
A Document centric approach for supporting Incremental
Deployment of Pervasive Applications

Fahim Kawsar, Tatsuo Nakajima
Department of Computer Science

Waseda University
Tokyo, Japan

{fahim,tatsuo}@dcl.info.waseda.ac.jp

Kaori Fujinami
Department of Computer, Information and

Communication Sciences
Tokyo University of Agriculture and Technology

Tokyo, Japan
fujinami@cc.tuat.ac.jp

ABSTRACT

This paper explores system issues for enabling incremental deploy-

ment of pervasive application - the problem of how to deploy and

gradually enhance the functionalities of applications in a pervasive

environment. We present a system architecture, FedNet that pro-

vides the foundation for incremental deployment and uses a docu-

ment centric approach utilizing a profile based artefact framework

and a task based application framework. Our artefact framework

represents an instrumented physical artefact as a collection of ser-

vice profiles and expresses these services in generic documents.

Pervasive applications are expressed as a collection of functional

tasks (independent of the implementation) in a corresponding doc-

ument. A runtime component provides the foundation for mapping

these tasks to the corresponding service provider artefacts. This

mapping is spontaneous and thus enables gradual addition of ser-

vices. Primary advantages of our approach are twofold- firstly, it

allows end users to deploy pervasive applications and instrumented

artefacts easily and gradually. Secondly, it allows developers to

write applications in a generic way regardless of the constraints of

the target environment. We describe an implemented prototype of

FedNet, and show examples of its use in a real life deployment by

the end users to illustrate its feasibility.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

Keywords

Augmented Artefact, Pervasive Application, Deployment

1. INTRODUCTION
We envision that with the proliferation of low-cost sensors, smart

artefacts and spontaneous communication technologies pervasive

applications will find a universal place in our everyday life. A

pervasive application usually involves physical artefacts, i.e. sen-

sors, augmented artefacts, mobile devices, displays, etc. Ideally

these applications should be similar to home appliances, i.e. easy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiQuitous 2008 July 21 - 25, 2008, Dublin, Ireland.
Copyright c© 2008 ICST ISBN 978-963-9799-27-1.

to setup, adaptive to users’ needs, styles and interchangeable with

new models. An essential property of our living space is its evolu-

tionary nature and receptibility to continual change. We incremen-

tally organize our homes with furniture and appliances according

to our preferences and styles. Previous studies have shown how

end users continuously reconfigure their homes and technologies

within it to meet their demands [16]. Edward and Grinter echoed

that the networked home of the future will not be custom designed

from the beginning rather it will emerge in a piecemeal fashion

[6].To support the evolutionary nature of our homes it is essen-

tial that pervasive applications and instrumented artefacts support

the incremental deployment. A user can buy physical artefacts and

pervasive applications and should be able to install these just like

other home appliances. In addition, he/she can incrementally en-

hance an application’s functionalities by purchasing new artefacts

or upgrading the artefacts’ functionalities, e.g. an application can

provide a few basic services initially with the available artefacts,

and can incrementally provide more richer services as new func-

tionalities are added to the artefact.These observations raise two

questions: i) How does one develop smart artefacts and pervasive

applications, which can be deployed by the end users? and ii) How

does an application adapt its functional behavior with incremental

integration of physical artefacts providing richer services?

To address these concerns, we present a system, FedNet that pro-

vides the foundation for the incremental deployment of pervasive

applications and physical artefacts. It uses a document centric ap-

proach utilizing a profile based artefact framework and a functional

task-centric application framework. The artefact framework repre-

sents an instrumented artefact in a unified way by encapsulating its

augmented functionalities in one or multiple service profiles atop a

core (generic binary) and allows additional profiles to be plugged

into the core incrementally. Such generality makes an artefact plug

and play and allows end users to deploy it easily in a Do-it-Yourself

(DIY) fashion. The artefact framework expresses these augmented

functionalities of an artefact in descriptive documents that allows

applications to interact with that artefact. Pervasive applications

are represented as a collection of functional tasks (atomic actions)

independent of their implementation and are exposed in a generic

document . The task in our framework is an atomic action that re-

quires an artefact’s service, like "sense current humidity", "turn on

the lamp", etc. Expressing application in this way allows devel-

opers to write applications without considering the target environ-

ments’ constraints. Both the artefact framework and task-centric

application framework are independent of any infrastructure, thus

to create a spontaneous association among the artefacts and the ap-

plications at runtime, we utilize FedNet that maps the task specifi-

cations of the applications to the underlying artefacts functions by

utilizing respective documents of the applications and the artefacts.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

This spontaneity allows applications to leverage richer artefact ser-

vices that are added gradually.

In the subsequent section we present the design decisions, fol-

lowed by the technical detail of our approach. Then, we proceed

to the feasibility of the proposed solution by illustrating a real life

deployment experiment session. A smart mirror and a pervasive ap-

plication for the mirror were deployed and incrementally enhanced

by the end users using our system. Although, the end user experi-

ment positively evaluated our system’s support for the deployment

activity, it revealed several usability problems. We report these

findings along with the experiment descriptions. After which, we

discuss some generic issues. Finally, we position our research with

respect to the related work and conclude the paper.

2. DESIGN ISSUES
In this section, first we draw a scenario to illustrate the concepts

of this paper. Then we elicit the design challenges and explain the

design decisions to meet those challenges.

Alice recently moved into a new home and bought a new mirror

augmented with a display for her wash room. She found and down-

loaded an interesting application on the internet that can show

some information (e.g. weather, stock quote, movie listing etc.) in

the mirror display and installed it on the mirror. While reading

the application manual, she realized that the application has some

advanced features that can be enabled by adding some add-ons in

the mirror. For example, if the mirror is augmented with a sensor

that can recognize someone’s presence in front of it, the applica-

tion can show the information only at that time, for the remainder

of the time it will switch to the power-save mode. Similarly if the

mirror is augmented with an input device, the application allows

the user to interact with the application, e.g. to know more detail

about weather information. Furthermore, the application’s infor-

mation sources can be personalized if the user can be identified.

