
1

TMACS: Type-based Distributed Middleware for Mobile
Ad-hoc Networks

Jinsong Lin Eusden Shing Wing-Kai Chan Rajive Bagrodia

{ jinsong, eusden, kai, rajive }@cs.ucla.edu

Mobile Systems Lab, University of California, Los Angeles

Abstract*
This paper presents the design and implementation of TMACS – a

distributed middleware framework for Mobile Ad-hoc Network

(MANETs). TMACS leverages type-based group communication

paradigm in which type is used as a first-class abstraction for iden-

tifying groups and provides a novel group-based RPC-mechanism

called TRPC as a higher-level communication abstraction suitable

for MANET computing environments. A fully decentralized discov-

ery service has been provided to lookup the meta-information of the

distributed objects and services. At the network layer, TMACS im-

plements TypeCast routing protocol to efficiently support TRPC

and service discovery via effective type dissemination and aggrega-

tion mechanisms. A complete system implementation of TMACS has

been deployed on linux-based mobile devices and has been used to

program a variety of applications. We present results from a se-

lected set of applications and services that include an ad-hoc dis-

tributed caching service and an ad-hoc marketplace application.

The physical implementations were used to evaluate the perfor-

mance of TMACS and demonstrate its resiliency in the presence of

mobility-induced topology changes.

Category and Subject Descriptor
D.2.11 [Software Engineering]: Software Architectures -- patterns

Generate Terms
Design

Keywords
MANETs, Middleware, TRPC, Service Discovery, TypeCast

1. Introduction

Mobile Ad-hoc Networks (MANET) are an emerging

platform to deploy diverse distributed applications, such as

emergency response, battlefield communications and ad-hoc

conferences. There has been tremendous progress in

MANET-related network research in recent years; hardware

support for MANET is also readily available. However,

there have not been comparable advances in the availability

of programming or application development platforms for

MANET environments. Such environments present a num-

ber of unique challenges as discussed next:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. MobiQuitous 2008, July 21-25,

2008, Dublin, Ireland. Copyright © 2008 ICST ISBN 978-963-9799-27-1

First, unlike wired Internet or access point based wire-

less networks, a MANET is a pure peer-to-peer network in

which all nodes may move frequently. There is no network

“core” to provide relatively stable routing topology, network

availability and bandwidth. Such a network architecture

precludes DNS-like infrastructure which relies on dedicated,

always-on and centrally managed hosts. Without such infra-

structures, the World Wide Web would arguably not have

become the ubiquitous phenomena that it is today. Such

infrastructure services are necessary to promote the use of

MANET by application developers. The challenge here is to

provide such infrastructure services in a fully distributed

fashion where they are resilient to node failure, mobility and

network partition without incurring high system and network

overhead.

Second, the fact that users voluntarily join a MANET

requires them to have a strong incentive to participate, which

usually stems from common interests and goals. For exam-

ple, in an emergency response scenario, police officers,

firefighters, and paramedics do not necessarily know each

other’s identity or network address; nevertheless, they must

coordinate with one another in order to fulfill the rescue

mission. Such coordination is most likely group oriented,

where groups are classified based on the participants’ orga-

nizational duties and roles. Providing system support for

group-based communication in MANET is as important as

providing such support for point-to-point communication.

In summary, we believe that a middleware framework for

MANET must address the following research challenges:

• What are the appropriate high level abstractions for

representing group communications that reflect the real

world group relationships among MANET users?

• How to provide an expressive yet efficient distributed

programming model that can be used to facilitate the de-

velopment of group-oriented as well as point-to-point

based ad-hoc applications in MANET? The program-

ming abstraction should make mobility and network de-

tails transparent from applications developers; at the

same time, must not cause high performance penalty and

system overhead in the face of high mobility and network

dynamism.

