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ABSTRACT

Most mobile devices nowadays can smultaneously conred to
different accessnetworks with different charaderistics at different
times. Most solutions proposed for such an environment are
readive in nature. For example, when networks are encourtered,
the device performs a verticd handower to the network that offers
the highest bandwidth. But the cost of handover may not be
justified if that network is only available for a short time.
Knowledge of future network availability and its capabiliti es
would help to proadively handle the handower process more
intelli gently. Network avail ability prediction is often addressed as
user path predictions with network coverage maps. In contrast, we
model it as a more robust context prediction problem that can use
any of the available context variables like GSM cdl 1D, WLAN
AP, whether the power cable plugged, number of people around
etc.

Spedficdly, we propose a Semi-Markovian context prediction
model to predict WLAN avail ability. As colleding and processng
context consumes power, we propcse a method to rank eadh
context variable acording to their contributions to prediction
acaragy. We aso employ the same method for optimizing model
parameters. Red user data colleded in our experiments show that
when WLAN gtatus is static, prediction errors are nealy zero and
even in changing environments, error is lessthan 26% on average
and the obtained context variable rankingisredistic.

Keywords
Network Availability Prediction, Context Prediction, Semi
Markov Model

1. INTRODUCTION

There are number of access possbilities for a wireless user
nowadays, starting from low bit rate 2G GSM and GPRS
networks to high bit rate 3G networks as well aswirelessLANs
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with many tens of Mbps. The coverage areaof ead network type
also varies, typicdly bit rate limited networks covering larger
areas and high bandwidth networks covering small patches (Hot
Spots).

Today's mobile devices are increasingly containing multiple
radios which alow them to conred simultaneously to different
accessnetworks. Due to change of the environment of the mobile,
it encourters different networks with different cgpabiliti es. Some
networks may appea all the time whereas some (e.g. WLAN) do
so only for shorter periods. When networks appea and disappea,
the genera criterion is to perform verticd handowers from high to
low bandwidth networks if loosing the high bandwidth
conredivity or low to high if encourtering such good networks.
But the avail ability of high bandwidth networks may be too short
such that after or within the handovwer, the coverage just fades
away. In other cases where the hand over is from a high to a low
bandwidth network uponweek signa strength, when the process
is nealy dore the high bandwidth network may regppea. In many
of these cases, the verticd handover dedsion can be grealy aided
by the knowledge of future avail ability of networks. And nat just
for handowrs; if it is unlikely that a spedfic network will be
encourtered in the nea future, power can be saved by simply
switching off the respedive interface[1].

Let us take a simple scenario of a daily commuter traveling on a
train where his Smart Phore encourters WLAN APs only nea
stations and 3G otherwise. Also let us assume that he is having a
VolP cdl while the emall client is accessng the server
periodicdly to download new emails. Presence of WLAN lasts
only for short periods when the train doesn’t stop at stations and
handowers for VolP shoud be avoided in such cases athough
WLAN appeas suddenly. On the contrary, the email client just
periodicdly accesses the server and such accsss can be
synchronized with WLAN presence at stoppng stations (and
probably at nonstoppng ones aswell, with data transfer resuming
fadlities) as the applicaion can wat withou noticedle
performance degradation to the user.

Although there are number of propacsals in terms of domain
spedfic mobility models couped with network maps and domain
unspedfic mobility models, modeling in terms of context without
any domain knowledge to predict avail ability with resped to time
has not receéved considerable attention. This paper primarily
addresses that problem and our contributions are as foll ows.

*  We model avallability prediction as a robust, context
sensor agnastic prediction problem which uses any
avail able context information like GSM cdl 1Ds, Wi-Fi
AP presence, whether LAN is conreded, whether



power cable plugged, number of Bluetooth devices
aroundetc.

* We present a method to rank al context variables
acording to their contributions to predictions so that
the unimportant variables can be removed to save power
and processng without much (or at least known) effed
onthe quality of the predictions.

e We show from red user data colleded in our
experiments that the prediction errors are nealy zeo
when availability is static and even in dynamic
situations (transit times) the difference between adua
and predicted probabilities go up only to 26% on
average. Further, the ranking of context variables are
justified by prediction results and the same method is
foundto be useful in optimizing model parameters.

Also the QoS of the same network may change at different times
depending on severa fadors like how many people accesng.
Although we limit our work only to predicting presence of
networks in this paper, the same methods would realily be
extended for predicting not only presence, but quality parameters
like avail able bandwidth etc. aswell.