For that the mirror needs to be augmented with an identification

device, e.g. a finger print reader, etc. Alice decided to enable all

these features one by one. A week later she bought an infra red

sensor and placed it in front of the mirror, now the application au-

tomatically goes to the power-save mode when no one is in front of

it. After a few weeks, she bought a touch button and a finger print

reader and attached them to the mirror, so that she can interact

with the application more closely and personally. Now, her mirror

application is running in full fledged mode just as she liked.

2.1 Design Challenges and Decisions
The above scenario poses us with two fundamental design chal-

lenges. First, allowing end users to incrementally deploy the phys-

ical artefacts in a Do-it-Yourself (DIY) fashion without any com-

plex configurations. Second, developing applications and physical

artefacts in an independent manner so that applications can cre-

ate a spontaneous federation at runtime and can leverage the richer

services of the artefacts that are incrementally added. These two

challenges lead us to the following design decisions.

1. DIY Instrumented Artefacts: Artefacts should be reusable

and augmented features should not be tightly coupled with

the scenario or the artefact itself. We need to abstract the

augmented features in a way that can be applied to multiple

artefacts and package the artefact in a generic binary so that

the end users can deploy them. In addition, a common repre-

sentation is needed to ensure that an artefact can participate

in any environment. To meet these requirements, we adopted

a profile based artefact framework that represents an artefact

Figure 1: Basic workflow of our approach

in a unified way using a generic binary with structured docu-

ments and allows plugging multiple profiles into an artefact.

The profile is a single augmented functionality of an artefact.

The separation of artefacts and profiles enables DIY support,

i.e an artefact can be instrumented by a suitable profile in

an ad-hoc manner. Because of this loose coupling and stand

alone characteristics, our framework enables the incremental

deployment support for end users, just like in the scenario:

Alice can gradually enable the features of the application by

adding multiple instruments to the mirror.

2. Infrastructure Independent Application: Applications sh-

ould be developed considering the functionalities only. To

make an application independent of the Infrastructure, it is

imperative to know an application’s runtime requirement ah-

ead of the execution. Furthermore, the application needs a

generic access mechanism to interact with the environment.

We have addressed these challenges by representing an ap-

plication as a collection of functional tasks written in a task

description file and allowing an application to access the arte-

fact services using popular web techniques (SOAP for push

and RSS Feed for pull). In our example scenario, the dis-

play application’s runtime requirements were expressed in a

document, which was utilized to enable its features when ad-

ditional instruments were added to the mirror.

3. Spontaneous Federation:An intermediator is needed to cre-

ate the runtime association among the applications and the

artefacts, both of which are infrastructure independent. To

form such a federation, it is essential to understand the se-

mantics of the movable data ahead of the execution. In our

approach, the infrastructure FedNet provides this intermedia-

tion. It analyzes the task description file to extract the service

requirements and then maps these tasks to underlying service

provider artefacts by matching artefact description files. Fed-

Net then assigns a generic intermediation component to the

application that allows the application to access the services

of the artefacts. The spontaneous federation enables incre-

mental integration of applications. In our example scenario,

due to this, the application could use the added instruments

whenever they are available. Figure 1 shows the basic work-

flow of our approach. An end user deployment tool works

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 2: A single artefact with multiple roles and multiple

artefacts with similar roles

atop FedNet that allows ordinary individuals to deploy and

interact with instrumented artefacts and pervasive applica-

tions.

Next, we present the technical detail of our approach.

3. SYSTEM DETAIL
In this section, first we present the artefact framework and the

task-centric application framework. Then, we will show how Fed-

Net utilizes these frameworks to create a spontaneous federation.

3.1 Artefact Framework
Augmentations of physical artefacts depend on the designer’s in-

tuition and it is hard to confine the augmentation scope. Consider,

Figure 2 depicting two ideal situations, a) a single everyday arte-

fact capable of playing multiple functional roles and b) multiple

artefacts sharing a similar functional role. In Figure 2(a) we have

a smart table providing two supplementary functions: an ambient

display and a proximity detector. In Figure 2(b) we have a mir-

ror display [8] in a washroom which is triggered by any of the

three augmented artefacts, e.g. a toothbrush, a comb or a razor.

The suitable augmentation of these artefacts depends on the under-

pinned scenario, regardless of the multiple functionalities that can

be afforded. Simultaneously, the characteristics of the application

association with the artefacts require a new model for artefact pre-

sentation. Consider, Figure 3 where four different cases are shown.

In case 1, artefacts are stand-alone providing a single or multiple

built-in functions without any applications. Whereas in cases 2-

4 three different modalities of application associations are shown.

Although these latter cases are supported by existing middlewares

[4, 9, 17] through the notion of device wrapper (these wrappers are

tightly glued with the rest of the middleware), these middlewares

have no clean support in case 1. Artefacts are inherently dependent

on the middleware and can not run in a stand alone mode. Also, to

use augmented artefacts in these middleware environments, appli-

cations are bound to follow the infrastructure semantics. Following

these observations, we have adopted a profile based artefact frame-

work in our system. Basic artefact functionalities are combined

in a core component as a generic binary and additional augmented

features can be added as plug-ins atop the core. Each augmented

feature is called a profile in our approach. These profiles are arte-

fact independent and represent a generic service. This design al-

lows an artefact to act as a stand-alone artefact and to participate

in an application scenario, thus supporting all four cases in Figure

3. Furthermore, the generic binary makes the artefact infrastructure

independent enabling end users to deploy them spontaneously.