• How to support a lookup service for mobile nodes to lo-

cate available group and individual service information

in the network without requiring a centralized naming or

directory servers? The discovery service should provide

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

2

rich taxonomy to describe the intended targets while mi-

nimizing the consumption of network bandwidth.

In this paper, we present the design and implementation

of TMACS (Type-based Middleware for Ad-hoc Communi-

cation Systems) – an object-oriented distributed platform

intended to address the above challenges. TMACS intro-

duces three novel features: an efficient implementation of

network routing protocol based on hierarchical group ad-

dressing scheme, a group-oriented distributed computing

model called TRPC to simplify the ad-hoc application de-

velopment, and a decentralized, mobility-resilient Discovery

Service. The combination of these functionalities forms a

light-weight minimalistic MANET middleware upon which

more sophisticated system services, programming abstrac-

tions and applications can be built.

 In TMACS, MANET applications are modeled as dis-

tributed objects; the type of an object is used as the key ab-

straction for classifying and grouping objects and as the first

level construct for sending messages. The power of type-

based group abstraction lies in its ability to form hierarchical

group relationship via the principles of subtyping and type

composition[16] to model complex relationships among ad

hoc users. Applications can dynamically change the scope of

a specific communication by targeting individual messages

to different levels in the type hierarchy. New groups can be

easily introduced by plugging new types into the existing

hierarchy.

With type as the fundamental group abstraction,

TMACS introduces a novel distributed computing model

called type-based RPC (TRPC) which simplifies the devel-

opment of group-oriented ad-hoc applications. TRPC ex-

tends the traditional point-to-point RPC[6][29] model by

allowing an application to simultaneously invoke a remote

method call to a group of distributed objects. The group is

identified by the combination of type and Scope – an ab-

straction of non-type properties. The set of Java API and the

associated language runtime environments makes develop-

ing group-oriented ad-hoc applications as easy as writing

distributed applications for wired networks. An important

deviation from traditional RPC is that all the method calls of

TRPC are non-blocking – the return values is retrieved asyn-

chronously via the abstraction of Future[30]. This avoids the

potential performance penalty of a synchronous method in-

vocation.

To efficiently support TRPC, TMACS utilizes TypeCast

routing protocol[16] - a network protocol based on hierar-

chical type information. The protocol compresses the type

hierarchy into Bloom filters[5], which are disseminated and

aggregated in the network to facilitate routing. The memory

and bandwidth cost for managing routing table is not in-

creased with the number of types in MANET. Our earlier

work on TypeCast routing[16] focused on the design and the

simulation study of the protocol. This paper significantly

expands on the previous work by providing a complete im-

plementation of the TypeCast routing protocol, integrating

the protocol into TRPC’s language runtime environment,

and using the implementation to study system performance

on a physical testbed and to validate the previously reported

simulation results.

TMACS also provides a discovery service to look up

meta information associated with distributed objects in the

network. TMACS’ discovery service does not require cen-

tralized naming servers; rather the service is fully decentra-

lized and is capable of coping with node mobility and

network partitions.

To demonstrate the utility & expressiveness of TMACS,

we describe the deployment of a novel service: an ad-hoc

distributed caching service, and a representative application:

an ad-hoc marketplace. The ad-hoc caching service allows

any node in a MANET to serve as a cache for other nodes. A

cache server can replicate arbitrary types of distributed ob-

jects with the cached copies providing the same types of

services as the original sources. Such an ad-hoc caching ser-

vice provides an effective mechanism to increase service

availability by relieving hotspot, overcoming network parti-

tions, and node failures.

The marketplace application is considered to be a gener-

ic communication pattern for ad-hoc networks[10]. Our

implementation of ad-hoc marketplace allows buyers and

sellers to trade items via auction style communications in a

MANET. The auction is executed completely in peer-to-peer

style without a centralized broker. Our implementation expe-

rience has shown that TMACS can significantly reduce the

complexity of developing group-oriented ad-hoc applica-

tions by eliminating the effort for managing group member-

ship and designing low level handshake protocols and

messaging mechanisms.