We present related work in sedion 2 and in sedion 3, we discuss
modeling contextua information for predictions and propose a
Semi-Markovian approach. Sedion 4 presents experimenta and
evaluation details with results followed by the conclusion and
future work in sedion 5.

2. RELATED WORK

Predicting in mobile communicaions research is not new. But our
approach is different in the sense that it uses any avail able context
information to predict network avail ability with resped to timein
a heterogeneous environment withou using any domain spedfic
knowledge and gradualy leans important variables so as to
remove irrelevant ones saving processng and power. In [1] for
power saving aspeds, they tried with recording the GSM cdl ID
and whether aWLAN was avail able for every 5 minutes. The ratio
of number of timesit was avail able over number of times recorded
in a particular cdl gives how probable to encourter a WLAN
network in that GSM cdl. But it ladks in that it does not give any
indicaion of how probable the user would be under WLAN
coverage within a finite duration of time ahead. Similar
approaches with domain independent mobility models can be
foundin literature as surveyed in [10]. In [5] they evaluated such
locaion predictors with extensive Wi-Fi data colleded in a
campus environment and found simple low order Markov
predictors working as well or better than the more complex
compresgon-based predictors, and better than high-order Markov
predictors. But such propcsals are mostly in a singe network
environment and do not give any indicaion of availability in a
time frame ahead.

The network avail ability prediction can be tregted as an embedded
task in user mohility predictions as in [2], where mobhility
prediction is used for resource scheduling purposes with
availability of (Bluetocth) conredivity being a known priory.
Like wise, a lot of domain spedfic user path prediction
approaches like [4], [12], [13], [14] can be couded with network
coverage maps or more sophisticaed QoS maps as in [6] to find
avail apility of networks in future. But these models are designed
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with assumptions like constant user speed, fixed cdl size and
shape etc which may not necessarily be the casein redity.

[11] contrasts between two approaches for high level context
prediction, as a high level context formation first and then
prediction, to a low level context prediction and forming high
level context from predicted low level ones. Their context
prediction approach based on locd aignment methods is said to
incorporate a constant leaning mecdhanism and be able to predict
an arbitrary number of future contexts. A context prediction
architedure is proposed in [3] for knowing user adivities in
future, as a stepwise process of feaure extradion, classficaion,
labeling and prediction. The latter has been acomplished with a
Markov predictor and states they seem to be generally suited
well. [9] Discusses various usages of context predictions and
further suggests an architedural solution for prediction. All these
context prediction endeavors concentrate on higher level contexts
like user adivities, situations etc, and are different from our
approach where we use it for network avail ability prediction that
is something we can sense in future time and can be used to
revali date the predictors.

3. MODELING

Availability of a particular kind of network type (e.g. WLAN)
primarily depends on where the user will be and what the
networks covering that locaion are. The exad user location is
hardly observable (e.g. GPS is generdly not available indoas
where the users spend most of their time — in office, home,
traveling etc). But by using fadors like GSM cdl ID, LAC,
WLAN AP name and their signa strengths, probably couped
with GPS we can get a better hint abou where he is. Even if we
observe the locédion as abowe, it is not sufficient to predict what
networks he will have as the future avail ability depends on the
behavior of the user as well. For example, due to bad weéher the
user may dedde to go home ealy, or he is having a lengthy cdl
and staying in the office for some more time. This means that
there is other information like his accéeration, the applicaions
running in the mobile, temperature etc which may hint about the
behavior of the user [7], [8] and may be beneficia in predictions.
So we can think of this entire stuation as a multivariate
probability distribution with lots of complex interdependencies
amongthem. The picture below shows this graphicaly.
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Figure 1. : Interdependencies between variables.



We can think that the behaviors of al the variables are dependent
on ead other; althoughwe canna observe exadly what they are
(their interadion may be acwording to the diredions of arrows for
example). This forms a Markov Randam Field. So the system of
al the variables (not al shown here) evolves with time and we
can observe some of these variables. What we want to know is the
avail ability of a network type, say WLAN at a future time (i.e. to
know the value of a particular random variable in future).

Imagine the system is sampled for every “m” sewmnds. Let us
asggn a random variable for eat fador at eadh sampling time
point as below (only 4 fadors considered for demonstration).

Time (in units of mseQ 1 2 3 ..t
WLAN Avail ability X, 5 X X
GSM Cdl ID a ) a ...
GPS b, b, b, .. b
Accderation C, C, Cy C

Here t is the current time. What we want to know is WLAN
availability at time t+1. Let us represent that variable
with X, ,,. The best estimate we can get for the probability of

X4 iS P(XH1 | XA&) where X represents al variables X, ,
Afor @ andsoonand i I:J(J.,Z...'[).

