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Abstract* 
This paper presents the design and implementation of TMACS – a 

distributed middleware framework for Mobile Ad-hoc Network 

(MANETs).  TMACS leverages type-based group communication 

paradigm in which type is used as a first-class abstraction for iden-

tifying groups and provides a novel group-based RPC-mechanism 

called TRPC as a higher-level communication abstraction suitable 

for MANET computing environments. A fully decentralized discov-

ery service has been provided to lookup the meta-information of the 

distributed objects and services. At the network layer, TMACS im-

plements TypeCast routing protocol to efficiently support TRPC 

and service discovery via effective type dissemination and aggrega-

tion mechanisms. A complete system implementation of TMACS has 

been deployed on linux-based mobile devices and has been used to 

program a variety of applications.  We present results from a se-

lected set of applications and services that include an ad-hoc dis-

tributed caching service and an ad-hoc marketplace application. 

The physical implementations were used to evaluate the perfor-

mance of TMACS and demonstrate its resiliency in the presence of 

mobility-induced topology changes.  
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D.2.11 [Software Engineering]: Software Architectures -- patterns 
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Design 
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1. Introduction 

Mobile Ad-hoc Networks (MANET) are an emerging 

platform to deploy diverse distributed applications, such as 

emergency response, battlefield communications and ad-hoc 

conferences. There has been tremendous progress in 

MANET-related network research in recent years; hardware 

support for MANET is also readily available. However, 

there have not been comparable advances in the availability 

of programming or application development platforms for 

MANET environments.  Such environments present a num-

ber of unique challenges as discussed next: 
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First, unlike wired Internet or access point based wire-

less networks, a MANET is a pure peer-to-peer network in 

which all nodes may move frequently. There is no network 

“core” to provide relatively stable routing topology, network 

availability and bandwidth.  Such a network architecture 

precludes DNS-like infrastructure which relies on dedicated, 

always-on and centrally managed hosts. Without such infra-

structures, the World Wide Web would arguably not have 

become the ubiquitous phenomena that it is today.  Such 

infrastructure services are necessary to promote the use of 

MANET by application developers.  The challenge here is to 

provide such infrastructure services in a fully distributed 

fashion where they are resilient to node failure, mobility and 

network partition without incurring high system and network 

overhead.  

Second, the fact that users voluntarily join a MANET 

requires them to have a strong incentive to participate, which 

usually stems from common interests and goals. For exam-

ple, in an emergency response scenario,   police officers, 

firefighters, and paramedics do not necessarily know each 

other’s identity or network address; nevertheless, they must 

coordinate with one another in order to fulfill the rescue 

mission. Such coordination is most likely group oriented, 

where groups are classified based on the participants’ orga-

nizational duties and roles. Providing system support for 

group-based communication in MANET is as important as 

providing such support for point-to-point communication.  

In summary, we believe that a middleware framework for 

MANET must address the following research challenges:   

• What are the appropriate high level abstractions for 

representing group communications that reflect the real 

world group relationships among MANET users?  

• How to provide an expressive yet efficient distributed 

programming model that can be used to facilitate the de-

velopment of group-oriented as well as point-to-point 

based ad-hoc applications in MANET?  The program-

ming abstraction should make mobility and network de-

tails transparent from applications developers; at the 

same time, must not cause high performance penalty and 

system overhead in the face of high mobility and network 

dynamism. 

• How to support a lookup service for mobile nodes to lo-

cate available group and individual service information 

in the network without requiring a centralized naming or 

directory servers? The discovery service should provide 
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rich taxonomy to describe the intended targets while mi-

nimizing the consumption of network bandwidth.       

In this paper, we present the design and implementation 

of TMACS (Type-based Middleware for Ad-hoc Communi-

cation Systems) – an object-oriented distributed platform 

intended to address the above challenges.  TMACS intro-

duces three novel features: an efficient implementation of 

network routing protocol based on hierarchical group ad-

dressing scheme, a group-oriented distributed computing 

model called TRPC to simplify the ad-hoc application de-

velopment, and a decentralized, mobility-resilient Discovery 

Service. The combination of these functionalities forms a 

light-weight minimalistic MANET middleware upon which 

more sophisticated system services, programming abstrac-

tions and applications can be built.    

 In TMACS, MANET applications are modeled as dis-

tributed objects; the type of an object is used as the key ab-

straction for classifying and grouping objects and as the first 

level construct for sending messages. The power of type-

based group abstraction lies in its ability to form hierarchical 

group relationship via the principles of subtyping and type 

composition[16] to model complex relationships among ad 

hoc users. Applications can dynamically change the scope of 

a specific communication by targeting individual messages 

to different levels in the type hierarchy. New groups can be 

easily introduced by plugging new types into the existing 

hierarchy.   

With type as the fundamental group abstraction, 

TMACS introduces a novel distributed computing model 

called type-based RPC (TRPC) which simplifies the devel-

opment of group-oriented ad-hoc applications. TRPC ex-

tends the traditional point-to-point RPC[6][29] model by 

allowing an application to simultaneously invoke a remote 

method call to a group of distributed objects. The group is 

identified by the combination of type and Scope – an ab-

straction of non-type properties. The set of Java API and the 

associated language runtime environments makes develop-

ing group-oriented ad-hoc applications as easy as writing 

distributed applications for wired networks.  An important 

deviation from traditional RPC is that all the method calls of 

TRPC are non-blocking – the return values is retrieved asyn-

chronously via the abstraction of Future[30]. This avoids the 

potential performance penalty of a synchronous method in-

vocation.   