The organization of the rest of the paper is as follows:

Section 2 presents the architecture of TMACS. Section 3

discusses the TypeCast routing implementation. The TRPC

programming model and TMAC’s discovery service is dis-

cussed in section 4 and 5. Section 6 demonstrates the ad-hoc

caching service and auction application built on top of

TMACS. Section 7 presents representative experiment re-

sults from a prototype implementation. In section 8, we

compare our work with previous research. Section 9 is the

conclusion.

2. System Architecture

The architecture of TMACS is entirely based on the

peer-to-peer model where all mobile nodes have identical

copies of the software stack and they coordinate with each

other to provide a distributed infrastructure service. The

software stack needed to support the TMACS functionality

on each node is shown in Figure 1.

At the bottom level is the TypeCast routing component,

which implements a language independent routing protocol

supporting efficient type dissemination and type-based

packet forwarding. The TypeCast routing component con-

sists of a user space routing daemon and a Linux kernel

module.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

3

Above the typecast routing component is the Network

Abstraction Layer (NAL) which is used to hide details of

routing protocols from the core middleware functions. NAL

dynamically selects the routing protocols used for forward-

ing outgoing packets by analyzing the intended targets. It is

extensible for plugging new protocol implementation.

The core of TMACS consists of the TRPC Runtime En-

gine and the Discovery Agent. TRPC is an extension of the

traditional RPC model that supports concurrent execution of

remote methods on one or more distributed objects and the

asynchronous retrieval of the results from the corresponding

invocation(s). The TRPC Runtime Engine manages the life-

cycle of the distributed objects activated on the local node,

and is responsible for dispatching remote method invoca-

tions and correlating responses. An important function of the

Runtime Engine is to aggregate the type information on the

local node and to notify the TypeCast routing daemon when

any change is detected. The type information will be

promptly propagated through the network.

The Discovery Agent coordinates with its counterparts

on other nodes to look up the meta information of TRPC

service objects in a MANET via a decentralized light-weight

discovery protocol. The combination of the TRPC Runtime

Engine and the Discovery Agent serves as a distributed

framework for the ad-hoc communication systems.

We summarize the characteristics of the TMACS’ archi-

tecture that make it suitable for MANETs:

• First the TMACS architecture does not include any cen-

tralized components. Every node plays an equal role –

when a node fails, its functions can immediately be re-

placed by any other node without disrupting the func-

tioning of the whole system.

• The service discovery is supported via a network of

Discovery Agents, it does not require any centralized

naming systems.

• The network topology is constructed in a self-organized

fashion via the TypeCast routing protocol. The link

breakage due to mobility and node failure is automati-

cally detected and repaired to ensure network connectiv-

ity. Note that it is possible to implement TMACS using

other ad hoc unicast and/or multicast routing protocols;

however, TypeCast provides better efficiency that is

adaptive to the number of active objects distributed

along type hierarchies.

• Last, the combination of the preceding layers provides a

light-weight framework that can be used to construct

additional services, on an as needed basis, so as to pro-

vide a small memory & resource footprint that can be

ported to diverse mobile platforms.

In the following sections, we will present in-depth dis-

cussion of the design and implementation of each compo-

nent.

3. TypeCast Routing Implementation

3.1. Protocol Overview

To support type-based communication in MANET, we

have previously proposed the TypeCast routing protocol[16]

to efficiently route data packets to a group of members iden-

tified by their types. For completeness, we provide a sum-

mary here.

The basic idea of TypeCast is to leverage any MANET

multicast protocol to construct the basic routing topology,

while adding a light-weight packet filtering layer to filter the

messages based on the type of the recipient objects. To

achieve space and bandwidth efficiency, TypeCast com-

presses type information as a Bloom filter[5] without de-

stroying the structural information of the type hierarchy. The

Bloom filters will be disseminated and aggregated within the

network to populate the routing table on each node. The

TypeCast routing table contains the following entries:

• LBF (Local Bloom Filter): the Bloom filter of all the

aggregated types on the local node

• FBFs (Forwarding Bloom Filters): the Bloom filter of

all the aggregated types that can be reached via a specif-

ic neighbor.

