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ABSTRACT 

Big challenge related to the contemporary research on ubiquitous 

and pervasive computing is that of seamless integration. For the 

next generation of ubiquitous and distributed applications to 

emerge, disruptive functionality towards opportunistic and 

heterogeneous device ensembles is required on all levels of 

operation. In this paper, we present middleware-level resource 

management service for situated displays in public smart spaces, 

acting as a scheduler and an arbiter for mobile clients. From this 

service, we focus on multidimensional resource discovery, which 

facilitates mobile users in locating and deploying situated displays 

in public and semi-public smart spaces. Dimensions for discovery 

include dynamic availability of the displays in both spatial and 

temporal scales, user and role-based access control, as well as the 

support for intended service. We have implemented the discovery 

service and subjected it for alpha testing in an indoor setting. We 

report a proof-of-concept implementation of the ScreenSpot 

system and we demonstrate an approach of visualizing the 

discovery results to the user. 

Categories and Subject Descriptors 

C.2.1 [Computer-Communication Networks]: Network 

Architecture and Design. 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems. 

I.3.6 [Computer Graphics]: Methodology and Techniques.  

General Terms 

Management, Design, Human Factors. 

Keywords 

Ubiquitous computing, leasing, dynamic QoS, publish/subscribe. 

1. INTRODUCTION 
Current research in the field of ubiquitous and pervasive 

computing [1, 2] is faced with a problem related to integration. 

The parts constituting the hardware side, i.e. small ultra-portable 

personal terminals and wearable sensors, as well as various sorts 

of ambient resources are already in their place due to the 

constantly decreasing costs of manufacturing and deployment. 

Same holds for networking, where Bluetooth is already a de-facto 

standard, WLAN emerges fast and 6LoWPAN sensor connectivity 

is paving its way to urban domains. The question then becomes 

how to opportunistically integrate these heterogeneous resources 

in order to realize the application models [3] the vision of 

ubicomp entails. 

Within this problem domain, contemporary research has 

acknowledged the need for disruptive, cross-layer viewpoints on 

all levels of operation. The research on cognitive radios and 

dynamic spectrum access [4, 5] are examples on the PHY and 

MAC layers, while research on publish / subscribe systems [6, 7] 

propose disruptive mechanisms for data-centric routing. On the 

middleware layer, approaches towards interoperability are 

multitude, and the scope of deployment divides different 

approaches to different research areas such as large-scale grids 

[8], or smart spaces such as office environments [6, 9], homes 

[10, 11] or more generic public spaces [12, 13]. 

On the application level, research on integration and 

interoperability is enabled through various service discovery 

protocols [14]. Jointly with web service technologies, these 

protocols enable the construction of loosely coupled service-

oriented architectures, or SOAs. The application level also 

features the research conducted in HCI towards the interaction 

mechanisms employed in communication between humans and 

ubiquitous device ensembles. Ballagas et al. [15] provide a 

thorough survey on this field. 

A typical usage scenario in this research field involves a mobile 

user with a smart phone, PDA or other similar networked 

terminal, utilizing services from the ambient surroundings. The 

traditional view of service discovery and deployment through a 

federated service repository usually involves three distinctive 

steps:  first, the user issues a discovery request including certain 

discrete keywords to the service repository, which in turn 

performs static matchmaking to return a set of matching service 

descriptions from the directory. According to some evaluation 

heuristics, a suitable service is selected from the candidate set, and 

a proxy for this service (either the service grounding or a physical 
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software proxy) is downloaded into the mobile terminal. In the 

final step, the mobile client utilizes this proxy to control and 

exchange data with the remote service. 

In the case of distributed and non-directory-based discovery 

protocol, two operational modes are possible. In the pull-based 

model, the client issues service requests as multicast messages to 

the network in order to discover suitable service candidates. In the 

push-based model, on the other hand, the service implementations 

publish advertisements of their presence to the network, and 

clients can tap to this traffic to perform discovery. 