Figure 3: Different association cases between the artefacts and

the applications

Figure 4: Architecture of Artefact Framework

3.1.1 Internal Architecture of Artefact Framework

The internal architecture of the artefact framework consists of

the following (Figure 4):

1. Core Component: Typically instrumented artefacts have some

common characteristics e.g. communication capable [2, 19],

provides perceptual feedback [3], possesses memory etc. The

core component of our artefact framework encapsulates all

these functionalities in a generic binary. The communication

module facilitates communication support and encapsulates

the transport layer whereas the discovery module allows ser-

vice advertisement. The notification module enables the rest

of the modules to indicate their status. The artefact memory

is a shared space that contains artefacts’ property data, profile

descriptions, and other temporal data. The client handler is

the request broker for artefact services and delegates the ex-

ternal requests to specific profiles. Finally, the profile repos-

itory hosts the array of profiles. In the current prototype,

the profile repository is implemented following a plug-in ar-

chitecture. It has class loaders to load the artefact profiles

dynamically when requested. The entire core is packaged in

a generic binary thus runs independently and can respond to

applications’ requests. The profiles can be gradually added

to this core.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 5: Artefact Description File for the Mirror (with Prox-

imity Profile) of our example scenario.

2. Profile: Each profile represents a specific functionality and

implements the underlying logic of the functions, e.g. pro-

viding context by analyzing the attached sensors’ data or ac-

tuating an action by changing the artefacts’ state (e.g., in-

creasing the lamp brightness etc.). Each profile is a sensor

or an actuator type and has a profile handler, a template to

plug device code and context calculation or service actuation

logic. Due to a variety of sensors and actuators, different

artefacts are augmented with different sensors or actuators

having different access and data semantics (like Smart-its [9],

Mote1, etc.) Since the same functionality can be achieved by

different sensors and actuators, the profile handler has an ab-

straction layer that hides the heterogeneity of the underlying

device platforms.

3.1.2 Documents to represent Artefacts

The artefact framework’s core is packaged as a ready-to-run bi-

nary with a description document, Artefact Description File (ADF)

as shown in Figure 5. This file contains the basic information about

the artefacts, e.g., name, vendor, profile specifications etc. When-

ever a new profile is attached to that artefact, the corresponding

ADF is updated to reflect the added capabilities of the artefact. Pro-

file is packaged as plug-ins that run atop the core and its services

are expressed in a Profile Description File (as shown in Figure 6).

This file specifies the data semantics of the corresponding profile.

Each profile is a sensor or an actuator type. Therefore, the descrip-

tion file either contains a detector or an actuator node. The sensor

type profile’s description follows the specification of the Sensor

Modeling Language (SensorML)[15] (Figure 6 (a)) and expresses

profile’s output (e.g., data format, parameters, etc.). The primary

strengths of SensorML are its soft typed attribute, reference frame

and parameters, with which the semantics of different sensor data

platforms can easily be understood and interchanged. For an actua-

tor profile, our custom designed Artefact Control Language is used

(Figure 6(b)) where the state attribute is used to abstract the opera-

tional states of the artefacts. This file specifies the required the in-

put parameters and their data types to change artefact states. Each

profile description also contains a quality of service(QoS) block

which specifies the quality of the profile’s service. Adding a profile

to an existing artefact requires hardware attachment and installa-

tion of the plug-in implementing the profile atop the artefact core.

3.2 Task-Centric Application Framework
Usually pervasive middlewares [4, 17, 18] provide their own ap-

plication model that the developers follow to utilize the environ-

ment resources. This dependency limits the deployability of the ap-

plication. To create an infrastructure independent application that

1http://xbow.com/products/wirelesssensornetworks.htm

Figure 6: (a)Profile Description File for Proximity Profile. Sen-

sorML is used in the <detector> node. (b) Artefact Control

Language is used for actuator profile, only the <detector> node

is replaced with <actuator> node.

can still exploit the environment resources we utilize task specifica-

tion of the applications. An application is expressed as a collection

of functional tasks independent of the implementation and infras-

tructure. This specification allows the FedNet runtime to map the

task to respective service provider artefacts. An application devel-

oper can follow any library and implementation language to code

the execution logic of the application. The only two things neces-

sary for an application to run in a FedNet environment are: i) ex-

pressing application’s functional task list in a description file, and

ii) utilizing an access point to manipulate the artefact services using

generic web techniques.

Any application is composed of several functional tasks, e.g.

atomic actions. In pervasive applications, these atomic actions may

be: "get current light sensitivity","turn the air-conditioner on","sense

the proximity of an object" etc. We assume that each functional

task explicitly manipulates one artefact. So, one artefact might be

shared by multiple tasks but a single task can not use multiple arte-

facts. An application is expressed as a collection of such functional

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 7: Task Description File (partly) for the display applica-

tion used in the presented scenario

tasks in a Task Description File (TDF). Each task specifies the re-

spective profiles, their quality of service and communication mode

(e.g., synchronous and asynchronous) it needs to accomplish its

goal. Figure 7 shows part of the task description file for the appli-

cation presented in section 2. Each task may also contain Quality

of Service (QoS) requirements for the target profiles.

The second requirement for an application is to use generic web

protocols to manipulate the artefacts. When an application is reg-

istered in the FedNet system (see section 3.3), an access point is

assigned to the application. An application needs to access this

access point to send requests and receive responses from the under-

lying artefacts. In our current implementation the application uses

a SOAP request for polling or sending an actuation request to the

artefacts. For continuous polling (i.e. subscription), auto discover-

able RSS feed is used. During the application’s instantiation time,

the required physical artefacts data semantics (<detector> and <ac-

tuator> nodes of the Profile Description File) are send to the appli-

cation by the FedNet, so that applications can understand the data

format of the artefacts and can request or receive data accordingly.

In the current implementation, we have provided a simple library

in Java comprised of a SOAP Client and Auto Discoverable RSS

Parser, which the application developer can use to access the ac-

cess point.

3.3 FedNet System
In our approach both the applications and artefacts are infras-

tructure independent and expressed in high level descriptive docu-

ments. Thus to create a runtime association between an application

and the underlying artefacts, an intermediator is needed that can

connect the applications and the artefacts. This intermediation is

done by FedNet in our approach. FedNet does this intermediation

by utilizing only the documents of these applications and artefacts.