Our effort is to get this best estimate acarately with less
computational complexity. In generd, we know people have
regularities in day to day adivities, for example the daily
commute of an office worker. He comes from home to the office
and goes bad in the evening (regular places and times). He may
even browse a particular news web site on the way bad (regular
adivities). He takes the same train everyday (regular paths). We
can think of the abowve system pertaining to the described user
transferring from one set of redizaions of variables to ancther set
and repeding this transfer daily (over some time period). If we
have a traceof the system for few weeks, these patterns can be
leant and would be able to predict future values of ead variable.

Time: 10 15 20 25
Wi-Fi AP o
GSM Cell ID Interf)fg}atlon
“ :| |'\‘
Power on AC ! !
N
1 1

Classification
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Figure2. : Context prediction approach.
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We can right away think that numericd methods like auto
regressve moving average can be used here, but lots of variables
being symbds; it puts forward the question as to how to
meaningfully convert them to numbers. Alternately asin [3], we
can follow a context state prediction approach with an additional
interpretation step asin figure 2.

The ideais to classfy all the variables at a time and derive a
“context state” for ead sampling time point. Then the history of
the system would show how states transferred over the time and
such patterns can be leant as transition probabiliti es from state to
state. Then, the required value has to be interpreted from the
predicted state.

Markov Modeling (of order n) is a good candidate for state
predictions. If we had identified the number of context states, we
would have leant the transition matrix which gives how probable
it is to transfer from one state to ancther in the next sampling
point. One major disadvantage of the Markov model isits inherent
geometric state stay time distribution. If the probability of
transferring from one state to itself is P, the probability that the

state would last for U samplingintervalsis P" " which may not

necessrily be the adua distribution. Further, our sampling
period (30 sea@ndk) is very short compared to stay times of some
states (for example, at night, the same state would last for hous as
the surroundng situation is rather static). In such cases, the order
of the model has to be increased so that it takes many more past
states to capture “red” state transfers, as otherwise the transition
probabiliti es would be overwhelmed by transfers from one state to
itself. But with the order of the model, computational complexity
increases exporentidly. That means in order n Markov model

having states with K redizations, the computations are in the
order of K"

Semi-Markov gives the answer for abowe. It still models the
processas a Markov processbut state stay times can be decouped
and separately modeled. For example, a simple average of stay
times would give the expeded duration in that state. By this way,
the order of the model can be maintained within manageable
limits while capturing red state transfers and the underling
process can be demuped from the absolute sampling time and
separately leant. Thisis avery goodinterpretation for our system
as the behavior of a user can be though of as a sequence of
adivities (or states) and the start time of the sequence can vary (he
may come from home in the morning at 7:00, 7:30 etc). On top of
that, the stay times can aso vary but till the sequence happens
daily, to say, coming from home, then to the train station and
taking a train, then to the office, badk to the stationin the evening
and returning home. Semi-Markov's power is to cgpture this
sequence irrespedive of stay times of states and absolute start
time of the sequence The n'" order Semi-Markov (where a state
canna transfer to itself, but only to a different one) can be
expressed mathematicdly as below.

P(S.1S.8:)=P(Sul S Sy) ®

Here S, is the current state. The next state S,,; given dl the

previous states depends only on previous “n” states. We used this
model in our anaysiswithn=0andn=1.



Coming bad to our best estimate described in the beginning, it
now bemmes P()g,ﬂ | XAR:), and in the same way al X, A,

B and C represents randam variables in eat state (not at eath
sampling point). Now let us take the case where we have the
history of only X, B and C. In that situation we would get the best

estimate asP()g,ﬂ | XBC). According to Bays theorem, these
two probabiliti es are related as foll ows.

P(A| XBC)

Pl 1 XB9 = g xaoe,) TP 1 XABG

(2
So the second estimate is deviated from the first estimate by a
fador P(A| XBC)/ P(A| XBCXVﬂ). If the variables A

are condtionaly independent of X, ., given X, B and C, both
sides of the equation become the same. This tells us that, there is
no harm to include al the variables to estimate X, but if we

drop one which is condtionaly dependant with X,,, the best

egtimate is changed by a fador governed by how A and X,,, are
dependant.