The approaches depicted in the above sections present 

straightforward solutions to service discovery and deployment, 

but they contain certain shortcomings when applied to pervasive 

computing scenarios. First is the reliance on network topologies 

as the discovery range instead of physical location models of 

smart spaces, such as one presented in [16]. Second, the quality-

of-service aspects related to the service are restricted to static 

capability declarations. In other words, the dynamic usage of the 

service and underlying resources are not evaluated. A direct 

implication of this is that load balancing between users is 

minimal, leading to hoarding and starvation situations. Finally, 

smart spaces should enforce access controls that allow different 

views to smart space service spectrum based on credentials and 

roles of the users [14].  

One solution to the problems presented above is to extend the 

SOAs with context-aware features to better fit ubicomp scenarios 

[17]. This is however not feasible due to several reasons. First, ad-

hoc extensions tend to create isolated domains of functionality 

where off-the-shelf discovery clients may not be aware of or able 

to interpret the enhancements. Second, the co-operation of these 

domains requires the installation of custom translation proxies on 

network edges, further increasing the deployment costs. In this 

paper, we suggest an alternative solution; a general resource 

management and scheduling service on the middleware level that 

allows the SOAs to focus on their intrinsic key functionality of 

exchanging controls and data between distributed service 

components. 

We adopt a decentralized, infrastructure-centric view to 

discovering resources and services in the ambient environments, 

or smart spaces. Instead of a federated service repository, we view 

the infrastructure of the smart space in a more bottom-up fashion, 

as follows: first, smart spaces contain ambient resources that are 

managed through associated resource management (later: RM) 

components. These components are aware of the service binaries 

deployable on the associated resources. Through a pub/sub 

routing mechanism [7], these components form a loosely coupled 

peer-to-peer overlay network, through which the components 

communicate with each other. In resource discovery, one of the 

components acts as a seed for the discovery request and uses the 

mesh overlay network to aggregate multidimensional availability 

information [18] regarding the other resources in the smart space. 

The seed component is responsible for aggregating the availability 

information and passing it to the mobile terminal for visualization 

to the user. 

When the user has evaluated the results, the optimal resource is 

chosen and the negotiation between the mobile client and target 

resource regarding the service deployment starts. The negotiation 

ends with an agreement between the participants regarding the 

validity of the ownership transfer. We view this process as 

context-aware leasing [19], where the lease represents the 

transient transferring of the ownership, and the validity of the 

lease is based on spatiotemporal context elements. 

The contributions of this paper are as follows: First, we report the 

design and implementation of ScreenSpot, a decentralized 

resource discovery framework for smart spaces. We focus 

especially on situated displays [15] as means for constructing 

multimodal user interfaces for mobile users. This framework is 

built on content-based publish/subscribe messaging semantics 

which allow loosely coupled resource networks to be constructed. 

Second, we demonstrate a multidimensional availability and thus 

quality-of-service structure for the resources, based on the 

dynamics of the usage in addition to the static properties. Third, 

we illustrate an approach for visualizing the discovery information 

for the mobile users. This approach of facilitating the high level 

user-based choice through context-awareness is influenced by the 

SpeakEasy project in Xerox PARC [20]. 

This paper is organized as follows: the system overview section 

defines the key terms and presents our design for the resource 

discovery service. It also features a short usage scenario as an 

example of utilizing the discovery service. The validation section 

presents a proof-of-concept implementation of the ScreenSpot 

system along with a visualization concept for showing temporal 

and spatial availability of displays. Finally, in the conclusions 

section we draw up the main findings of the publication and 

contemplate on various comparison points between the traditional 

discovery systems and our design. Also multiple points of 

consideration for future research on this topic are presented and 

discussed. 

2. SYSTEM OVERVIEW 
In this chapter, we present the design of the resource discovery 

system in detail. First, we illustrate the functionality of the 

resource discovery by an example usage scenario. Next, we 

proceed to define the central terms and concepts to be used 

throughout the design. Subsequently, the high-level architecture 

of the system is presented in detail. Finally, we illustrate the 

functionality of the system through a selection of sequence 

diagrams. 