All data packets is tagged by a target Bloom filter (TBT),

which is the Bloom filter of the target type T. The forward-

ing decision is based on whether there is a subfilter relation-

ship between TBT and the FBFs in the routing table.

As discussed in[16], the TypeCast routing protocol has

the following characteristics:

1. It supports the principles of subtyping and type-

composition: A packet targeted to type T will be deli-

vered to all objects of this type, and any of its subtypes.

A packet targeted to the composition of two types A and

B will be delivered to all objects that have both types A

and B.

2. As a Bloom filter is used to aggregate the type informa-

tion, the memory and bandwidth cost of managing the

type routing tables does not increase as a function of the

number of types in a MANET. Nevertheless, the false

positive ratio will become larger when the number of

types increases in the network. Technique such as com-

pression and Explicit False Notification [16] can be

used to mitigate the problem.

3. By utilizing the MANET multicast to manage routing

topology, TypeCast inherits the resilience against mo-

bility and link errors from the multicast protocol. This

also considerably simplified the routing implementation

TypeCast Routing

TRPC Runtime Engine Discovery Agent

Applications System Services

Figure 1: TMACS Stack per Mobile Node

Unicast Routing

Network Abstraction Layer (NAL)

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

4

since existing multicast protocol implementation can be

used as the basis for adding TypeCast extension.

3.2. Routing Implementation

The TypeCast routing protocol is implemented on top of

MAODV[24], which itself is designed as an extension of

AODV[22]. The design of the TypeCast routing protocol

does not impose special requirements on the underlying

MANET multicast protocol; MAODV was chosen because a

robust implementation was readily available. The MAODV

implementation we used is from University of Maryland[17],

which is built on top of AODV-UU[3]. The implementation

platform is Linux 2.6.

The TypeCast routing implementation consists of a user

space routing daemon and a kernel module. The user space

daemon manages the routing tables for unicast, multicast and

TypeCast. The TypeCast routing tables are populated based

on two information sources: 1) the TYPE_ANNOUNCE

packets periodically received from the routing daemons of

the neighboring nodes, which contain the aggregated type

information that can be reached via neighbors; 2) the LBF

update command from the TRPC Runtime Engine on the

local host, which contains the aggregated type information

of the local node.

The kernel module uses the Netfilter[18] hooks to inter-

cept the incoming and outgoing multicast data packets at

various points along the network stack. The Netfilter hook

will either pass or drop the packets based on whether the

subfilter relationship exists between the TBF in the packet

and the FBFs in the routing table. Bloom filter used in the

implementation is 16 bytes long and is prepended to every

TypeCast data packet.

4. Type-based RPC (TRPC)

4.1. Overview

RPC[6][29] based distributed object models (e.g.

RMI[28], CORBA[18], Web Service[33]) have been suc-

cessfully applied in building distributed systems. Such a

model simplifies the development of distributed applications

by providing a programming model that is similar to devel-

oping non-distributed applications.

Group-based RPC schemes (Replicated RPC[8], Mul-

tiRPC[25]) have been proposed in the past to increase sys-

tem reliability, availability and concurrency in a LAN

environment. These schemes usually support the same exact-

ly-once synchronous call semantics as traditional RPC does.

Such semantics is appropriate when the network bandwidth

is abundant and link connectivity is relatively reliable. But it

will be costly to maintain in MANETs where wireless link is

highly unreliable, the overall end-to-end throughput is li-

mited and all the target objects can be constantly moving.

Furthermore, the group abstraction provided by these

schemes are generally ID based, it is difficult to map them to

the hierarchical organization relationship associated with

users in MANETs.