This result can be used to get a notion of the importance of
context variables in predictions. We can remove one variable at a

time and find out the probabiliiesP(X,,, | XBC),
P(Xv+l | XCA) etc. and chedk how different they are from the
best estimation F’()(\,Jr1 | XAKZ). In generd, if the differenceis

more, the more the absent variable tells us abou X, and
acordingy we can rank them based on their relevance

4. EXPERIMENT, ANALYSIS& RESULTS

We instrumented four mobile phores to log following
measurements for every 30 seands.

e Timeof the day (morning/evening)

*  WLAN AP avail ability

*  LAN avail anility

e Power on AC or not

*  Number of Bluetooth devices around
e GSM LocdionArea(LAC)

All abowe variables are binary except the last where we took eath
encourtered LAC as a separate redization. In analysis we used a
moving average of 5 data points of Bluetooth and cheded
whether it is above (or below) some threshold. An example data
vedor looks like “0-0-0-0-1-LACa”, which reals from left as
“morning’ - “WLAN not available” — “LAN not available” —
“power not on AC” — “number of Bluetooth devices around is
higher than the threshold” —“locaion areaa”.

We gave our mobile phores to four users to use as their persona
phore for 3-4 weeks. For loggng, we used in-house built software
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as well as two open source software applicaions cdled NiceTrack
and RilTest (bath for GSM), after doing some modificaions to
their code for loggng purposes. We encourtered some difficulti es
initialy and some logs were partialy usable. For example, HTC
TyTn phore switches off the WLAN interfacein sleg mode and
Imate-Kjam switches off the WLAN interface when LAN is
conreded. The former was avoided by setting aways adive
mode. The latter was correded in log files using a script. Another
problem with TyTn is it switches off the Bluetocth interfaceafter
2-3 days of continuows running, athoughit shows “active” on the
interface detail s. Some log files of the fourth user were unusable
due to this reason. Due to inconsistencies of log files of the 3™
user, only evening parts were used for analysis.

In our evaluation, as encourtered number of different states were
less (below 200 and for easy interpretation from predicted states
badk to variables, ead such combination of variables was
assgned a unique state. First, we leant order 1 and 2 date
transition matrices for ead user using their initial 2 weeks data.
For order 1, the next state depends only on the previous state and
for order 2, it is previous two states. These matrices were used
with the next day log file of the correspondng user for evaluation.
For the day after that, the log file of the day before was aso used
and absorbed to the matrices. So for the last day, the matrices
contained information of al previous days data.

4.1 State Transition Probabilities

Our first attempt was to observe the probabiliti es of state transfers
given by the matrix when such a transfer has happened. In other
words, let us assume the states have transferred in following
manner in evaluationlogfile.

Transfer

WLAN Status 0 1 0 1

This says that state 1 (S}) which is a WLAN unavailable state
(WLAN status given diredly under S, is“0") has transferred to
WLAN available 82 state (WLAN status “1”). Similarly state
S, hastransferredto S; andthento S,

At the second transfer from state 2 (S,) to state 3 (S;), we

cdculated from the matrices, the “state transfer probability” that
the state 2 would transfer to state 3 (in order 1) or having
transferred from state 1 to 2 initialy, from state 2 to 3 (in order 2).
Further, from state 2 to 3, WLAN status has changed from
“availability” to “nonavailability”. So we found out the
probability given by the matrices to transfer from state 2 to a state
where WLAN would not be available (in order 1) or having
transferred from state 1 to 2 initially, from state 2 to aWLAN nat
avail able state (in order 2), by integrating over al the WLAN non
avail able states after state 2 (thisis“WLAN transfer probability”).
These probabiliti es were found for all the state transfers in the
evaluation log file and such “state” and “WLAN” transfer
probabiliti es for a user for a particular evaluation day are shown
below in figure 3.
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— WLAN

Probability * 100
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Figure3.: Transfer probabilities.

All such probabiliti es for a particular user were averaged over all
five evaluation days and the results of al users are as below.
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Figure4. : Averagetransfer probabilities.

We can seethat athoughpredicting the next spedfic state is less
acairate, predicting the WLAN avail ability in next state is around
66 % in both order 1 and 2 models on average, even over 80% for
the 2" user. Further, we dorit see any noticedle gain by using
order 2 in next state’s WLAN avail ability predictions or next
particular state predictions. Third and fourth users' prediction
results are comparably low and can be acourted for lesstraining
data. For example, for the fourth user, the reduction is mainly
caused by the first day’s results where the matrices were not quite
matured. They were around 15% for state predictions and around
35% for next state's WLAN status prediction. But towards the end
of evaluation days, they gave better results.