2.1 Usage Scenario 
Alice is visiting a shopping mall with her friend. The mall 

premises acts as a smart space by containing a number of 

ambient hotspots, i.e. collections of ambient resources with 

associated management software and physical connectivity. These 

hotspots in conjunction with the personal mobile devices allow 

the deployment of distributed application structures that realize 

multimodal user interfaces towards the users. 

Alice would like to deploy a personal media organization and 

sharing application jointly with her friend to view, organize and 

share pictures and media clips from a concert she visited couple 

of days ago. As she is in an environment not known to her a 

priori, she doesn’t know what resources are open for deployment, 

or where they reside. 

To discover deployable situated displays for the media 

application, she starts the ScreenSpot service on her mobile 

terminal, and initiates a discovery with certain parameters 

regarding the properties of the resources. Within seconds, she is 

presented with an integrated view of deployable situated displays, 
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arranged into a radar structure based on the multidimensional 

availability information gathered from the environment. 

The integrated view allows Alice to easily compare the different 

displays based on both static and dynamic properties. After 

selecting one display, she requests extra information of it. This 

extra information contains an image of the surroundings of the 

display, and Alice notices that the location of the screen is next to 

the Starbucks of the first floor. She sets a lease for this display, 

closes the application and starts to head towards the Starbucks. 

The scenario above illustrates how an integrated discovery view to 

a smart space can facilitate users in selecting deployable resources 

from the surrounding environment. In the case of situated 

displays, Alice does not have to explicitly know which resources 

she is able to utilize, since the discovery service automatically 

incorporates the information regarding the support for the 

intended application, as well as the notion of displays accessible 

by users acting in the role of guest within the smart space. 

In the remainder of this article, we present the technical details of 

our proof-of-concept implementation, ScreenSpot, which is aimed 

for situations described above. We cover the networking topology 

and the situated hotspots with associated data structures, and 

explain the functional sequences that realize the discovery 

processes. We also present screenshots of the integrated discovery 

views seen by the end users, and explain the different aspects of 

this view. 

2.2 Definitions 
In this section, we define the terms that will be utilized throughout 

this paper, and form the core concepts of our research work. The 

concepts will be described bottom-up, starting from the routing 

level and ending on the level of individual service components. 

2.2.1 Pub/Sub Client 
Since the RM middleware is running on top of publish/subscribe 

routing system, the term pub/sub client in this context refers 

generically to any computational endpoint that interfaces the 

pub/sub network in order to exchange data with other pub/sub 

endpoints. All RM instances realize the pub/sub client interface, 

as do the client components of the middleware running on the 

mobile terminals. 

2.2.2 Resource 
Resources in this system are objects that are used in executing 

services, and they feature management interfaces decoupled from 

the associated services [18]. The usage of each resource is defined 

and constrained in its usage policy, which can be set on a resource 

independently of other resources. The execution of services on the 

resource is semi-static in nature, meaning that although the 

resource is hosting multiple service binaries, only one of them is 

deployed at a certain point of time. In a special case of non-

exclusive resource, multiple service binaries can be running. 

Rules and constraints for this deployment are defined in the 

resource’s usage policy. 

2.2.3 Service 
Services are software objects to which computational access is 

granted through well-defined interfaces and groundings. A service 

can also be involved in the construction of the user interface of 

the device ensemble towards the user. Each resource can host 

multiple services, depending on the purpose and capabilities of 

the resource. The capabilities of the services are described 

through static quality-of-service declarations. The RM instance on 

every resource is aware of the hosted service binaries and deploys 

them based on the scheduling and usage of the underlying 

resources. Each node in the smart space contains a set of different 

services where some of these services may be offered by multiple 

nodes. We define the set of all offered services as service 

spectrum of the smart space.  