To efficiently support TRPC, TMACS utilizes TypeCast 

routing protocol[16] - a  network protocol based on hierar-

chical type information. The protocol compresses the type 

hierarchy into Bloom filters[5], which are disseminated and 

aggregated in the network to facilitate routing. The memory 

and bandwidth cost for managing routing table is not in-

creased with the number of types in MANET. Our earlier 

work on TypeCast routing[16] focused on the design and the 

simulation study of the protocol. This paper  significantly 

expands on the previous work by providing a complete im-

plementation of the TypeCast routing protocol, integrating 

the protocol into TRPC’s language runtime environment, 

and using the implementation to study system performance 

on a physical testbed and to validate the previously reported 

simulation results. 

TMACS also provides a discovery service to look up 

meta information associated with distributed objects in the 

network. TMACS’ discovery service does not require cen-

tralized naming servers; rather the service is fully decentra-

lized and is capable of coping with node mobility and 

network partitions.      

To demonstrate the utility & expressiveness of TMACS, 

we describe the deployment of a novel service: an ad-hoc 

distributed caching service, and a representative application: 

an ad-hoc marketplace.  The ad-hoc caching service allows 

any node in a MANET to serve as a cache for other nodes. A 

cache server can replicate arbitrary types of distributed ob-

jects with the cached copies providing the same types of 

services as the original sources. Such an ad-hoc caching ser-

vice provides an effective mechanism to increase service 

availability by relieving hotspot, overcoming network parti-

tions, and node failures.   

The marketplace application is considered to be a gener-

ic communication pattern for ad-hoc networks[10].  Our 

implementation of ad-hoc marketplace allows buyers and 

sellers to trade items via auction style communications in a 

MANET. The auction is executed completely in peer-to-peer 

style without a centralized broker. Our implementation expe-

rience has shown that TMACS can significantly reduce the 

complexity of developing group-oriented ad-hoc applica-

tions by eliminating the effort for managing group member-

ship and designing low level handshake protocols and 

messaging mechanisms.            

The organization of the rest of the paper is as follows:  

Section 2 presents the architecture of TMACS. Section 3 

discusses the TypeCast routing implementation. The TRPC 

programming model and TMAC’s discovery service is dis-

cussed in section 4 and 5. Section 6 demonstrates the ad-hoc 

caching service and auction application built on top of 

TMACS. Section 7 presents representative experiment re-

sults from a prototype implementation. In section 8, we 

compare our work with previous research. Section 9 is the 

conclusion.  

2. System Architecture 

The architecture of TMACS is entirely based on the 

peer-to-peer model where all mobile nodes have identical 

copies of the software stack and they coordinate with each 

other to provide a distributed infrastructure service.  The 

software stack needed to support the TMACS functionality 

on each node is shown in Figure 1. 

At the bottom level is the TypeCast routing component, 

which implements a language independent routing protocol 

supporting efficient type dissemination and type-based 

packet forwarding. The TypeCast routing component con-

sists of a user space routing daemon and a Linux kernel 

module. 
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Above the typecast routing component is the Network 

Abstraction Layer (NAL) which is used to hide details of 

routing protocols from the core middleware functions.  NAL 

dynamically selects the routing protocols used for forward-

ing outgoing packets by analyzing the intended targets. It is 

extensible for plugging new protocol implementation.   

The core of TMACS consists of the TRPC Runtime En-

gine and the Discovery Agent.  TRPC is an extension of the 

traditional RPC model that supports concurrent execution of 

remote methods on one or more distributed objects and the 

asynchronous retrieval of the results from the corresponding 

invocation(s). The TRPC Runtime Engine manages the life-

cycle of the distributed objects activated on the local node, 

and is responsible for dispatching remote method invoca-

tions and correlating responses. An important function of the 

Runtime Engine is to aggregate the type information on the 

local node and to notify the TypeCast routing daemon when 

any change is detected.  The type information will be 

promptly propagated through the network.    

The Discovery Agent coordinates with its counterparts 

on other nodes to look up the meta information of TRPC 

service objects in a MANET via a decentralized light-weight 

discovery protocol.  The combination of the TRPC Runtime 

Engine and the Discovery Agent serves as a distributed 

framework for the ad-hoc communication systems.  

We summarize the characteristics of the TMACS’ archi-

tecture that make it suitable for MANETs:  

• First the TMACS architecture does not include any cen-

tralized components. Every node plays an equal role – 

when a node fails, its functions can immediately be re-

placed by any other node without disrupting the func-

tioning of the whole system.  

• The service discovery is supported via a network of 

Discovery Agents, it does not require any centralized 

naming systems.  

• The network topology is constructed in a self-organized 

fashion via the TypeCast routing protocol. The link 

breakage due to mobility and node failure is automati-

cally detected and repaired to ensure network connectiv-

ity.  Note that it is possible to implement TMACS using 

other ad hoc unicast and/or multicast routing protocols; 

however, TypeCast provides better efficiency that is 

adaptive to the number of active objects distributed 

along type hierarchies.  

• Last, the combination of the preceding layers provides a 

light-weight framework that can be used to construct 

additional services, on an as needed basis, so as to pro-

vide a small memory & resource footprint that can be 

ported to diverse mobile platforms. 

In the following sections, we will present in-depth dis-

cussion of the design and implementation of each compo-

nent.  

3. TypeCast Routing Implementation 

3.1. Protocol Overview 

To support type-based communication in MANET, we 

have previously proposed the TypeCast routing protocol[16] 

to efficiently route data packets to a group of members iden-

tified by their types. For completeness, we provide a sum-

mary here.  

The basic idea of TypeCast is to leverage any MANET 

multicast protocol to construct the basic routing topology, 

while adding a light-weight packet filtering layer to filter the 

messages based on the type of the recipient objects. To 

achieve space and bandwidth efficiency, TypeCast com-

presses type information as a Bloom filter[5] without de-

stroying the structural information of the type hierarchy. The 

Bloom filters will be disseminated and aggregated within the 

network to populate the routing table on each node.  The 

TypeCast routing table contains the following  entries:  

• LBF (Local Bloom Filter):  the Bloom filter of all the 

aggregated types on the local node 

• FBFs (Forwarding Bloom Filters): the Bloom filter of 

all the aggregated types that can be reached via a specif-

ic neighbor.  