Our main objedive is to get an ideaof how probableit is to have
WLAN available in next few minutes (we did it for 5 minutes).
That means, out of next 5 minutes, for how many minutes we will
have WLAN available. Abowve results suggest us that when using
state transition matrices for predictions, it is less acarrate only
taking the next most probable state but acaracy can be improved
by taking al those states where WLAN is available (or not
available, depending on the aggregated probability being above
0.5). If we consider the same example given previously, and
imagine that we are at the state 2 now, so the current state in order

1is S, andin order 2, it is S, having transferred from S

initially. For the stay time duration for a state, we simply averaged
all encourtered stay times of that state. We could get the stay time
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for the state 2 diredly from the matrices. The prediction is such
that the current state would last for that duration and the WLAN
status is current state’'s WLAN status till the end of the duration.
If the predicting time point is further ahead of this expeded stay
time duration, then as step 2, we found out the next probable
states where WLAN is avail able (or not available depending on
the probability). The duration for that step is taken as the
weighted average of such next states' stay times, weighting fador
being the number of transfers recorded from the current state to
thaose particular states. For the third step, we took @l the probable
state transfers from states in step 2 and seleded those next states
having same WLAN status and abowve 0.5 aggregated transfer
probability. Duration for the step 3 is taken similarly as described
abowve, by averaging the seleded states' stay times. Like wise, we
ran this algorithm on the matrices until we came up at a step
where predicting time point is within the duration of that step. The
predicted WLAN avail ability status is the WLAN status of those
states in that step. We did predictions for ead 5 minutes blocks of
the day. By dividing adual availability minutes and predicted
minutes by 5, we got the adual and predicted probabiliti es. The
results of order 1 and 2 for a particular evaluation date for a user
is shown below (the mid of the graph where probability is
constantly 1 isshrunk).
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Figure5.: WLAN availability probabilities.

In general, we could observe that when WLAN is avail able (or not
avail able) continuowsly, predictions for thase durations are nealy
acairate. But we were rather interested in finding the differences
between the predicted and adua probabilities in 5 minutes
durations when they were fluctuating in transit times, to seethe
quality of predictions even in dynamic situations. Averages of
such differences of four users are diagrammed below in figure 6.
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Figure6. : Prediction probability difference.



We can seethat order 2 over performs (difference are less and
26% on average) than order 1 model in most of the users athough
we did not seeany gain of using order 2 model than order 1 in
next state' sWLAN status predictions (figure 4).

4.2 Relevance of Context Variables

The next interesting question is finding how ead context
information variable contributes to the final prediction results.
According to our condtiona independence chedk method
discused in sedion 3 following equation (2), we here
demonstrate it for the order 1 model where the next state depends
only on the previous statee. That means, the WLAN
avail abilit y/non avail ability depends on the previous state only.
We cdculated the average difference between probability of next
WLAN given al previous variables and the same given all
previous variables except a particular one. That means, by
asdgning variable names as foll ows,

State WLAN Time Power LAN Bluee GSM
Current X, a, b, C, d, e,
Next Xy41

we cdculated the probability F’(Xw1 | xvapvcvdvev) from

the data Then we caculated P(Xw1 | apvcvdvev) (i.e

withou previous WLAN) and found the average probability
difference from abowve (with al variables) and similarly, removed
one variable a a time and cdculated average probability
difference withou that particular variable, for al the variables.
Theresults are tabulated below.

Table 1. Context variable relevancies

User Time | WLAN | Power LAN Blue. GSM

0.040 | 0114 | 0.028 | 0.007 | 0.092 | 0.151

0.034 | 0147 | 0.076 | 0.000 | 0.045 | 0.149

1
2
3 - 0.117 | 0.027 | 0.000 | 0.087 | 0.105
4 0.076 | 0127 | 0.082 | 0.001 | 0.056 | 0.144