FedNet can contact the communicator module of the artefact core

using the semantics described in the artefact documents for map-

ping application tasks, similarly application can contact FedNet

using generic web access mechanisms. Since both the applications

are artefacts are independent of FedNet and come as ready-to-run

binary, end users can install them in the respective environment

seamlessly. For supporting these installation, an end user tool is

Figure 8: Architecture of FedNet

provided. FedNet itself is packaged in a generic binary and com-

posed of four components as shown in Figure 8.

1. Artefact Repository hosts all the artefact running in the en-

vironment. During artefact deployment, the executable bi-

nary implementing the artefact framework and the ADF is

submitted to this repository. When a profile is added to an

artefact corresponding profile information is injected into the

ADF (Figure 5) and the profile is attached to the correspond-

ing artefact.

2. Application Repository hosts all the applications that are

running atop the FedNet system. During application deploy-

ment, the binary executable and the TDF of the application

are submitted to this repository and the identity of the corre-

sponding application’s access point is injected into the TDF

(Figure 7).

3. FedNet Core provides the foundation for a spontaneous fed-

eration among the application and the artefacts. When an

application is deployed the corresponding application’s task

descriptions are extracted from the application repository by

the FedNet Core. Then it consults the artefact repository to

identify the probable list of artefacts that can be federated

considering the application tasks’ profile and QoS require-

ments. Once the artefacts are identified, FedNet Core gener-

ates a template of the federation (collection of artefacts and

their identities) and maps this federation into a generic access

point component for that application. Then, FedNet Core as-

signs this specific access point to the corresponding applica-

tion and injects the access point’s identity in the TDF. When

an application is launched, this access point is instantiated

and the corresponding template is filled by the actual arte-

fact available in the environment right at that moment thus

forming a spontaneous federation.

4. Access Point is the generic component of FedNet that repre-

sents the physical environment (federated artefacts) needed

by an application. Since each application’s artefact require-

ment is different and each application might not be running

all the time, FedNet assigns a unique access point for each

application; meaning multiple federations of artefacts can

co-exist in the environment. Simultaneously, each artefact

can participate in multiple federations. When an application

is lunched, it contacts it’s Access Point to know the avail-

ability of the artefacts required by its task lists. The Access

Point responds by specifying the tasks that can be supported

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 9: Location Modalities of Artefact Framework

in the current environment by filling its template with actual

artefacts. It sends the mapped artefacts data semantics, i.e.

SensorML and Artefact Control Language to the application

which allow the application to know the semantics of mov-

able data in advance. From then on, the application delegates

all its requests to the access point which in turn forwards

them to the specific artefact. The artefacts’ responds to these

requests by providing their profile outputs either by pushing

the environment state (actuation) or pulling the environment

states (sensing) back to the access point that are fed to the

application.

3.4 Distributed Management
In the earlier part of this section we have provided the explana-

tion of the functional roles of the primary components of our in-

frastructure. From physical implementation point of view all these

components could be distributed, i.e., instrumented artefacts can

run in their own nodes, applications can run on the artefact nodes,

or in a separate node integrating multiple artefact nodes, and Fed-

Net can run in its own node to manage all other nodes.The arte-

fact framework essentially is the digital identity of an artefact. So

an obvious issue is the location of this digital part. We have two

choices as shown in Figure 9: a) At-the-Edge (On-Board) b) At-

the-Infrastructure (Off-Board). At-the-Edge means the artefact it-

self has a processing unit that hosts its digital representation where

as the At-the-Infrastructure means a proxy, running in a separate

location represents the artefacts and communicates with the arte-

fact to retrieve sensor data or to actuate artefact’s function using

some communication protocol, e.g., Bluetooth, IEEE 802.11x, etc.

Both choices have pros and cons. While at-the-edge approach pro-

vides pre-configurable and self sustainable artefacts, it has mini-

mal support for DIY (Do-It-Yourself) approach and prone to lim-

ited capability. On the other hand, although at-the-infrastructure

approach requires manual configuration and maintenance, the pri-

mary advantage is the DIY support. Also, it enables rapid proto-

typing. In our current implementation we have adopted At-the-

Infrastructure approach and each artefacts digital representation,

i.e., artefact framework’s binary core and profile plug-ins are de-

ployed in a node that communicates with the physical artefact thr-

ough some communication channel to retrieve the actual profile ser-

vice via the hardware attached into the artefact. The same is true

for the applications, i.e., the applications running on a single arte-

fact can reside in the same node that represents the artefact and the

application that integrates multiple artefact can reside on the any

of those artefacts node. It is the FedNet components that organize

these nodes in a distributed manner and manages the spontaneous

federation. The FedNet components (i.e., Application Repository,

Artefact Repository and FedNet Core) can reside in one or multiple

nodes and manage the underlying artefacts and applications.

3.5 Deployment Tool for End Users
The components described so far provide the system foundation

for the end user deployment. However, to involve end users in the

deployment process, a tool is needed that they can use to install

the artefacts and applications into the corresponding repositories,

and to add profile plug-ins into the artefacts. Furthermore, this tool

should enable the end users to control (run and stop) these artefacts

and applications. In our current implementation a web based tool

is provided for the end users to deploy artefacts and applications in

the environment. Using this tool, end users can add and remove an

artefact; add and remove profiles to an artefact, and run an artefact.

Furthermore, endusers can install, remove and run an application

using this tool. Figure 10, shows some screen shots of this tool.

4. EVALUATION
In the introduction section we have pointed out two questions

that we addressed in this paper: i) building artefacts and applica-

tions in a way that are independent of the underlying infrastruc-

ture and deployable by the end users and ii) enabling application

to adapt its functional behavior as richer artefacts’ services are in-

troduced. We have explained our approach of specifying both the

application and the artefacts through high level descriptions. A run-

time component (FedNet) matches these descriptions to create a

spontaneous federation. This is useful for both the end users and the

developers. For end users, it allows incremental editing of the smart

space in a DIY fashion and for the developers it enables the devel-

opment of the infrastructure independent applications, which can

incrementally leverage richer artefact facilities. To validate these

claims, we have evaluated our approach following the guidelines

of Edwards et al. [5]. A proof-of-concept ubicomp system [8] that

include multiple artefacts, profiles and application are re-developed

following FedNet’s approach and are provided to end users for real

time deployment in a DIY fashion. This deployment task is sup-

ported by the end user deployment tool. In this section we present

the end user trial and result of the study.