All data packets is tagged by a target Bloom filter (TBT), 

which is the Bloom filter of the target type T.  The forward-

ing decision is based on whether there is a subfilter relation-

ship between TBT and the FBFs in the routing table.  

As discussed in[16], the TypeCast routing protocol has 

the following characteristics: 

1. It supports the principles of subtyping and type-

composition: A packet targeted to type T will be deli-

vered to all objects of this type, and any of its subtypes. 

A packet targeted to the composition of two types A and 

B will be delivered to all objects that have both types A 

and B.   

2. As a Bloom filter is used to aggregate the type informa-

tion, the memory and bandwidth cost of managing the 

type routing tables does not increase as a function of the 

number of types in a MANET. Nevertheless, the false 

positive ratio will become larger when the number of 

types increases in the network. Technique such as com-

pression and Explicit False Notification [16] can be 

used to mitigate the problem.  

3. By utilizing the MANET multicast to manage routing 

topology, TypeCast inherits the resilience against mo-

bility and link errors from the multicast protocol. This 

also considerably simplified the routing implementation 

TypeCast Routing 

TRPC Runtime Engine Discovery Agent 

Applications System Services 

Figure 1: TMACS Stack per Mobile Node 

Unicast Routing 

Network Abstraction Layer (NAL) 
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since existing multicast protocol implementation can be 

used as the basis for adding TypeCast extension. 

3.2.   Routing Implementation      

The TypeCast routing protocol is implemented on top of 

MAODV[24], which itself is designed as an extension of 

AODV[22].  The design of the TypeCast routing protocol 

does not impose special requirements on the underlying 

MANET multicast protocol; MAODV was chosen because a 

robust implementation was readily available.  The MAODV 

implementation we used is from University of Maryland[17], 

which is built on top of AODV-UU[3]. The implementation 

platform is  Linux  2.6.   

The TypeCast routing implementation consists of a user 

space routing daemon and a kernel module. The user space 

daemon manages the routing tables for unicast, multicast and 

TypeCast. The TypeCast routing tables are populated based 

on two information sources: 1) the TYPE_ANNOUNCE 

packets periodically received from the routing daemons of 

the neighboring nodes, which contain the aggregated type 

information that can be reached via neighbors; 2) the LBF 

update command from the TRPC Runtime Engine on the 

local host, which contains the aggregated type information 

of the local node.  

The kernel module uses the Netfilter[18] hooks to inter-

cept the incoming and outgoing multicast data packets at 

various points along the network stack. The Netfilter hook 

will either pass or drop the packets based on whether the 

subfilter relationship exists between the TBF in the packet 

and the FBFs in the routing table. Bloom filter used in the 

implementation is 16 bytes long and is prepended to every 

TypeCast data packet.           

4. Type-based RPC (TRPC) 

4.1. Overview  

RPC[6][29] based distributed object models (e.g. 

RMI[28],  CORBA[18], Web Service[33]) have been suc-

cessfully applied in building distributed systems.  Such a 

model simplifies the development of distributed applications 

by providing a programming model that is similar to devel-

oping non-distributed applications.      

Group-based RPC schemes (Replicated RPC[8], Mul-

tiRPC[25])  have been proposed in the past to increase sys-

tem reliability, availability and concurrency in a LAN 

environment. These schemes usually support the same exact-

ly-once synchronous call semantics as traditional RPC does. 

Such semantics is appropriate when the network bandwidth 

is abundant and link connectivity is relatively reliable. But it 

will be costly to maintain in MANETs where wireless link is 

highly unreliable, the overall end-to-end throughput is li-

mited and all the target objects can be constantly moving.  

Furthermore, the group abstraction provided by these 

schemes are generally ID based, it is difficult to map them to 

the hierarchical organization relationship associated with 

users in MANETs.  

Our design goal is to preserve the simplicity of RPC 

model and extend it for group communication in MANETs.  

Our proposed RPC scheme is based on type-based commu-

nication paradigm and is called TRPC with the following 

characteristics:  

First, TRPC uses type as the basic abstraction to identity 

groups, and the invocation scheme obeys the subtyping and 

type-composition principles: when the target type of a me-

thod invocation is type T, all the objects in a MANET that 

are of type T or any of its subtypes should execute the me-

thod; when the target type is the composition of two types A 

and B, all the objects in a MANET that are both type A and 

B or their subtypes should execute the method.   

Secondly, though type is an expressive group abstrac-

tion, real MANET applications may require additional prop-

erties to constrain the set of recipients. For instance, in a 

disaster relief scenario, a message may be targeted to the 

Firefighters within a certain range from the sender.  To sup-

port such use cases, TRPC introduces the concept of Scope 

to constrain the set of target objects with non-type properties. 

There are two categories of Scopes: System Scope and Ap-

plication Scope. System Scope models properties of the en-

vironment in which the objects are executing.  Examples of 

System Scopes include the distance of the target nodes from 

the caller, the IP address of the recipients, or the geographic 

location of the target nodes. The significance of System 

Scope is that it can be directly used to assist the routing of 

the messages to improve efficiency.  Application Scope is 

defined based on the intrinsic properties of the objects, such 

as object names.  Since these attributes are application spe-

cific, they are usually not to be processed by network routing 

layer and are handled by TRPC Runtime Engine.  The com-

bination of type and Scope provides a rich and flexible group 

abstraction for ad-hoc applications. It also allows a point-to-

point RPC to be treated as a special case of Group-based 

RPC scoped to a single node.  