2.2.4 Lease 
In our research, we view leasing as a process of transiently 

transferring the control of the leased entity to the client, along 

with some validity criteria and renewal options [19]. To utilize an 

ambient resource, the user must have an active lease to the 

resource. If the active lease cannot be set due to contention 

situation in the resource usage, the user can set a pending lease to 

the lease queue of the resource. When a pending lease reaches the 

head of the queue, it is promoted as the active lease and denotes 

the transferring of the resource ownership to the new user. 

Simultaneous usage of a resource (in collaborative applications) is 

enabled by allowing a single lease to encompass multiple owners. 

2.2.5 Dynamic QoS 
We define the concept of a dynamic quality-of-service as a hybrid 

description containing both the declarative capabilities of the 

service and the dynamic usage load of the underlying resource. To 

attain the dynamic QoS, certain heuristics are applied (that can be 

supplied to the system by a third party, for example) for 

integrating the degree of match between the service discovery 

request and the service capabilities (i.e. the static matchmaking) 

with the dynamic usage load of the underlying resource. We 

model the usage load on the resource as a FIFO queue containing 

the leases set by mobile users wishing to utilize the resource [19]. 

2.3 Architecture 
This section presents the architecture of the RM middleware 

system. We first discuss the system on the networking level and 

introduce the relationships between the central entities. We then 

proceed to examine the structure of an individual RM instance, to 

gain an insight to the functionality that the management interface 

of each component contains, as well as what the core data 

structures are. The section ends with sequence diagrams of 

selected functionality which serve to highlight the communication 

and control between the components in realizing the higher level 

goals of the system. 

2.3.1 Overview 
Figure 1 illustrates an example setup of the entities comprising the 

RM middleware. Central to the figure is the Fuego pub/sub 

routing system, which is illustrated with a single router for 

simplicity reasons. The mobile terminals connect as pub/sub 

clients to the routing subsystem through the IEEE 802.11b 

panOULU [21] WLAN access network. Individual RM 

components in this figure are illustrated as display icons, since the 

work focuses on large public displays at this point. They contain 

terminal computation entities that act as containers for the 

respective RM instances and interface the pub/sub routers through 

IEEE 802.3 Ethernet links. 

In addition to the aforementioned connectivity, the mobile 

terminals also engage in ad-hoc communications with the ambient 

RM instances through Bluetooth. Through this short-range ad-hoc 

connectivity, we want to physically enforce the aspect of spatial 
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proximity to the computation. The Bluetooth coverage area forms 

an ad-hoc connectivity hot-spot around the situated display, and 

we utilize this coverage area as a virtual watchdog for monitoring 

the proximity between user and the display. Through this 

functionality, the leasing of the display can be monitored in a way 

that a user can terminate the leasing session merely by walking 

away from the display [19], thus we inhibit an implicit interaction 

session termination through the Bluetooth watchdog beacons. 

 

 

Figure 1. High-level architecture of ScreenSpot. 

 

Figure 2 depicts the structure of a single RM instance in the 

middleware. This instance resides within each situated display, 

and is responsible for the allocation and scheduling of the 

resource instance, as well as the execution of service instances 

residing on the resource. During the execution, it may be 

necessary to inject state information from the client side to the 

respective ambient resource to reflect coherent distributed 

interaction. 

The ResourceManager component forms the core of the RM 

instance and coordinates the other components. It realizes the 

discovery interface towards the mobile clients, and controls the 

execution of the discovery procedure. PolicyManager acts as a 

container and controller for the usage policies set for this 

resource. A single usage policy is an aggregation of resource 

utilization rules for a single user group. These include an access 

control list with usernames of the group, the renewal policies 

allowed for the group, as well as the role that the group has in the 

smart space, i.e. employee vs. guest. 