4.1 Target Scenario and Apparatus
We used the scenario introduced in section 2 excluding the per-

sonalization feature. The scenario was picked because of its sim-

plicity and strong visual appeal. A smart space, where many things

happen autonomously without providing visual feedback, has little

appeal to the end users [3]. Since, we solicit end users’ effective re-

sponses from deployment point of view, it was very important that

the end users are completely acquainted with the scenario at hand.

The apparatus used in the experiment are explained below.

4.1.1 Mirror Display

The mirror is constructed using an acrylic magic mirror board

and an ordinary computer monitor (Figure 11(a)). This mirror can

be extended to improve its functionalities and is equipped with

an extension board (Figure 11(b)). The mirror is hosted in a net-

worked tablet PC following our At-the-Infrastructure approach as

explained in section 3.4. We assume this augmented mirror with

embedded computer can be bought from the store in the near fu-

ture.

4.1.2 Display Application

The application shows some up-to-date information (weather,

stock, currency exchange rate etc.) in a mirror display. This ap-

plication is distributed as a executable binary along with a TDF

(Figure 11(f)). The application can work in different combinations

of the following modes depending on the level of functionalities

available in the mirror.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 10: Snapshots of End User Deployment Tool (a) Main Panel, (b) Installing Application (c)Adding Profile

1. Basic Mode: The application shows information as pictorial

widgets in this mode.

2. Sensor Mode: In this mode, the display is triggered only

when someone is in front of the mirror, and the rest of the

time it switches to the power save mode (blank display). To

enable this mode the application needs the mirror to be aug-

mented with a Proximity Profile that provides this positional

context.

3. Standard Mode: The application provides two styles of pre-

sentation in this mode. Initially, the application shows the

information in pictorial widgets which can be switched to

textual presentation by interacting with the mirror. To enable

this mode, the mirror needs to be augmented with a Bi-state

Interaction Profile, which provides a two state switch func-

tionality to the mirror.

4.1.3 Mirror Profiles

To work in a full fledged mode, the application needs two profiles

in the mirror. A profile functionality can be achieved by multiple

instrumentations. So, both profiles have multiple implementation

choices. For each profile we have used two different implementa-

tions in this trial. Each profile comes with a hardware, a plugin

binary and the Profile Description File. A user manual is also pro-

vided containing the installation instructions.

1. Proximity Profile: This profile’s sole purpose is to recognize

the presence of an entity in front of the mirror. This func-

tionality can be achieved in multiple ways, i.e. using an infra

red sensor, a motion sensor, a camera, etc. In our test, we

have provided two implementations with two different sen-

sors for this profile (Figure 11(d)). The first one is with an

Infra Red Sensor and the second one is with a Floor Sensor

(Figure 11(c)).

2. Bi-State Interaction Profile: This profile enables a user to in-

teract with the mirror. It provides a simple two-state input

facility which is suitable for the display application since a

Figure 11: Mirror Artefact, Profiles and Applications with

their manuals

user can navigate between the pictorial and the detailed pre-

sentation styles. There are multiple instrument choices for

the profile implementation. In this test, we have provided

two implementations (Figure 11(e)), one with a touch sensor

and the other with a slider.

4.1.4 FedNet

The FedNet infrastructure and the web based deployment tool

for the end users are running in a laptop computer.

4.2 Experiment Detail
The goal of our experiment is to involve end users in a DIY fash-

ion in deploying the mirror, installing the application, and then

incrementally adding profiles into the mirror to enhance the ap-

plication’s functionality. We have invited 10 ordinary individuals

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

Figure 12: Participants deploying artefacts, installing applica-

tion, adding profiles, etc.

(8 Male, 2 Female, Age Range: 21 35) with moderate computing

skills through an open invitation in a social networking site. 9 of

them did not have an engineering background and participated for

the first time in this kind of experiment. The experiment had four

phases. In phase one we introduced the concept, showed the appa-

ratus and presented a tutorial on the web based deployment tool. In

this phase, we also introduced the experiment tasks. In phase two,

they were given 10 minutes to get familiar with the tools. Next, in

phase three, they were asked to attain the given tasks.In this phase

no direct assistance was provided except reference to the manual

page containing the help.This phase included the following four

tasks:

• Task 1: Deploying and and running the mirror.

• Task 2: Installing and running the application. The applica-

tion runs in Basic mode.

• Task 3: Adding either the Proximity or the Bi-State Interac-

tion Profile into the mirror by selecting one of the two im-

plementations. The hardware installation requires attaching

the sensor to the mirror using magic tape and connecting the

sensor cable to the interface board located in the backside of

the mirror. For the floor sensor, hardware installation was not

needed except for placing the floor mat. The software instal-

lation required installing the plugin into the artefact binary.

After this task the application either runs in Sensor Mode or

in Standard Mode depending on the selected profile.

• Task 4: Adding the other profile into the mirror, and running

the application combining the Sensor Mode and the Standard

Mode.

Finally in phase four, we had a questionnaire and interview ses-

sion.

4.3 Experiment Result
Figure 12 shows some snapshots from the experiment sessions.

There were 40 tasks in total, four for each participant. All partic-

ipants successfully finished the assigned tasks, though two partic-

ipants needed active support in the early stages, primarily because

of the unfamiliarity with the FedNet deployment tool. From a sys-

tem’s perspective, our approach provided a stable performance in

Figure 13: Average time taken and average complexities for

completing experiment tasks

all the sessions and end users activities were properly converted

into the system events accordingly, e.g. to add an artefact to the

artefact repository, to add profiles, to form a spontaneous federation

between the application and the artefact, etc. Regardless of the sen-

sor type and implementation, profiles were seamlessly added into

the artefact framework which highlights the capacity of our arte-

fact framework design for hosting multiple profiles implementing

different device interfaces. Furthermore, the application running in

the mirror could successfully switch to respective advanced modes

when the profiles were added signifying the spontaneous federa-

tion facilities of FedNet. Because of the runtime mapping of the

applications’ tasks to artefact profiles, whenever a new profile was

added, the application could leverage that profile’s service. This

signifies the generality of our approach.