Thirdly, to reduce the performance overhead in the 

presence of mobility, variable channel quality and high net-

work dynamism, TRPC adopts the at-most-once call seman-

tics - there is no guarantee that all the objects of the target 

type have executed the method invocation and no retrans-

mission will be attempted by the TRPC runtime engine. Fur-

thermore, the method call of TRPC is non-blocking; a caller 

can retrieve results from a TRPC asynchronously via the 

abstraction of Future. Using asynchronous mechanism in-

creases the concurrency at the caller side in face of potential 

long delay between request and response caused by multi-

hop wireless paths, network partition or long service execu-

tion time. The notion of Future has been proposed before for 

asynchronous computation or RPC invocation[2][30], we 

extend it here to receive potentially multiple responses from 

a group of target objects associated with a single method call. 
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4.2. API 

The main APIs for consuming and providing TRPC ser-

vices are TypeCastClient and TypeCastServer (see below).    

 
TypeCastClient is used to create a client-side proxy to 

make a remote method call to all the objects of the target 

type, which may either be a single or a composite type. And 

Scope can be set to the TypeCastClient to further constraint 

the object set. 

TypeCastServer is used to export a TRPC service object 

to be consumed by remote peers. The application should 

specify the type(s) of the object and a set of properties (e.g. 

name) associated with the object that can potentially be used 

for scope-based matching. 
 

 

Scope         

Figure 2 shows the type hierarchy of Scope currently 

supported in TMACS.  

 

Figure 2: Scope Hierarchy 

There are two categories of Scopes: NetScope and 

AppScope. Netscope specifies the constraints based on 

properties related to the nodes hosting the objects and will 

be directly passed to NAL for routing optimization. 

AppScope specifies constraints based on the properties of 

the object itself and will be processed by TRPC Runtime 

Engine at the receiving nodes for the purpose of object 

matching.  NetScope has two subclasses:  TTLScope and 

HostScope. The former limits the distance of the recipients 

from the consumers, while the latter restricts the TRPC in-

vocation based on IP address.  If HostScope is specified, 

NAL will use IP unicast to tunnel the method invocation to 

the specified node instead of using TypeCast routing proto-

col. 

HostScope can be further constrained with InstanceS-

cope. InstanceScope specifies GUID of the target object. 

GUID is a unique identifier assigned to a distributed object 

by TRPC Runtime Engine hosting it. InstanceScope ensures 

that only a specific object on a target host will execute the 

method call. 

 

Future 

TRPC method call is non-blocking. If the return type of 

a method is void, the calling side of TRPC does not expect 

the response from any callee. The method invocation is 

simply a one-way notification to all the target objects. For 

applications requiring return value from the callees, the me-

thod declaration must have Future as the return type:  

 

The caller can either poll result from the Future object 

at any time, or it can register a FutureListener to receive 

event notification once any new result arrives. A Future ob-

ject can be “freezed” so that the caller side TRPC Runtime 

Engine stops waiting for responses from the target objects 

and any resource associated with the method invocation can 

be garbage collected. The caller can explicitly freeze a Fu-

ture object or set a freezing condition based on the combina-

tion of time out value and/or minimal number of objects in 

the Future.      

 
 

interface LocationService { 
        Future<Location> getLocation();  

} 

class  GetNeigbhorLocation implements FutureListener<Location> {  
    private ArrayList<Location> neighbors = new ArrayList();  

    void locateNighbors() {  

         TypeCastClient tc = new TypeCastClient();  
          tc.setScope(new TTLScope(1)); 

          LocationService ls = tc.getTypeCastProxy(LocationService.class)  

          Future<Location>  future  = ls.getLocation();  
          future.setFutureListener(this);  

          future.setFreezingCondition(10, -1);  // freeze after 10 seconds.  

    } 
    void  newValueArrived(Future<Location> future, Location location) {  

              neighbors.add(location);  

    } 
    void  freezed(Future<Location> future) {  

             …  // report neighbor locations 

    } 
} 

 interface Future<T>  { 

      int getCount(); 
      T get(int index); 

      void setFutureListener(FutureListener<T> listener); 

      void freeze();  
      void setFreezeCondition(long timeout,  int maxCount); 

} 

interface FutureListener<T> { 
     void  newValueArrived(Future<T> future, T value); 

     void freezed(Future<T> future); 

} 

class TypeCastClient {  
      TypeCastClient ();  

      TypeCastClient(EndPoint endPoint);  

       <T>  T getTypeCastProxy(Class<T> targetType); 
      Object getTypeCastProxy(Class[] compositeTypes);  

      void setScope(Scope scope);  

} 
class TypeCastServer {  

     TypeCastServer ();  

     TypeCastServer(EndPoint endPoint);  
      <T> void export(Class<T> type, T serviceObject); 

      void export(Class[] compositeTypes, Object service,  

                         Properties props);  
      void unexport(Object serviceObject);  

} 
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Above is a sample code fragment to use TRPC to locate 

all the neighboring nodes, assuming that each mobile node 

has a GPS receiver and can report its own location via Loca-

tionService 

 

Unicast TRPC       

By default, all TRPC services will be exported via a re-

served multicast end point and can be accessed via either 

TypeCast or unicast tunneling.  Applications can also choose 

to export the service objects via an IP unicast address to set 

up private communication channel between two objects. The 

unicast end point is usually dynamically determined by ne-

gotiating via public TRPC service.    

4.3. Implementation 

Figure 3 shows the internal architecture of the TRPC 

Runtime Engine on each mobile node:  

 

 
The TRPC Runtime Engine consists of five major com-

ponents:  the TRPC Proxy and Result Collector control the 

caller side whereas the Object Manager, Call Dispatcher, 

and Future Dispatcher manage the callee side functionalities.  

An Object Manager manages the lifecycle of all the active 

distributed objects and their types on a node. Whenever the 

aggregated types of the local active objects have been 

changed, Object Manager will notify the TypeCast routing 

layer by setting LBF to NAL; the updated LBF will be ad-

vertised to the neighbors by the TypeCast routing protocol.   