Our design goal is to preserve the simplicity of RPC

model and extend it for group communication in MANETs.

Our proposed RPC scheme is based on type-based commu-

nication paradigm and is called TRPC with the following

characteristics:

First, TRPC uses type as the basic abstraction to identity

groups, and the invocation scheme obeys the subtyping and

type-composition principles: when the target type of a me-

thod invocation is type T, all the objects in a MANET that

are of type T or any of its subtypes should execute the me-

thod; when the target type is the composition of two types A

and B, all the objects in a MANET that are both type A and

B or their subtypes should execute the method.

Secondly, though type is an expressive group abstrac-

tion, real MANET applications may require additional prop-

erties to constrain the set of recipients. For instance, in a

disaster relief scenario, a message may be targeted to the

Firefighters within a certain range from the sender. To sup-

port such use cases, TRPC introduces the concept of Scope

to constrain the set of target objects with non-type properties.

There are two categories of Scopes: System Scope and Ap-

plication Scope. System Scope models properties of the en-

vironment in which the objects are executing. Examples of

System Scopes include the distance of the target nodes from

the caller, the IP address of the recipients, or the geographic

location of the target nodes. The significance of System

Scope is that it can be directly used to assist the routing of

the messages to improve efficiency. Application Scope is

defined based on the intrinsic properties of the objects, such

as object names. Since these attributes are application spe-

cific, they are usually not to be processed by network routing

layer and are handled by TRPC Runtime Engine. The com-

bination of type and Scope provides a rich and flexible group

abstraction for ad-hoc applications. It also allows a point-to-

point RPC to be treated as a special case of Group-based

RPC scoped to a single node.

Thirdly, to reduce the performance overhead in the

presence of mobility, variable channel quality and high net-

work dynamism, TRPC adopts the at-most-once call seman-

tics - there is no guarantee that all the objects of the target

type have executed the method invocation and no retrans-

mission will be attempted by the TRPC runtime engine. Fur-

thermore, the method call of TRPC is non-blocking; a caller

can retrieve results from a TRPC asynchronously via the

abstraction of Future. Using asynchronous mechanism in-

creases the concurrency at the caller side in face of potential

long delay between request and response caused by multi-

hop wireless paths, network partition or long service execu-

tion time. The notion of Future has been proposed before for

asynchronous computation or RPC invocation[2][30], we

extend it here to receive potentially multiple responses from

a group of target objects associated with a single method call.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

5

4.2. API

The main APIs for consuming and providing TRPC ser-

vices are TypeCastClient and TypeCastServer (see below).

TypeCastClient is used to create a client-side proxy to

make a remote method call to all the objects of the target

type, which may either be a single or a composite type. And

Scope can be set to the TypeCastClient to further constraint

the object set.

TypeCastServer is used to export a TRPC service object

to be consumed by remote peers. The application should

specify the type(s) of the object and a set of properties (e.g.

name) associated with the object that can potentially be used

for scope-based matching.

Scope

Figure 2 shows the type hierarchy of Scope currently

supported in TMACS.

Figure 2: Scope Hierarchy

There are two categories of Scopes: NetScope and

AppScope. Netscope specifies the constraints based on

properties related to the nodes hosting the objects and will

be directly passed to NAL for routing optimization.

AppScope specifies constraints based on the properties of

the object itself and will be processed by TRPC Runtime

Engine at the receiving nodes for the purpose of object

matching. NetScope has two subclasses: TTLScope and

HostScope. The former limits the distance of the recipients

from the consumers, while the latter restricts the TRPC in-

vocation based on IP address. If HostScope is specified,

NAL will use IP unicast to tunnel the method invocation to

the specified node instead of using TypeCast routing proto-

col.

HostScope can be further constrained with InstanceS-

cope. InstanceScope specifies GUID of the target object.

GUID is a unique identifier assigned to a distributed object

by TRPC Runtime Engine hosting it. InstanceScope ensures

that only a specific object on a target host will execute the

method call.