From usability perspective, each trial session was held for 120

minutes, on an average 44 minutes were required for the third phase

(accomplishing the four tasks). Figure 13 shows the time (Fig-

ure 13(a)) required for each task and the corresponding complexity

(Figure 13(b)) associated with the task. We measure the complexity

in a 5 point scale with 1 as very easy and 5 as very hard. These com-

plexity values are collected from the questionnaire sessions. All

participants have shown progress in repeating tasks and on an aver-

age they required 43% less time in redundant activities, e.g. when

adding the second profile plugin, attaching hardware, or restarting

an application, etc. This indicates the fast learnability of our system

from the end users perspective. In the following, we are reporting

the implications of the subjective feedback that we received from

the participants through formal interviews.

1. Concept was difficult to comprehend: The notion of arte-

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

fact, profile and application were difficult for the end users

to comprehend and differentiate. For them the artefact and

the application were the same, they could not separate the

application from the mirror. This causes confusion while in-

stalling the application (task 2) in thinking it was already in-

stalled when the mirror was added in task 1. This is reflected

in the median time of 9 minutes taken for installing the ap-

plication as well as in the corresponding average complex-

ity as shown in Figure 13(a,b) They also had difficulties in

understanding what a profile is, as they associated the term

profile with someone’s background or record. So, they could

not correlate how a physical object could have multiple pro-

files, which also affected the performance in task 3 and 4 of

adding profiles as shown in Figure 13 (a,b). Since they could

not understand the notions clearly, it took time to install the

profile into the appropriate artefact. However, the hardware

installation was simple for them. These facts suggest that,

our current notions are not self explanatory to end users and

we need to provide a more comprehensive way of expressing

these concepts.

2. Installation process was difficult: Although, all the partic-

ipants were familiar with the internet, they found it difficult

to use the web interface tool to install the artefact, the ap-

plication and the profiles. Later interviews revealed that, it

was not because of the interface directly but the process to

accomplish a task, e.g. adding a profile, etc. Figure 13(a,b)

also reflects these facts, on an average 12.8 and 8.3 minutes

were required to add profiles with associated complexities

of 3.6 and 3.4. The end users mainly struggled in installing

the profile plugin, and we have found that the hardware in-

stallation was completed with less trouble. The end users

suggested that the process of profile deployment has to be

plug and play, when attaching the profile hardware the cor-

responding software should be installed with minimal inter-

vention. This finding is crucial and has direct implications in

our future work.

3. Package with different options was preferred over the DIY

approach: Several participants pointed out that they can buy

a product with different functional granularity according to

their preferences. They concurred that the augmented arte-

fact should be similar, for example: one mirror could be

packaged with a proximity profile and another with both pro-

files, etc. In this case they have the flexibility to buy dif-

ferent packages or to upgrade their existing package. Al-

though,they agreed that the DIY approach is fun, interesting

and inexpensive, but it limits the acceptability of the product

to a mass population. A participant pointed out "I don’t think

my 58-year old mom could use your whole system. Maybe,

it was ok for me. But not for her. I don’t think she will be

able to attach sensors or even install anything. But she can

use the microwave, because it just works.....". Similar views

were received from other participants which indicate that the

DIY approach is suitable for a specific class of users familiar

with technology. These facts signify that to make augmented

artefacts available to a larger user base, packaging with vari-

ant options is needed. The incremental DIY approach can

further extrapolate the packaging scheme.

4. Balance with current practice is required: Participants

noted that when they buy furniture or home appliances, they

do not need any software installation. Usually they just plug

it in and it works. However, in our approach software in-

stallation is required. Although, our process is identical to

regular desktop computing, it has no similarity with home

appliances. Thus the participants found it conceptually hard

to think of the mirror as a piece furniture instead of a com-

puter. This was further extrapolated by the fact that a tablet

PC was attached to the mirror which made them perceive the

mirror as a regular computer display. They suggested that the

software installation process should be absent, and that the

hardware installation should be the only task since it needs

manual intervention.

5. Instantaneous feedback is necessary: It is essential that

when a profile is added, the new functionalities are reflected

in the artefact instantly and erroneous installation is reported

immediately to confirm the users’ actions. In our current ap-

proach, the only way to realize a profile’s functionality is by

running the application. However, the participants were curi-

ous in knowing whether their action was successful instantly

after the installation. This missing feature caused frustra-

tion among the participants and was reported during the in-

terview. This suggests that our artefact framework needs to

have an instant feedback facility for the users’ actions.

6. Intuitive hardware interface is needed: Considering, our

participants performances and subjective feedback, we con-

curred that the intuitiveness of the profile hardwares are es-

sential for the success of the DIY approach. For example,

in our experiment, except for the floor sensor, all the sensors

had one cable that could be attached to the mirror. However,

there were two ports in the mirror for the cables and each

port was specific to a profile. 4 of the participants made mis-

takes in picking the right port (These cases are reflected in

the max values of Figure 13(a) for task 3 and 4) Although it

was clearly written in the manual, they did not consult it and

tried to do it intuitively. Of course, If the artefact is designed

without further augmentation such port or other hardware

interfaces need not be intuitive, however for a DIY approach

it is necessary that the hardware installation process is self

explanatory. Furthermore, we noticed that the participants

were quite serious about the aesthetics of the mirror while

attaching the sensors. Later interviews revealed that it is im-

portant for them to make sure that the overall appearance of

the artefacts matched their style. These facts suggest that the

manual had a minimum role in the DIY approach and that

the instrumentation has to be intuitive to the end users.