Fuego pub/sub client realizes the networking interface towards 

publish/subscribe messaging system. The subscription semantics 

utilized in the discovery service are hybrid in nature. First, the 

messaging system realizes a separate subscription channel for the 

discovery traffic. Secondly, the RM instance on each ambient 

resource subscribes only to the messages targeted to this group of 

instances (noted with an identifier). This decoupled routing 

scheme allows a flexible maintenance of the smart space, which is 

difficult and sometimes impossible to perform through a complete 

shutdown and restart. A discovery request sent to the network is 

only received by running resource managers that have an active 

subscription, and thus are ready for resource utilization and 

service deployment. 

 

 

Figure 2. Component structure on a situated display. 

 

LeaseQueue maintains the queuing of the leases set for the 

resource instance by mobile clients. The basic queuing scheme is 

FIFO, but e.g. a priority-based queue associated with user roles is 

also possible. It should be noted that pre-emptive scheduling of 

users in this setting is highly counterproductive, especially when 

considering stateful applications. For this reason, we see the 

queuing and differing lease renewal policies more useful in 

enforcing soft management behavior. 

ServiceProxy acts as a singleton interface towards the core, and 

allows the execution of the service binaries residing within this 

resource. The service binaries are tightly coupled with the 

resource instance and the users issue utilization requests to the 

resource by setting leases to the associated lease queue. Hence, 

each lease must be associatively connected to a deployable service 

binary. In-depth illustration and evaluation of the service proxy 

component is out of scope for this publication. 

Finally, BTServer implements the physical Bluetooth connectivity 

around the ambient hotspot. This spatial connectivity has two 

distinct roles in our system. First, users residing within the 

Bluetooth coverage area of a single hotspot can perform discovery 

requests to the rest of the system through the local hotspot. The 

benefit of this scheme is that users’ relative locations in the smart 

space can be straightforwardly inferred based on the Bluetooth 

attachment point. This in turn facilitates presenting results to the 

users based on relative locations of the discovered resources. 
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Secondly, during the resource deployment, the Bluetooth 

coverage area acts as a virtual spatial watchdog. This watchdog 

enforces a spatial aura around the ambient resource. As the user 

leaves the proximity of the resource, the system can implicitly 

infer that the application session has ended, removing the need for 

the end user to manually close down the session. 

2.4 Functionality 
In this section, we highlight the functionality of the ScreenSpot 

system through a series of sequence diagrams. As stated in 

previous sections, the main functionality of the system is to 

perform discovery requests within a physical smart space domain 

and return multidimensional resource information back to the 

user. The attachment points for end users in the system are 

Bluetooth coverage areas around the ambient hotspots that 

provide resources and deployable services. 

In Figure 3 the roles of the different RM instances are illustrated 

within the context of a single discovery request. As the user is 

residing within an ambient hotspot when the discovery is initiated, 

the RM instance managing this hotspot becomes the seed for the 

discovery request. From this seed, other RM instances within the 

smart space domain appear on different virtual spatial ranges, 

denoting relative physical distances between the hotspots.  

Range zero consists of the local hotspot, and the successive ranges 

are dependent on the location model configured to the system. 

Range 1 can for example denote hotspots within the same floor as 

the seed instance, while range 2 denotes instances within the next 

floor up. Outer ranges denote other areas within the smart space 

physical domain. 

 

 

Figure 3. Virtual spatial ranges from the seed instance. 

 

In Figure 4, the sequence of operations between the mobile 

terminal and the seed instance of the system is illustrated. The 

sequence starts by the mobile terminal scanning for the Bluetooth 

service of the seed instance. This can be initiated by the start-up 

of a certain application in the terminal, or by an explicit discovery 

request by the end user. 

When the service is discovered, the mobile terminal passes the 

discovery parameters to the seed instance. Here, we assume that 

Bluetooth pairing between the nodes has already occurred. 

Parameters include the Bluetooth MAC address of the mobile 

terminal, in order to distinguish between multiple concurrent 

discovery requests from the common seed. Other parameters 

include username of the end user, the identifier of the intended 

application, the spatial range for the discovery and the type of the 

ambient resource to be deployed. 