All outgoing method invocations are handled by the 

TRPC Proxy. This is a Java dynamic proxy object that mar-

shalls a method invocation into byte stream and encodes the 

target type(s) into a Target Bloom filter (TBF).  The TBF, 

the NetScope and the payload will be passed to the NAL 

which will forward to the target group using the appropriate 

routing protocol.  
 

INVOCATION-ID TYPE(S) SCOPE METHOD PARAMETERS 

Figure 4: Payload of TRPC Method Call 

The marshalled content of a TRPC invocation is shown 

in Figure 4. The invocation ID uniquely identifies a method 

call on the originating node and is used to correlate the re-

sults if a method call expects return value.    

 

All incoming TRPC method invocation are processed 

by Call Dispatcher.  Call Dispatcher unmarshalls the payload 

into a method invocation, queries the Object Manager for the 

matching objects based on target types and scope, and sub-

sequently dispatches the method invocation to the matching 

ones.   

If the TRPC method call has a return value, the object 

will be handed over to Future Dispatcher, which will for-

ward the result to the caller by making a special one-way 

TRPC invocation to the Result Collector scoped to the call-

ing node.  Result Collector at the caller will correlate the 

result object to the original call session, and notifying the 

calling application about the arrival of the new result via 

FutureListener.  

5. Service Discovery 

Service discovery in MANET plays the role of DNS in 

Internet.  Its purpose is to look up the meta information of 

the active TRPC services so that applications can examine 

the returned information in order to engage communication 

to specific services. 

In TMACS, service discovery is implemented via the 

coordination of the Discovery Agents on mobile nodes. The 

Discovery Agent is both a TRPC consumer and provider. 

There are two types of services provided by Discovery 

Agent: ServiceDiscoveryService and ServiceAdvertisemen-

tListener (see below).  ServiceDiscoveryService is used to 

issue discovery request, and ServiceAdvertisementListener 

is for receiving response.  

 

 
 

To discover whether there is any object of type T on the 

network, a Discovery Agent invokes the discover method of 

ServiceDiscoverySerivce, using type T as the parameter.  

When passing the discovery method invocation payload to 

NAL, TRPC treats it differently from other methods: instead 

of setting TBF to the Bloom filter of ServiceDiscoverySer-

vice,   it sets it to the Bloom filter of T.  

Since the TBF is set as T, the discovery request will be 

routed exactly as if the target type is T.  Since the packets  

will be routed to only the nodes having objects of type T or 

its subtypes, this avoid wasting network bandwidth without 

always flooding the whole MANET with discovery solicita-

tion.     

When the Discovery Agent on a node receives the dis-

covery request for a type T, it finds all the matching objects 

on the local host. If the set is not empty, the node will issue 

ServiceAdvertisementListener.notify(ServiceAdvertisement)  

interface ServiceDiscoveryService extends MetaService{  

       void discover(Class<T> type);  
        Future<ServiceAdvertisement> discoverInPrivate(Class<T> type);  

}  

 interface ServiceAdvertimsentListener {  
void notify(ServiceAdvertisement serviceInfo);  

  } 

                                                 

Network Abstraction Layer (NAL) 

Unicast Routing 

Service Service Service App. App. 

Figure 3: TRPC Runtime Engine 

                 TypeCast Routing  LBF 

 Object 

Manager 
Call  

Dispatcher 

Future 
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to send the meta information of the matching objects to all 

interested nodes via TypeCast.  The meta information in-

cludes the object type(s), the IP address of the host, the 

GUID of the object, and any other properties associated with 

the object. The using of TypeCast-TypeCast coordination 

pattern enables a single response to satisfy potentially mul-

tiple requestors. The response will be cached by all the Dis-

covery Agents. The cached value can be used to satisfy 

further discovery requests on the same type and suppress 

redundant discovery messages.    

ServiceDiscoveryService also defines a second method 

discoveryInPrivate() to use TypeCast-Unicast coordination 

pattern.  When this method is invoked, the discovery re-

sponse will be only sent back to the original requestors via 

Unicast in the Future result.   

Since discovery is a TRPC method call, clients can use 

Scope to constraint the set of recipients. For instance, appli-

cation can use TTLScope to lookup services only on the 

immediate neighbors, or AppScope to look up a service with 

a specific name. 

A Discovery Agent can also proactively advertise a ser-

vice by calling the notify method of ServiceAdvertisemen-

tListener without waiting for the discovery request. Such a 

mechanism can result in wasted bandwidth consumption and 

should use judiciously by properly scoping the advertise-

ment.   

Using TRPC has greatly simplified the implementation 

of discovery service. Moreover, the abstractions (e.g. type 

and Scope) used for expressing the invocation targets are 

reused for expressing the discovery targets, resulting in a 

simple and uniform programming model. TMACS’ discov-

ery service provides much needed flexibility to allow appli-

cations to select different coordination patterns (TypeCast-

TypeCast vs. TypeCast-unicast) and responsive models 

(proactive vs. reactive) based on the requirements and the 

access pattern of individual applications.  By utilizing 

TypeCast and intelligently setting TBF, our discovery ser-

vice is much more “directional” for finding the required ob-

jects and achieves better efficiency than existing MANET 

discovery services relying on broadcast or multicast (e.g. [7] 

[14]). Using a single network protocol for both MANET 

routing and discovery also distinguishes TMACS from the 

solutions relying on separate discovery infrastructure 

[13][15][26].    

6. Case Studies 

6.1. Ad-hoc Caching Service 

Caching is an important middleware service to improve 

service availability in the dynamic network environment 

with high mobility. With caching, the service consumers can 

access a service from a cached server closer to it than the 

original service provider. Here we build a light-weight dis-

tributed caching systems with TMACS that is tailored to the 

peer-to-peer nature of MANET environments. The caching 

architecture allows any node in a MANET to voluntarily 

serve as caching server for other mobile peers, and there is 

no restriction on what type of services can be cached.       