Future

TRPC method call is non-blocking. If the return type of

a method is void, the calling side of TRPC does not expect

the response from any callee. The method invocation is

simply a one-way notification to all the target objects. For

applications requiring return value from the callees, the me-

thod declaration must have Future as the return type:

The caller can either poll result from the Future object

at any time, or it can register a FutureListener to receive

event notification once any new result arrives. A Future ob-

ject can be “freezed” so that the caller side TRPC Runtime

Engine stops waiting for responses from the target objects

and any resource associated with the method invocation can

be garbage collected. The caller can explicitly freeze a Fu-

ture object or set a freezing condition based on the combina-

tion of time out value and/or minimal number of objects in

the Future.

interface LocationService {
 Future<Location> getLocation();

}

class GetNeigbhorLocation implements FutureListener<Location> {
 private ArrayList<Location> neighbors = new ArrayList();

 void locateNighbors() {

 TypeCastClient tc = new TypeCastClient();
 tc.setScope(new TTLScope(1));

 LocationService ls = tc.getTypeCastProxy(LocationService.class)

 Future<Location> future = ls.getLocation();
 future.setFutureListener(this);

 future.setFreezingCondition(10, -1); // freeze after 10 seconds.

 }
 void newValueArrived(Future<Location> future, Location location) {

 neighbors.add(location);

 }
 void freezed(Future<Location> future) {

 … // report neighbor locations

 }
}

 interface Future<T> {

 int getCount();
 T get(int index);

 void setFutureListener(FutureListener<T> listener);

 void freeze();
 void setFreezeCondition(long timeout, int maxCount);

}

interface FutureListener<T> {
 void newValueArrived(Future<T> future, T value);

 void freezed(Future<T> future);

}

class TypeCastClient {
 TypeCastClient ();

 TypeCastClient(EndPoint endPoint);

 <T> T getTypeCastProxy(Class<T> targetType);
 Object getTypeCastProxy(Class[] compositeTypes);

 void setScope(Scope scope);

}
class TypeCastServer {

 TypeCastServer ();

 TypeCastServer(EndPoint endPoint);
 <T> void export(Class<T> type, T serviceObject);

 void export(Class[] compositeTypes, Object service,

 Properties props);
 void unexport(Object serviceObject);

}

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

6

Above is a sample code fragment to use TRPC to locate

all the neighboring nodes, assuming that each mobile node

has a GPS receiver and can report its own location via Loca-

tionService

Unicast TRPC

By default, all TRPC services will be exported via a re-

served multicast end point and can be accessed via either

TypeCast or unicast tunneling. Applications can also choose

to export the service objects via an IP unicast address to set

up private communication channel between two objects. The

unicast end point is usually dynamically determined by ne-

gotiating via public TRPC service.

4.3. Implementation

Figure 3 shows the internal architecture of the TRPC

Runtime Engine on each mobile node:

The TRPC Runtime Engine consists of five major com-

ponents: the TRPC Proxy and Result Collector control the

caller side whereas the Object Manager, Call Dispatcher,

and Future Dispatcher manage the callee side functionalities.

An Object Manager manages the lifecycle of all the active

distributed objects and their types on a node. Whenever the

aggregated types of the local active objects have been

changed, Object Manager will notify the TypeCast routing

layer by setting LBF to NAL; the updated LBF will be ad-

vertised to the neighbors by the TypeCast routing protocol.

All outgoing method invocations are handled by the

TRPC Proxy. This is a Java dynamic proxy object that mar-

shalls a method invocation into byte stream and encodes the

target type(s) into a Target Bloom filter (TBF). The TBF,

the NetScope and the payload will be passed to the NAL

which will forward to the target group using the appropriate

routing protocol.

