature Size IHI IHI IHI Ipl

Key Size n n n Iql
Public Verifiability y y N y

Immediate Verification N N y y
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schemes to previous schemes in terms of six essential criteria
for forward secure and aggregate signatures : computational
and storage overhead of senders and receivers , respectively,
the size of aggregate signature, and the size of signing key.
We present our analysis for these criteria under two main
subsections: computational overhead and storage overhead.

We first give notation in Table I and then provide Table
II. In Table II, we compare HaSAFSS schemes with FssAgg
schemes (the best known alternatives). Note that HaSAFSS
schemes are always computationally more efficient than the
existing aggregate signature schemes that utilize pairing op
erations (e.g., [9], [16]). Thus, by specifically comparing
HaSAFSS schemes with FssAgg-BLS, we can see their dif
ference from this general class of schemes .

A. Computational Overhead

We first analyze the signature generation cost of HaSAFSS
schemes, using the notation introduced in Table I. In both
HaSAFSS schemes , at the beginning of each tw ' each sender
computes the per-data item and per-interval keys with 2H
computational cost (i.e., two hash operations). This introduces
negligible cost, since this operation is performed once for each
twoIn ECC-HaSAFSS, in addition to 2H, a single ECCMul
is also performed for each two After initialization, the signature
generation cost of the sender for a single data item is 3H in
both Sym-HaSAFSS and ECC-HaSAFSS. Thus, the cost of
the signature generation for £ data items in tw is (3H)£ in
Sym-HaSAFSS, and ECCMul + (3H)£ in ECC-HaSAFSS.
The analysis of the signature verification cost is similar to
the signature generation. Note that the cost of a single H
(verification of tk) and E / D operation (encrypt/decrypt k~'W)

is negligible, since they are executed only once for each two
Thus , signature verification costs of Sym-HaSAFSS and ECC
HaSAFSS are (3H)£ and ECCMul + (3H)£, respectively.

TABLE III
EXECUTION TIME OF THE BASIC OPERATION S IN COMPARED SCHEMES (IN MSj

SignlVerify cost of a data item (Executed etimes)
FssAgg-MAC [5]

Sign/Verify 0.06
HaSAFSS schemes

FssAgg-BLS [5]
Sign 7.69

Verity 53.52

Initialization cost for each tw (Executed only once)
Sym-HaSAFSS Sign/Verify 0.08
ECC-HaSAFSS Sign/Verify 1.58

Comparison: We first compare HaSAFSS schemes to
FssAgg-MAC [5]. FssAgg-MAC and Sym-HaSAFSS have
similar computational cost as (3H)£. ECC-HaSAFSS requires
one extra ECCMul for each twas ECCMul + (3H)£,
which is slightly more costly than FssAgg-MAC. Note that the
essential superiority of HaSAFSS schemes over FssAgg-MAC
is their "public verifiability", whose benefits can be observed
in the storage overhead analysis.

Second, we compare HaSAFSS schemes with their best
known PKC-based counterpart scheme, FssAgg-BLS [5].
Based on PKC primitives , FssAgg-BLS has all advantages of
the public verifiability. However, it incurs very high compu
tational overhead due to the heavy use of PKC operations.
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FssAgg-BLS signature generation is costly due to Exp, while
its signature verification is extremely costly due to PR. Table
III shows the execution time difference between signature
generation and verification costs of HaSAFSS and FssAgg
BLS. Signature generation and verification costs of a single
data item in FssAgg-BLS are 7.69 ms and 53.52 ms [5],
while they are both 0.06 ms in HaSAFSS schemes. This
prohibitive computational cost of FssAgg-BLS makes it im
practical for the envisioned UWSN applications. Note that
these expensive operations are executed for each data item
to be signed/verified", which increases the execution time
difference between HaSAFSS and FssAgg-BLS schemes as
shown in Figure 3.

Execution time comparison of HaSAFSS and FssAgg schemes
105
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Fig. 3. Execution time comparison of HaSAFSS and FssAgg [5]

We see that both HaSAFSS schemes are much more efficient
than FssAgg-BLS. Furthermore, in HaSAFSS schemes, both
senders and receivers equally get benefits of this computational
efficiency, while the classical aggregate signature schemes
incur more computational cost to the receivers .

B. Storage Overhead

Besides their computational efficiency, HaSAFSS schemes
are also storage efficient and complement each other in terms
of storage overhead.