Although the feedback from the participants did not positively val-

idate the current state of our approach from the usability perspec-

tive, we consider these results promising for future research on per-

vasive applications and augmented artefact deployment. However,

from a system point of view our approach provided stable perfor-

mance and met the primary goals that we attempted to reach in this

work.

5. DISCUSSION
For the purpose of discussion, we would like put forth a few

issues in this section.

5.1 Modality of End Users’ Support
One important discussion point is the type of support that is of-

fered to the end users in our approach. The artefact framework is

a generic binary with the support for plugging-in multiple profiles.

So, a new artefact either with profiles or without profiles come with

a ready to run component that users can deploy using FedNet end

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

user tool. Also, end users can gradually add new profiles to an arte-

fact without complex configurations. As we have shown, end users

have the flexibility to select the appropriate profile implementation

that matches their preferences. The multiple implementations of

the same profile (as shown in section 4.1.3) essentially highlights

the abstraction layer of profile handler. Similarly, end users can

install any application that adheres to the FedNet requirement, i.e.

comes with a Task Description File and implements generic web

techniques to access the access point. Applications functionali-

ties can be enhanced by gradual addition of profiles into artefacts.

The combination of these approaches enables lucid support for end

users to build and enhance a smart space incrementally.

5.2 Profile Ontology
Our artefact framework is organized as a collection of profiles

and these profiles are derived from the designers of the system.

This profile notion has serious drawbacks from the standardization

point. Since, we do not have a common vocabulary or ontologies

that can be used to define profiles, a pitfall of our approach can be

seen in the profile based unification. However, by profile abstrac-

tion, we are not trying to define the ontology for profiles. In stead

we are providing a structure that designers can use to disseminate

their implemented ontology. Defining the conceptual ontology in

a standard way is the hardest part of pervasive computing not the

encoding. We are fully aware of that, and do not claim that our

platform is providing a solution to that. Our contribution is provid-

ing an architecture that can glue the encoding structures with rest

of the systems seamlessly.

5.3 End User Deployment Process
Our end users experiment revealed that the deployment process

has to be as seamless as possible. We found that the end users had

difficulty using current web based deployment tool. As we men-

tioned in section 4.3, ideally end users would only do the hardware

installation which itself has to be self explanatory and the software

installation has to be autonomous to ensure the balance with end

users current practices with home appliances. Considering these

facts we are now working on a tangible interaction mechanism for

software installation, which will allow end users to touch a spe-

cific RFID tag (embedding a URL) that comes with the artefact

and profile into a reader attached to the FedNet system that will au-

tomatically collect the artefact binary and profile implementation

with corresponding Description File from a remote location and

will install it into the specific artefact space. Similar approach will

be applied for installing the applications. We reckon this will make

the software deployment process for physical artefacts and perva-

sive applications more lucid from end users perspective. Also, we

are working on providing a instantaneous visual feedback to end

users for their deployment actions.

6. RELATED WORK
The end users’ support to entail a smart spaces incrementally, re-

lies on instrumented artefacts and device integration technologies.

We will look at the related work in these areas.

6.1 Augmented Artefacts
One of the very first prototypes of smart object was Mediacup

[2] where a regular coffee cup was instrumented to provide the state

of the cup as context information. Although the Mediacup project

and its succeeding SmartIts [9] provide solid insight into the aug-

mentation of physical artefacts with sensing and processing, they

did not provide any generic representation model that can make

them usable with any general purpose applications. Tokuda and his

group introduced Smart Furniture and u-Textures to build custom

furniture [11], however their approach is also closed and tightly

coupled with their underlying scenarios. The same is true for other

projects in this area where various objects are augmented for pro-

viding value added functionalities [8, 19]. These objects work fine

in a specific scenario, however this assumption of scenario specific

objects leads to a less reusable and closed development model. The

artefact framework presented in this paper takes a generic approach

to solve this problem.We present a service profile based framework

to represent the instrumented features of the artefacts in an appli-

cation independent way. We express this augmented features in

generic languages which any application can use without prior un-

derstanding. By doing so, we make the instrumented artefacts plug

and play this allows end users to deploy them freely.

6.2 Device Integration
To date several methods have been proposed to address device

integration mechanism. One approach is interface standardization

as attempted by Jini [20] and UPnP [14]. They describe devices

using interface description and language APIs allowing applica-

tions to utilize the interfaces. However, they do not provide any

artefact framework that enable incremental deployment in a mean-

ingful way. Furthermore, as new services or features are added

into artefacts, they can not be utilized by the applications because

of the limited interfaces. Patch Panel [1] is a programming tool

that provides a generic set of mechanisms for interoperating and

translating incoming events to outgoing events, enabling interop-

eration among any set of devices that communicates using their

EventHeap [10] communication platform. Although, this approach

is seemingly lucid, it does not specify how to support the develop-

ment of artefacts incrementally and how to express their semantics

in a generic way so that any application can use those artefacts.

In SpeakEasy [7] mobile codes were exchanged among heteroge-

neous devices to create an interoperable environment. Their ap-

proach requires a special runtime environment to be available at

each device to exchange and execute mobile codes. It is hard to

expect that such a specialized mobile code at the device end can be

added incrementally and it is impractical for augmented artefacts

deployable by end users. Although he has not considered the rep-

resentation of artefacts and applications, his system is quite useful

and can be integrated into our approach. InterPlay [13] is a mid-

dleware for home A/V networking and is similar to our approach.