INVOCATION-ID TYPE(S) SCOPE METHOD PARAMETERS

Figure 4: Payload of TRPC Method Call

The marshalled content of a TRPC invocation is shown

in Figure 4. The invocation ID uniquely identifies a method

call on the originating node and is used to correlate the re-

sults if a method call expects return value.

All incoming TRPC method invocation are processed

by Call Dispatcher. Call Dispatcher unmarshalls the payload

into a method invocation, queries the Object Manager for the

matching objects based on target types and scope, and sub-

sequently dispatches the method invocation to the matching

ones.

If the TRPC method call has a return value, the object

will be handed over to Future Dispatcher, which will for-

ward the result to the caller by making a special one-way

TRPC invocation to the Result Collector scoped to the call-

ing node. Result Collector at the caller will correlate the

result object to the original call session, and notifying the

calling application about the arrival of the new result via

FutureListener.

5. Service Discovery

Service discovery in MANET plays the role of DNS in

Internet. Its purpose is to look up the meta information of

the active TRPC services so that applications can examine

the returned information in order to engage communication

to specific services.

In TMACS, service discovery is implemented via the

coordination of the Discovery Agents on mobile nodes. The

Discovery Agent is both a TRPC consumer and provider.

There are two types of services provided by Discovery

Agent: ServiceDiscoveryService and ServiceAdvertisemen-

tListener (see below). ServiceDiscoveryService is used to

issue discovery request, and ServiceAdvertisementListener

is for receiving response.

To discover whether there is any object of type T on the

network, a Discovery Agent invokes the discover method of

ServiceDiscoverySerivce, using type T as the parameter.

When passing the discovery method invocation payload to

NAL, TRPC treats it differently from other methods: instead

of setting TBF to the Bloom filter of ServiceDiscoverySer-

vice, it sets it to the Bloom filter of T.

Since the TBF is set as T, the discovery request will be

routed exactly as if the target type is T. Since the packets

will be routed to only the nodes having objects of type T or

its subtypes, this avoid wasting network bandwidth without

always flooding the whole MANET with discovery solicita-

tion.

When the Discovery Agent on a node receives the dis-

covery request for a type T, it finds all the matching objects

on the local host. If the set is not empty, the node will issue

ServiceAdvertisementListener.notify(ServiceAdvertisement)

interface ServiceDiscoveryService extends MetaService{

 void discover(Class<T> type);
 Future<ServiceAdvertisement> discoverInPrivate(Class<T> type);

}

 interface ServiceAdvertimsentListener {
void notify(ServiceAdvertisement serviceInfo);

 }

Network Abstraction Layer (NAL)

Unicast Routing

Service Service Service App. App.

Figure 3: TRPC Runtime Engine

 TypeCast Routing LBF

 Object

Manager
Call

Dispatcher

Future

Dispatcher

 TRPC

Proxy

Result

Collector

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

7

to send the meta information of the matching objects to all

interested nodes via TypeCast. The meta information in-

cludes the object type(s), the IP address of the host, the

GUID of the object, and any other properties associated with

the object. The using of TypeCast-TypeCast coordination

pattern enables a single response to satisfy potentially mul-

tiple requestors. The response will be cached by all the Dis-

covery Agents. The cached value can be used to satisfy

further discovery requests on the same type and suppress

redundant discovery messages.

ServiceDiscoveryService also defines a second method

discoveryInPrivate() to use TypeCast-Unicast coordination

pattern. When this method is invoked, the discovery re-

sponse will be only sent back to the original requestors via

Unicast in the Future result.

Since discovery is a TRPC method call, clients can use

Scope to constraint the set of recipients. For instance, appli-

cation can use TTLScope to lookup services only on the

immediate neighbors, or AppScope to look up a service with

a specific name.

A Discovery Agent can also proactively advertise a ser-

vice by calling the notify method of ServiceAdvertisemen-

tListener without waiting for the discovery request. Such a

mechanism can result in wasted bandwidth consumption and

should use judiciously by properly scoping the advertise-

ment.