The ad-hoc caching is managed by CacheManager ob-

ject on each node.  The CacheManager objects coordinate 

among each other to fulfill the caching requests via two sim-

ple TRPC services: CacheService and ContentSource:   

 
The CacheService is the interface for mobile pees to 

send caching requests; the ContentSource is the interface for 

the caching node to retrieve the object state from the reques-

tor. The coordination among the CacheManager objects uti-

lizes the TypeCast-Unicast pattern:  when a node has an 

object to be cached, it sends a request to all the activated 

caching nodes by calling CacheService.requestCache().  The 

call consists of two parameters: the first is a unicast end 

point from which the object state can be retrieved. The 

second contains the meta information about the object, in-

cluding its type T, the implementation class name, the cache 

expiration time, the GUID of the object and the size of the 

object state.   

When the CacheManager on a caching-enabled node 

receives the caching request, it checks a) whether there is 

sufficient memory and storage on the local host, and b) 

whether the local policy allows caching T.  When all condi-

tions are met, the node will invoke Content-

Source.requestContent() to retrieve the object state via the 

private end point specified in the request. The returned value 

will be used to instantiate a replicated copy. For each cached 

replica, the CacheManager will create and export a Cache-

Proxy object associated with it (Figure 5). The CachedProxy 

is a Java dynamic proxy object implementing two interfaces: 

one is type T of the cached object, another is the CacheCon-

trol interface shown below:  

 
CacheControl provides methods for the content source 

to request all the caching nodes to either invalid or reload the 

cached copies when the original data content is deleted or 

changed before cache expires. This allows the content source 

to maintain consistency among cached copies if the nature of 

the applications requires so. When making cache control 

calls, the content source will set the target type to be the 

composition of CacheControl and T, thus ensure that the 

method will only be executed by the nodes that have the 

right types of cached copies and avoid flooding the requests 

needlessly to other caching nodes. Since the CacheProxy is 

of type T, it can accept any TRPC call targeting to T.  Such 

call will be delegated to the cached replica (Figure 5). For 

interface CacheControl  {  

   void   invalidateCache(EndPoint contenSourceAddr,  String GUID );  
    void  refreshCache(EndPoint contentSourceAddr,  String GUID);  

} 

 

interface CacheService {  

    void requestCache(EndPoint contentEndPoint,  ObjectDesp object);  
} 

interface ContentSource {  

    Future<byte[]>  getContent(String GUID);  

} 
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each call on T, CacheProxy will also update

quency and timestamp. This information will

put to the cache replacement algorithm when 

cache replica should be removed from the ca

the pool is full.    

Even though there are complex coordi

among CacheManages, using TRPC has grea

development work by eliminating the efforts

level protocol handling and message process

type-composition for cache control invocat

monstrates the expressiveness of TMACS’

model. More complex caching strategies (e.

exploited by utilizing on TMACS provided 

and programming abstractions. 

  

6.2. Ad-hoc Auction/Marketplace 

EBay-like auction services have proven

successful business model for conducting co

Internet. A MANET provides another ideal pl

type of services. Unlike the Internet, the ad

MANET cannot assume the availability of a

during the transaction; such a disadvantage c

the physical proximity of bidders and sellers

serendipitous nature of MANETs. For instan

extra concert tickets can auction the tickets

hall right before the show starts by forming a

those who are waiting there to purchase the tic

Figure 6: Screenshot of Ad-hoc A

Our ad-hoc auction implementation (see 

follows the peer-to-peer model, letting selle

directly engage in the auction process.  A 

auction by providing the item to sell, the sta

Figure 5: Cache Architecture
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pdate the access fre-

will be used as in-

n deciding which 

 the cache pool when 

coordination patterns 

s greatly simplify the 

efforts  to  write low 

rocessing. The use of 

vocation further de-

ACS’ programming 

ies (e.g. [34]) can be 

vided system service 

 

roven to be a highly 

ing commerce on the 

deal platform for such 

he ad-hoc nature of a 

ty of a trusted broker 

tage can be offset by 

sellers, the local and 

instance, people with 

tickets at the concert 

ming a MANET with 

 the tickets.   

 
hoc Auction 

n (see Figure 6 for UI) 

g sellers and bidders 

.  A seller opens an 

the starting price and 

the closing time. The auction status

potential bidders via TypeCast period

bidding price is updated.   Each buy

Unicast to the seller, and the price wi

dated based on the highest bid.  Whe

cause the closing time is reached or th

accept a bid, a confirmation messag

highest bidder via Unicast and the 

TypeCast to all the bidders. 

The TRPC interfaces used for co

lers and bidders are shown below:  
 

The AuctionEventListener is use

bidders about auction status via Type

includes the description of the items 

formation such as the private TRPC e

bid, and auction status (e.g. the curren

closing time).  The Seller is the TRPC

query the auction status of an item or 

der is the interface for the seller to se

the final auction winner. It also prov

seller to query the reachability of the 

In the event of network partition or no

the seller can invalid the current high

auction process. The Seller and Bidde

via private unicast end points. These

formation are exposed to the auction 

lerInfo and BidderInfo objects exchan

process.   

TMACS greatly simplifies the 

ad-hoc application: it eliminates the ef

auction protocols as adding a protoc

adding a new TRPC method. The imp

spent primarily to develop the user in

of Java code for the auction applica

and it took a student about 3 weeks to

tion.   