For almost all users, it appeas that in general, previous WLAN
and GSM status details are of prime importance LAN details
were of littl e importance most of the time. The first user used only
the LAN cable, bath for LAN conredion and charging purposes
withou using a separate charger. The relevanceof LAN for himis
very small compared to power. The obvious explanation in his
case is, given the status of power, LAN status is implicit, but not
the other way highlighting the fad that, in pradice, whenever the
USB cable is plugged, power status bemmes avail able right after
but for LAN status to become avail able, it takes some little more
time for automatic configurations. Therefore, althoughthe LAN
status is obvious when the power status is given, power status is
not completely shown by LAN status as the power status may
have been avalable before (after) the LAN status becwmmes
available (not available). Other users hardly used LAN cable and
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LAN availability was more an independent event from other
variables. The third users “Time” relevance is absent as only
evening data was used due to inconsistencies of log files as stated
in the beginning.
To see the effeds of these findings, we removed Bluetocth
variable and GSM variable, one a a time and observed the
probability differences caused on the predictions of 5 minute
blocks ahea (as in sedion 4.1 last part). Idedly the differences
withou GSM shoud be more than that of Bluetooth acording to
above figures, as for al users GSM relevance is always higher
than the Bluetooth relevance The below diagram shows adual
probabiliti es, predicted probabilities with all variables, same
withou Bluetooth and withou GSM for a particular user in a
particular day for order 1. (The mid of the graph where probability
is constantly 1 is shrunk).
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Figure7.: WLAN availability probabilities.

And averaged prediction probability differences for al users for
order 1 are as below.
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Figure8.: Order 1 prediction probability difference.

We can seethat removal of GSM affeds prediction results in all
users than Bluetooth except for third user. But still his GSM and
Bluetooth effeds appea to be close and this cen be acourted for
their relevance for both variables being very close. For user 2 and
4, the Bluetooth relevance is low (only 0.045 & 0.056 from the
table 1) and we cannd observe a clea difference between
“withou Bluetooth” and ‘with all variables’ in both cases. For the
order 2 model also, a similar ched is appliceble where in
condtional independence ched, the detail s of previous two states
have to be considered.



4.3 Parameter Tuning

The same condtiona independence chedk can be used to tune
parameters of the model. In our evaluation, we classfied number
of Bluetooth devices around to two caegories namely, “0”
meaning it is below some number “n” and “1" for abowve that
number. This“n” can be cdculated in such away that it produces
maximum relevance in probabiliti es. We did the same ched asin
4.2 withou Bluetooth, when cutoff threshold is set to 1 up to 6,
and found probability deviations from when all variables are
considered and they were acawmulated. The results are graphed
below. The values are normalized by dividing from the maximum
value encourtered in the 1 to 6 range for ead user.
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Figure9. : Bluetooth relevance against Bluetooth
threshold

From the above diagram, we can see that for user 1 and 3, the
maximum occurs on threshold 4 whereas for 2™ and 4" users they
are 3 and 2. It is adually these thresholds that we used in our
previous andysis. To see the effed on prediction probability
difference from adua, we cdculated average prediction
probability differences for optimum threshold and for threshold 1
for ead user. The below column graph shows the results for order
1 model.
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Figure 10. : Order 1 prediction probability difference
for different Bluetooth thresholds.
We can clealy seein most of the users that we get the least
probability difference from adual, with optimal threshold except
in user 4. We looked into that user’s results on ead evauation
day and foundthat the differenceis caused by the first evaluation
day results where the matrices contained information of only
limited number of log files due to the fad that Bluetooth interface
goes down over continuows running for more than few days as
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stated in the beginning. For him, the optimal threshold gave better
results when the matrix was leant gradually on latter days.

We cheded the predicted probability differences from acdual
when the threshold is optimal and 1, for order 2 model aswell and
found that they are compliant with our method athough we
considered only the previous state's variables there and not
previous two states'. Figure 11 shows above results for order 2 for
all users.
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Figure1l.: Order 2 prediction probability difference
for different Bluetooth thresholds.

5. CONCLUSION AND FUTURE WORK
Network availability prediction helps to optimize wireless
resource utili zation of a mobile devicein a heterogeneous network
environment. We have shown with red user data colleded in our
experiments that the WLAN avail ahility can be predicted using
any available context information of the device with a Semi-
Markovian state model, withou using any domain spedfic
knowledge. Our results show that predicting WLAN avail ability
status over next 5 minutes blocks performs nealy perfedly when
WLAN status is not changing. Even in changing situations, the
WLAN avail ability probability difference between adua and
predicted goes up only to 26% on average. Also, the presented
method to rank context variables acwrding to their importancein
predictions found to be redistic and with that, unimportant
variables can be removed saving power and processng of the
device without much (or at least known) effed on the quality of
predictions. It was further shown that the same method can be
used for optimizing parameters of the model, again justified by
results.

We will look into incorporating more context information for
predictions with refined models and with more user data. Further,
we will work on extending the same methods to predict network
QoS parameters as well together with avail ability, followed by
introducing the prediction knowledge in a mobil e deviceto utili ze
wirelessresources optimaly.
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