In Sym-HaSAFSS, each sender initially stores L encrypted
chain roots . As the time goes from one period into the next,
the sender deletes the encrypted chain root associated with
the previous time period from her memory. Thus , each sender
stores (L - w) keys in two However, each receiver only stores
a single key (negligible IHI overhead, e.g., 160 bit). In ECC
HaSAFSS, each sender stores only one key, since she can
compute her own session keys after the deployment. In order
to recover session keys, each receiver stores L public keys for
each sender initially, and as the time goes from one period
into the next, she deletes the public keys associated with the
previous time period from her memory. Thus, storage overhead
of each receiver is Iql(L - w)S in tw (e.g., Iql = 160 bits).

Comparison: Sym-HaSAFSS is the most storage efficient
scheme among all the compared schemes from the receiver's

2In our computational cost analysis, we analyze FssAgg-BLS parallel to
HaSAFSS schemes by updating the signing key for each data item.



perspective. Since Sym-HaSAFSS requires storing only single
key, it incurs small IHI bit overhead for each receiver. How
ever, FssAgg-BLS and FssAgg-MAC incur Iql(L·S) and IHIS
bit overheads, respectively. This advantage of Sym-HaSAFSS
is also valid with respect to other aggregate signature schemes
that incur higher storage overhead on the receiver side. Sym
HaSAFSS is also efficient in the sender perspective by requir
ing only linear storage overhead to each sender. Thus, Sym
HaSAFSS is especially useful for the applications in which
receivers are also storage constrained, while FssAgg schemes
cannot address this type of applications.

In contrast to Sym-HaSAFSS, ECC-HaSAFSS obeys the
traditional resourceful receiver assumption to address such
UWSN applications (e.g., high-end mobile receivers [5]).
Since the storage overhead of ECC-HaSAFSS reduces as the
time advances (Le., Iql (L - w)S bit overhead in tw ) , it is
more efficient than FssAgg-BLS whose overhead is always
constant as Iql(L· S) bit. When compared to FssAgg-MAC,
ECC-HaSAFSS is more efficient for the sender side (Le., IHI
vs. IHIR bits), and FssAgg-MAC is more efficient for the
receiver side (Le., IHI(L - w)S vs. IHIS bits).

Remark 4: Despite all the advantages, introducing asym
metry between the senders and receivers using the time factor
brings a natural complication: HaSAFSS schemes cannot
provide immediate verification on the receiver side. In order
to verify a received signature, the receiver needs to wait for
the release of tk.; corresponding to this signature. However,
such a property is compatible with the non-real-time nature of
the envisioned UWSN applications. Thus, HaSAFSS schemes
are ideal solutions for the envisioned UWSN applications.

VII. CONCLUSION

In this paper, we proposed a new class of digital signa
ture schemes, Hash-Based ~equential Aggregate and forward
~ecure ~ignature (HaSAFSS), which is especially suitable
for the UWSN applications. HaSAFSS schemes achieve near
optimal computational efficiency, low storage overhead, public
verifiability, signature aggregation and forward security simul
taneously. HaSAFSS schemes achieve these goals by using the
already existing verification delays in the envisioned UWSN
applications via two realistic data/time trapdoor delivery mod
els.

We proposed two specific HaSAFSS schemes, Sym
HaSAFSS and ECC-HaSAFSS, in this paper. Sym-HaSAFSS
completely relies on symmetric encryption and cryptographic
hash functions. Thus, Sym-HaSAFSS is extremely efficient
in terms of computational cost, when compared with the ex
isting PKC-based aggregate signature schemes. Furthermore,
Sym-HaSAFSS is also a storage efficient scheme, which
requires only one key stored by each receiver, while storage
requirement of each sender is linear with the total number of
time periods. Our second scheme ECC-HaSAFSS preserves
the computational efficiency of Sym-HaSAFSS for signature
generation and verification, but offers a different storage al
ternative. In ECC-HaSAFSS, each sender stores only one key,
while each receiver stores a set of public keys for each sender.
Thus, Sym-HaSAFSS and ECC-HaSAFSS complement each
other in terms of storage overhead.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6824

http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6824

10

In our future work, we will consider different cryptographic
mechanisms that allow us to further reduce the storage require
ment in HaSAFSS schemes.
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