Our current implementation uses

to convey information on all ongoing

tension is to have a hierarchical Auctio

buyers can activate a specific type o

kinds of items that he/she is intereste

can have TicketAuctionEventListener

only.   

interface AuctionEventListener  {  
    void auctionStarted(Item item, SellerInfo 

    void auctionClosed(Item  item, SellerInfo 

    void auctionUpdate(Item item, SellerInfo 
} 

interface Seller {  

      void  bid (Item item, BidderInfo bidder, i
      Future<AuctionStatus >  query(Item  item)

} 

interface Bidder {  
 void confirm(Item item, SellerInfo sell

 Future<Acknowledgement> isAlive(); 

} 

ture 

aching Node 
 

status will be advertised to 

periodically or whenever the 

ch buyer submits its bid via 

ice will be automatically up-

  When the auction ends be-

d or the seller has decided to 

message will be sent to the 

d the closing event will be 

 for coordination among sel-

 
is used by seller to notify 

a TypeCast. The notification 

 items for sale, the seller in-

RPC end point for submitting 

 current bidding price and the 

 TRPC interface for bidder to 

em or submit a bid. The Bid-

r to send the confirmation to 

o provides a method for the 

of the current highest bidder. 

 or node leaving the network, 

nt highest bid and restart the 

dder interface are exported 

These private end point in-

ction participants in the Sel-

xchanged during the auction 

s the implementation of the 

 the efforts to design specific 

protocol is the equivalent of 

he implementation effort was 

user interface. The total line 

pplication is just over 1000, 

eks to finish the implementa-

n uses AuctionEventListener 

going auctions. A future ex-

uctionEventListener so that 

type of listener for only the 

terested in.  For instance, we 

ener for auctioning tickets 

nfo seller, AuctionStatus state);  

nfo seller, AuctionStatus state);        

erInfo seller, AuctionStatus state);  

dder, int price);  
item);  

fo seller);  

();  
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7. Experimentation 

Large-scale simulation has been conducted in our earlier 

work[16] to study the performance and scalability of  Type-

Cast routing protocol.  This paper focuses on evaluating the 

implementation of the integrated software stack of TMACS 

and application on physical test bed.  

7.1. Test Bed Setup 

       We use eight laptops connected in an IEEE802.11 ad-

hoc network in the topology illustrated in Figure 7. Among 

them, five are Dell Latitude D600 and three are IBM Think-

Pad T42. All are configured with the Linux Fedora Core 4 

with 2.6.12 kernel.  Due to the lack of controlled physical 

space for wireless transmissions, iptables[18] are used to 

enforce the network topology to guarantee that the packets 

go through multiple hops.  Packets from non-neighbor nodes 

are automatically dropped at the MAC layer based on MAC 

address filtering.  

 
 We used the ad-hoc auction application for all our per-

formance measurements.We wrote a Bid Bot software as the 

bidder that automatically submit a bid whenever the Auctio-

nEventListener.auctionUpdate() is invoked. To measure the 

impact of the type hierarchy, we created four subtypes T1, 

T2, T3 and T4 under AuctionEventListener, and they form a 

linear hierarchy as AuctionEventListener �T1 � T2 � T3 

�T4.   We used three bid bots, with types and hosting nodes 

as shown in Figure 7. The seller runs on node A; it periodi-

cally calls the actionUpdate() method of the target type and 

records the responses in its Seller.bid() method invoked by 

the bidders. The target type varies from T1 to T4. According 

to subtyping principle, when the target type is T1, all three 

bidders should submit bids. For target type T2, two bidders 

on node G and F should respond. For T3, only bidder on G 

should bid.   

The IP payload of the auctionUpdate() method invoca-

tion after marshalling is 661 bytes, and the payload of the 

bid()  method invocation is 416 bytes. auctionUpdate() uses 

TypeCast routing, while bid() is called via unicast. 

7.2. Performance of Ad-hoc Auction 

The metrics we use are as follows:  

• One-way goodput: the percentage of the auctonUpdate 

method executed per target bidder.  

• Two-way goodput: the percentage of the actual bids 

received by the seller out of the expected total bids.  

• Call latency: the time difference between the receiving 

of bid and the start of the auctionUpdate measured by 

the seller. Since the path discovery phase of 

AODV/MAODV can take up to a few seconds and has a 

distortion effect on the average latency, when calculat-

ing latency, the value within the first 60 seconds will 

not be used.  

• TypeCast traffic ratio: the number of TypeCast data 

packets transmitted per auctionUpdate method call. A 

smaller value means better efficiency. The metric meas-

ures whether Bloom filter based TypeCast routing me-

chanism can effectively filter data packets based on the 

target type.  

In each experiment, the seller invokes auctionUpdate 

method of a fixed target type at regular interval for 300 

seconds. Each experiment is repeated at least 12 times for 

each target type. Figure 8 shows the results when the invoca-

tion rate of auctionUpdate method is 1 per second. 

From the graph, we can see that the one-way and two-

way goodput are both above 90% for different target types, 

and the two-way goodput is almost identical to the one-way 

goodput. This implies that both the TypeCast  auctionUp-

date method and the unicast  bid method invocation have 

very high success ratio. For object types that are lower on 

the type hierarchy, the goodput (both one-way and two-way) 

increases slightly. This results from the combination effect 

of the smaller number of target objects (which should result 

in less data traffic) and the shorter average distance between 

the seller and the target bidders. The overall call latency is 

small, and its distribution along the type hierarchy    reflects 

the average distance between the seller and the target bidders 

identified by the type.       

When the target type goes down the type hierarchy from 

T1 to T3, the number of target objects shrinks from 3 to 1. 

The TypeCast traffic ratio drops proportionally, which con-

firms the effectiveness of the TypeCast filtering mechanism. 

When the target type is T4, since there is no matching target 

object in the network, the TypeCast traffic ratio is close to 

zero, implying that no network bandwidth is wasted on 

Seller 

Bidder(T3) Bidder(T1) Bidder(T2) 

A 

H 

B C D 

G F E 

Figure 7: Topology of Testbed 

Figure 8: Performance of Ad-Hoc Auction under  Different Target Types 
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Link Failure 
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about 7 seconds for the route discovery 
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ing ring search algorithm, the discovery latency for unicast 

is much shorter (< 200ms). 