In the case where the end user does not have a designated 

username to the smart space domain in question, she is assumed 

as a guest, and subsequently the usage policy for users with the 

role guest is utilized. To obtain the unique identifier of the 

application, such as a UUID, we assume the usage of a name 

resolution system such as INS [22], where an early binding query 

can be used to obtain the identifiers. Integrating a name resolution 

system such as INS is recognized as a future work in this research. 

 

 

Figure 4. High-level resource discovery process. 

 

When the seed instance receives the discovery request, it starts a 

discovery timer with the MAC identifier of the terminal. 

Subsequently the discovery request is forwarded to the 

publish/subscribe routing for other RM instances to receive. Each 

instance residing within the range defined in the request answers 

the seed instance with a result set containing its multidimensional 

availability information. The discovery sequence ends when the 

discovery timer for the designated end user triggers a timeout. 

After this, the received result sets are aggregated into a vector 

which is passed back to the mobile terminal for visualization. 

Figure 5 illustrates the process of resolving the availabilities of 

remote resources in more detail. The discovery message shown in 

detail in Figure 4 is published to the discovery channel, and thus 

received by all active RM instances. First calculation on the 

remote system is the relative distance to the seed. This relative 

distance is represented with a single integer, and we refer to it as a 

spatial coefficient. The discovery request is relevant to the remote 

subsystem, if 

discspatial rangecoeff ≤  (1) 

i.e., if the remote instance resides within the relative range defined 

in the request. 
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If equation (1) applies, the remote ServiceProxy resolves the 

support for the intended application in the remote node. If the 

application is available (i.e. the corresponding binaries are 

existent), the remote node proceeds to authenticate the user. This 

is done by the PolicyManager, based on the usage policy set for 

the role of the user. Finally the temporal availability is calculated 

by the LeaseQueue according to following equation: 

∑+= plaltemp ttavail  (2) 

The temporal availability consists of the currently remaining time 

of the active lease, as well as the cumulated negotiated durations 

of the pending leases. The latter can be different for individual 

leases, as the durations are always associated with the usage 

policies the users are authenticated with. 

 

 

Figure 5. Resolution of availability information. 

 

After all the availability dimensions for the remote subsystem are 

calculated, they are grouped together as a result event, and 

published through the pub/sub network directly to the seed RM. 

In the case of successful authentication of the user, as well as 

recognized support for the target application, the overall 

availability is denoted with the spatial coefficient and the 

temporal availability. If the user cannot be authenticated, or the 

target application is not supported, the availability of the resource 

is set to infinite and presented as unavailable to the user. 

3. VALIDATION 
This section presents the proof-of-concept implementation of the 

ScreenSpot system. First we will describe the result visualization 

concept which allows a fast and simple selection of a target 

resource. Second, we will show how the user can interact with the 

described user interface concept including screenshots of the 

mobile application. Finally, we present a theoretical use case of 

integrating UPnP control points and services on top of our 

resource discovery framework. 

3.1 Representation to Users 
In this section we highlight the representation of results to the 

user while using the ScreenSpot system. The visualization will be 

described from the user’s point of view mostly concerning the 

representation of displays with their static and dynamic properties. 

3.1.1 Visualization Concept 
As mentioned beforehand, the ScreenSpot system tells users about 

the spatial as well as temporal availability of a resource (e.g. a 

display). Hence, the user interface on the mobile client needs to 

visualize both parameters in a compact way as screen space is 

limited and thus expensive. Both time and space already have well 

defined and widely used graphical representations. Temporal 

coherences can be depicted with a clock-based metaphor, whereas 

distance is often illustrated by user-centric radar-style interfaces. 

In order to allow users a fast decision based on the results, the 

system needs to take the advantages of both visualizations and 

merge them into one view. Radar views give two parameters (i.e. 

distance and direction) where as a clock only gives the time (as 

direction). With the ScreenSpot system, the direction cannot be 

detected as it does not track the user’s orientation. Hence, we can 

integrate the radar’s distance parameter as well as the clock’s time 

parameter into a new two-dimensional representation. Thus, the 

representation shows a clock-based view with additionally 

showing the distance between the user and the screen. Figure 6 

sketches our approach. 