InterPlay uses pseudo sentences to capture user intent, which is

converted into a higher level description of user tasks. These tasks

are mapped to underlying devices that are expressed using device

description which contains property and grounding protocol infor-

mation. However, InterPlay predominantly focuses on A/V devices

thus does not provide any support for building artefacts incremen-

tally. Our artefact framework is a major leap from InterPlay which

signifies our contribution. Also, we do not consider user oriented

tasks rather we express applications as a collection of functional

tasks which enables developers to write applications without con-

sidering the constraints of the target environment. Task Computing

[12] initiative allows users to select a basic service or compose a

complex service by combining multiple basic services, but it does

not provide a good user-centric approach as the user spends a lot

of time in understanding the services. Also, it has no support for

incremental deployment of artefacts for end users. A range of mid-

dlewares have been proposed in the pervasive literature [17, 18, 4]

specifying their application development processes. These middle-

wares usually provide end-to-end support for the application de-

veloper, i.e. instrumented artefacts are wrapped into middleware

specific wrappers and a range of APIs is provided to the applica-

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

tions to manipulate them. However, the problem of this approach

is that the applications and the instrumented artefacts become vir-

tually incompatible in other environments. In our approach, we

have adopted a document centric approach allowing development

of infrastructure independent applications and artefacts and Fed-

Net provides the runtime association among them using respective

documents.

7. CONCLUSION
We believe that in the near future, end users will be involved

in associating smartness in the home and this involvement must

support the evolving nature of the home, i.e. incremental deploy-

ment. From a practical point of view, this should be achieved by

the end users. To enable this, we have presented, FedNet, a sys-

tem infrastructure that enables incremental deployment support for

end users utilizing an artefact framework and a task-centric appli-

cation framework. The contribution of this paper can be seen as

twofold. First, the plug and play artefact framework allows end

users to deploy and to incrementally enhance a smart space with-

out going through complex authoring or configuration steps. Our

approach also allows an application developer to write applications

considering the functionalities only regardless of the constraints of

the target environment. Since, the profile abstraction essentially

represents an artefact’s functional capabilities, applications can be

associated with the environment at runtime by the FedNet system.

Second, We have reported a real life end user deployment session

and findings from the experiment. From a system’s perspective our

approach was successful in enabling the incremental deployment

by the end users. However, the experiment also exposed several

usability aspects of end user deployment process, e.g., confusion

arising from the notion of profiles and manual installation process,

need for different packaging, intuitive hardware interface, instanta-

neous feedback, etc. We consider these findings from our exper-

iment are very useful for further research exploration in the per-

vasive computing domain, specially one that involves augmented

artefacts.

8. ACKNOWLEDGEMENT
This research was supported by "Ambient SoC Global COE Pro-

gram of Waseda University" of the Ministry of Education, Culture,

Sports, Science and Technology, Japan.

9. REFERENCES
[1] R. Ballagas, A. Szybalski, and A. Fox. Patch panel: Enabling

control-flow interoperability in ubicomp environments. In

Second Annual IEEE International Conference on Pervasive

Computing and Communications, 2004.

[2] M. Beigl, H. W. Gellersen, and A. Schmidt. Media cups:

Experience with design and use of computer augmented

everyday objects. Computer Networks, special Issue on

Pervasive Computing, 35-4, 2001.

[3] V. Bellotti and K. Edwards. Intelligibility and accountability:

Human considerations in context-aware systems.

Human-Computer Interaction, 16(2-4), 2001.

[4] A. K. Dey, G. Abowd, and D. Salber. A conceptual

framework and a toolkit for supporting the rapid prototyping

of context-aware applications. Human Computer Interaction,

16(2-4):97–166, 2001.

[5] W. K. Edwards, V. Bellotti, A. K. Dey, and M. W. Newman.

Stuck in the middle: The challenges of user-centered design

and evaluation of infrastructure. In The ACM Conference on

Human Factors in Computing Systems (CHI ’03), 2003.

[6] W. K. Edwards and R. Grinter. At home with ubiquitous

computing: Seven challenges. In The Third International

Conference on Ubiquitous Computing, 2001.

[7] W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and

S. Izadi. Challenge: recombinant computing and the

speakeasy approach. In The Eighth Annual International

Conference on Mobile Computing and Networking

(MobiCom), 2002.

[8] K. Fujinami, F. Kawsar, and T. Nakajima. Awaremirror: A

personalized display using a mirror. In Third International

Conference on Pervasive Computing, 2005.

[9] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl.

Physical prototyping with smart-its. IEEE Pervasive

Computing, 03(3):74–82, 2004.

[10] B. Johanson, A. Fox, and T. Winograd. The interactive

workspaces project: experiences with ubiquitous computing

rooms. IEEE Pervasive Computing, 1-2, 2002.

[11] N. Kohtake, R. Ohsawa, M. Iwai, K. Takashio, and

H. Tokuda. u-texture: Self-organizable universal panels for

creating smart surroundings. In The Seventh International

Conference on Ubiquitous Computing, 2005.

[12] R. Masuoka, B. Parsia, and Y. Labrou. Task computing - the

semantic web meets pervasive computing. In The Second

International Semantic Web Conference, 2003.

[13] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song,

P. Kumar, P. Nguyen, and K. H. Yi. Interplay: A middleware

for seamless device integration and task orchestration in a

networked home. In Fourth Annual IEEE International

Conference on Pervasive Computing and Communications,

2006.

[14] Microsoft Corp. Universal plug and play device architecture

reference specification.

[15] O. G. C. Inc. Sensor Model Language (SensorML)

implementation specification.

[16] T. Rodden and S. Benford. The evolution of buildings and

implications for the design of ubiquitous domestic

environments. In The ACM Conference on Human Factors in

Computing Systems (CHI ’03), 2003.

[17] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.

Campbell, and K. Nahrstedt. Gaia: A middleware

infrastructure to enable active spaces. IEEE Pervasive

Computing, pages 74–83, 2002.

[18] J. P. Sousa and D. Garlan. Aura: an architectural framework

for user mobility in ubiquitous computing environments. In

3rd Working IEEE/IFIP Conference on Software

Architecture, 2002.

[19] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray.

Cooperative artefacts: Assessing real world situations with

embedded technology. In The Sixth International Conference

on Ubiquitous Computing, 2004.

[20] Sun Microsystems Inc. Jini Specification, Nov. 1998.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3584
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3584