To summarize, the system can quickly react to new mo-

bile nodes/objects joining the network and properly direct 

the TRPC calls to the newly joined objects. The activation 

latency is ~7 s for the first object on a host and < 1 s for any 

subsequent objects. 

7.3. Performance of Discovery Service  

  In this experiment, we measure the performance of 

TMACS’ discovery service. The same network and applica-

tion set up is used. Instead of invoking auctionUpdate me-

thod, the Disocvery Agent on node A invokes discovery 

request for a target type periodically, and the discovery res-

ponses via TypeCast are collected. We measure discovery 

success ratio, discovery latency, and discovery traffic ratio 

(defined as number of TypeCast data packets transmitted per 

discovery request).  

  Figure 11 shows the result of discovery experimenta-

tion when the invocation rate of discovery requests is 1 per 

second. Since the TBF (Target Bloom Filter) of discovery 

requests is set to the target type to be discovered, the re-

quests are routed only to the nodes that have the target types.  

This can be confirmed from the discovery traffic ratio, 

which decreases proportionately down the type hierarchy, 

just as it should for invocation of a TRPC method to the 

same type. When the network does not have any objects 

belonging to the target type (e.g. T4), the discovery traffic is 

reduced to almost zero, as before.  If multicast is used here 

for sending discovery request, the data traffic will be con-

stant even when there is no intended object in the network.  

8. Related Work 

Jini[27] is a distributed computing platform providing 

discovery service and a tuple space[11] based programming 

model. Jini’s discovery service relies on dedicated lookup 

servers, thus introduces single point of failure.  The tuple 

space based programming model is a powerful abstraction 

for group coordination, but its requirements on global sto-

rage space and strong consistency and persistence semantics 

can result in high system and network overhead in MANET. 

To address this limitation, Lime[18] has relaxed the seman-

tics of standard tuple space by letting each node or agent 

host its own tuple space, and multiple hosts/agents prox-

imate to each other can transiently share tuple spaces with 

common names. Though Lime provides explicit abstraction 

for data sharing among a group of nodes/agents, its name-

based group scheme is not as rich and flexible as what 

TMACS supports. Lime like coordination model can be built 

on top of TMACS as a higher level system service.  

Publish/Subscribe[9] is a data-centric middleware for 

distributed and mobile systems. In this scheme, senders pub-

lish events, which will be routed by a network of event bro-

kers to all receivers subscribed to them. Traditional RPC 

model is less favorable than publish/subscribe in mobile 

systems due to its point-to-point and synchronous invocation 

semantics. TRPC is designed to explicitly address the limita-

tion of RPC while keeping its benefit. Publish/Subscribe is 

very useful for in-network processing, filtering and aggrega-

tion based on data content; while TRPC is more suitable 

with service-oriented architecture, in which distributed ap-

plications are exposed as services, and the data content  is 

transparent to the intermediate routers. For many applica-

tions and products already developed with RPC style model, 

TRPC provides an easy path to port them from point-to-

point, wired environment to many-to-many wireless envi-

ronment.  

Intentional Naming[1] is a naming system targeted for 

mobile systems. It builds an overlay network to forward 

messages based on high level application names consisting 

of arbitrary attribute-value pairs. The routing table stores a 

name tree which is disseminated within the overlay network. 

Though the naming scheme of Intentional Naming is expres-

sive, the complexity and overhead of building an overlay 

network on MANET and storing application specific 

attributes directly in the routing table can potentially limit its 

broad adoption.    

SpatialViews[20] provides a high level programming 

notation for MANETs. The core abstraction is spatial view 

and spatial view iterator. Spatial view defines a virtual net-

work consisting of services confined to a location-time re-

gion. The spatial view iterator is used to discover the nodes 

bound to a spatial view and migrate computation to them. 

The requirement of program migration may limit the adop-

tion of SpatialViews on resource or security-sensitive plat-

forms. In TMACS, the mobile nodes are identified via type 

and Scope, and the collaboration is achieved via remote in-

vocation instead of mobile code. It is more light-weight with 

respect to the requirements on the run-time environment. 

SpatialViews-like sophistic programming notation can leve-

rage TMACS as the building block for its run-time imple-

mentation.   

Figure 11: Performance of Discovery Service 
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M2MI[12] is a Java framework providing interface-

based group communication primitives for ad-hoc collabora-

tion in wireless networks. Comparing to TMACS, it did not 

address subtyping, type composition, asynchronous invoca-

tion and service discovery.  M2MI uses broadcast to transmit 

packets, which is impractical in multi-hop wireless network 

due to high contention caused by flooding.     

Hood[32] and Abstract Region[31] are programming 

abstractions for sensor networks to simplify data sharing, 

filtering and processing among neighboring nodes These 

data centric notations are different from TRPC’s service-

oriented approach. It will be interesting to exploit TRPC like 

group communication paradigm in sensor networks.  

9. Conclusion 

In this paper, we present the design and implementation 

of TMACS, a middleware to support distributed applications 

in MANETs. TMACS provides TRPC as the distributed 

programming model for invoking a method on a group of 

distributed objects. The group is identified by the common 

type(s) shared by the objects and can be further constrained 

with Scope. The results of an invocation are retrieved asyn-

chronously via Future. TMACS also provides a fully distri-

buted, resilient discovery service.  

A physical implementation of TMACS was deployed on 

a testbed.  We implemented a distributed caching service 

and an ad-hoc auction application to demonstrate the expres-

siveness of TMACS and implemented TypeCast routing 

protocol to efficiently support TRPC and discovery service. 

Our experiments demonstrate the feasibility and effective-

ness of TMACS as a potential distributed platform for build-

ing ad-hoc applications in MANET.  Our future work is to 

conduct experimental study on a larger-scale test bed with 

more realistic mobility patterns.  
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