 

Figure 6. Visualization of the results. a) shows a standard 

radar view with orientation and distance as parameters. b) 

depicts a clock-based view with the time as radial parameter. 

c) illustrates ScreenSpot’s view comprising the distance 

(radar) as well as the time (clock). 

 

The remaining parameter (i.e.: “are the application binaries 

available at the display?”) can also be visualized with 

ScreenSpot. As seen in Figure 6, some displays can be crossed 

out. This indicates a display in the environment with its spatial 

and temporal availability that is not able to execute the 

application. Even though the user is not able to run the desired 

application on the display, s/he can later use the display for other 

purposes. 

3.1.2 Requesting Additional Information 
With the mobile screens’ limited resolution and transmission 

bandwidth (Bluetooth), information about a display needs to be 

placed step-by-step. Hence, the user only gets spatial and 
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temporal availability information about the displays in the 

environment. Before a user finally makes a selection, s/he might 

want to gather more information about the display itself. The 

information includes further parameters and attributes of the 

currently selected screen, such as the room it is in, its resolution 

or its physical size. 

In addition, a picture of the display can be requested by the 

mobile client. This picture can then be taken by a nearby webcam 

to give the user a real-time view of the screen. In our prototype, 

the pictures are pre-captured and stored for each instance. 

3.2 Interaction with the UI 
Most today’s mobile phones are equipped with a joystick or arrow 

keys. The two independent parameters (time and distance) can 

thus be controlled by those input devices. For example, the user 

can utilize the left and right keys (and joystick respectively) in 

order to select a different level of distance corresponding to the 

spatial coefficient (e.g. corridor, floor or building). With the up 

and down keys (and joystick respectively) the user is able to 

switch between the displays contained in this distance level. In 

addition to the three distance level, we introduced a level showing 

all displays (e.g. in all distance levels). This virtual level can also 

be accessed by either using the left and right keys or the joystick. 

A selection of a display is indicated by both a white circle beneath 

it as well as a tooltip showing the exact time until the display is 

available. Once the user has selected a display, s/he can either 

request more information about it or immediately select it. The 

selection of a display is also possible in the information screen. 

Hence the user does not have to traverse back to the main 

selection screen which in the end reduces the number of clicks 

needed to finally select a display through ScreenSpot. Figure 7 

shows screenshots of the possible interaction path a user can take. 

If the user has selected a display for use, the system creates and 

sends a lease request to the associated RM instance. This results 

either in a success screen informing the user about a successfully 

placed lease or an error screen containing information about the 

error occurred. These errors might include a lost connection or a 

simultaneous discovery procedure on the target display by another 

user. 

3.3 Case Study: Integration with UPnP 
This section presents a theoretical use case for integrating 

universal plug and play (UPnP) control points and services on top 

of ScreenSpot. UPnP is paving its way as a service-oriented 

architecture in smart spaces, but the network-dependent nature of 

the simple service discovery protocol (SSDP) utilized in UPnP 

constraints its use in the construction of situated user interfaces. 

The discussion is divided into two sections: First one deals with 

the control points, whereas the second section focuses on the 

services. 

3.3.1 Control Points 
The pull-based service discovery in UPnP is realized with the 

control point broadcasting a service discovery request within the 

network domain. This broadcast message is answered by services 

attached to the same domain. Although straightforward, this 

solution lacks fine-grained information about the associated 

resource states in the smart space. 

 

 

 

Figure 7. Screenshots of the mobile UI. Both paths are shown: 

either the user requests more info, or s/he immediately selects 

the desired display. 

Through ScreenSpot, the pull-based discovery can be enhanced to 

include the necessary resource information. To resolve the 

potential service candidates, the broadcast message on the local 

device can be captured and fed to a name resolution framework 

such as one implemented by INS. By utilizing distributed hash 

tables, this resolution returns a list of universally unique 

identifiers (UUIDs) used in UPnP for identifying services. These 

UUIDs in turn can be utilized as the service identifiers in the 

ScreenSpot framework to resolve service support on dedicated 

hotspots. 

3.3.2 Services 
In contrast to pull, the push-based service discovery in UPnP 

features the services broadcasting their presence in the network 

for any control points attached to the same domain. In this 

approach, the utilization of INS name resolving and ScreenSpot 

resource discovery can also be utilized. 

When a service is introduced into a situated hotspot, it tries to 

announce its presence to the network. On the local hotspot, this 

message can be captured and fed to the ScreenSpot framework. 

This presence message can be utilized in two ways: The INS 

system in the smart space can use this message to perform soft-

state management of the service, as well as extract the service 

description to be utilized in name resolving queries. The resource 

discovery side in addition can capture the UUIDs of the local 

services in order to provide the multidimensional discovery 

results explained in this article. 

3.3.3 Outcome 
The previous sections described the integration of UPnP control 

points and services on top of a ScreenSpot / INS framework on a 

theoretical level. What is notable in this discussion is the fact that 
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the actual UPnP components in this setting do not require any 

additions or extensions in order to operate. Only aspect requiring 

explicit integration is the UPnP service to adhere to the 

bootstrapping protocol on the hotspot side. Through this short 

discussion, we have demonstrated the power of introducing a 

dedicated resource discovery framework for smart spaces and how 

it frees the developers of SOA components from the design of ad-

hoc extensions. 

 

4. CONCLUSIONS 
In this paper, we presented the design and implementation of 

ScreenSpot, a middleware level resource discovery system for 

smart spaces. ScreenSpot incorporates a tightly coupled model 

between ambient resources and associated services, and executes 

on top of an asynchronous publish/subscribe messaging scheme. 

This allows flexible maintenance of the smart space in relation to 

both resources and the associated services. 

After motivating the need for a middleware level, general-purpose 

resource allocation and scheduling system, we presented a 

distributed design that tackles the challenges posed by service 

discovery systems in smart spaces, as indicated also by Zhu et al. 

in [14]. These challenges are primarily as follows: utilization of 

physical smart space boundaries instead of IP networking 

topologies as the discovery range, which in our system is tackled 

by the virtual ranges between the ambient resources and the 

calculated spatial coefficients. Second challenge is role-based 

view of the smart space, which in our system is handled by 

managing different usage policies for different roles that the end 

users are representing. 

The proof-of-concept implementation presented in this article 

realizes all the components illustrated in Figure 2. The client side 

of the discovery system is also implemented. These realizations 

give us a good basis for conducting further research in this area. 

Through the implementation, it is clear that the Bluetooth device 

scanning amounts for the majority of the latency experienced by 

the end users. To alleviate this, we see the utilization of RFID tags 

as a viable solution in smart spaces [23]. These RFID tags can be 

configured to provide the mobile terminal with the necessary 

service parameters, thus greatly reducing the scanning time as 

indicated in [24]. 

We acknowledge the need for security and privacy aspects in this 

work. Levels of security we are considering in the future 

development include the encryption of the Bluetooth traffic, as 

well as the encryption of the pub/sub traffic with a PKI scheme 

offered by the Fuego routing system [7]. 

Finally, we recognize multiple tracks of future work in this 

research area. First, we are in progress of preparing first 

distributed applications on top of this system, and will be later 

publishing results from user tests based on the combination of the 

discovery system and the application usage. Secondly, we are 

researching the possibility for physically distributed application 

sessions involving distributed leases. Such scenarios allow 

applications such as video calling by utilizing ambient displays 

and webcams, or physically separated visual collaboration. 

Finally, we are looking into the stateful bootstrapping of 

distributed applications, and the effects that the state injection and 

extraction has to the scheduling of the resources.  
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