Using TRPC has greatly simplified the implementation

of discovery service. Moreover, the abstractions (e.g. type

and Scope) used for expressing the invocation targets are

reused for expressing the discovery targets, resulting in a

simple and uniform programming model. TMACS’ discov-

ery service provides much needed flexibility to allow appli-

cations to select different coordination patterns (TypeCast-

TypeCast vs. TypeCast-unicast) and responsive models

(proactive vs. reactive) based on the requirements and the

access pattern of individual applications. By utilizing

TypeCast and intelligently setting TBF, our discovery ser-

vice is much more “directional” for finding the required ob-

jects and achieves better efficiency than existing MANET

discovery services relying on broadcast or multicast (e.g. [7]

[14]). Using a single network protocol for both MANET

routing and discovery also distinguishes TMACS from the

solutions relying on separate discovery infrastructure

[13][15][26].

6. Case Studies

6.1. Ad-hoc Caching Service

Caching is an important middleware service to improve

service availability in the dynamic network environment

with high mobility. With caching, the service consumers can

access a service from a cached server closer to it than the

original service provider. Here we build a light-weight dis-

tributed caching systems with TMACS that is tailored to the

peer-to-peer nature of MANET environments. The caching

architecture allows any node in a MANET to voluntarily

serve as caching server for other mobile peers, and there is

no restriction on what type of services can be cached.

The ad-hoc caching is managed by CacheManager ob-

ject on each node. The CacheManager objects coordinate

among each other to fulfill the caching requests via two sim-

ple TRPC services: CacheService and ContentSource:

The CacheService is the interface for mobile pees to

send caching requests; the ContentSource is the interface for

the caching node to retrieve the object state from the reques-

tor. The coordination among the CacheManager objects uti-

lizes the TypeCast-Unicast pattern: when a node has an

object to be cached, it sends a request to all the activated

caching nodes by calling CacheService.requestCache(). The

call consists of two parameters: the first is a unicast end

point from which the object state can be retrieved. The

second contains the meta information about the object, in-

cluding its type T, the implementation class name, the cache

expiration time, the GUID of the object and the size of the

object state.

When the CacheManager on a caching-enabled node

receives the caching request, it checks a) whether there is

sufficient memory and storage on the local host, and b)

whether the local policy allows caching T. When all condi-

tions are met, the node will invoke Content-

Source.requestContent() to retrieve the object state via the

private end point specified in the request. The returned value

will be used to instantiate a replicated copy. For each cached

replica, the CacheManager will create and export a Cache-

Proxy object associated with it (Figure 5). The CachedProxy

is a Java dynamic proxy object implementing two interfaces:

one is type T of the cached object, another is the CacheCon-

trol interface shown below:

CacheControl provides methods for the content source

to request all the caching nodes to either invalid or reload the

cached copies when the original data content is deleted or

changed before cache expires. This allows the content source

to maintain consistency among cached copies if the nature of

the applications requires so. When making cache control

calls, the content source will set the target type to be the

composition of CacheControl and T, thus ensure that the

method will only be executed by the nodes that have the

right types of cached copies and avoid flooding the requests

needlessly to other caching nodes. Since the CacheProxy is

of type T, it can accept any TRPC call targeting to T. Such

call will be delegated to the cached replica (Figure 5). For

interface CacheControl {

 void invalidateCache(EndPoint contenSourceAddr, String GUID);
 void refreshCache(EndPoint contentSourceAddr, String GUID);

}

interface CacheService {

 void requestCache(EndPoint contentEndPoint, ObjectDesp object);
}

interface ContentSource {

 Future<byte[]> getContent(String GUID);

}

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

each call on T, CacheProxy will also update

quency and timestamp. This information will

put to the cache replacement algorithm when

cache replica should be removed from the ca

the pool is full.

Even though there are complex coordi

among CacheManages, using TRPC has grea

development work by eliminating the efforts

level protocol handling and message process

type-composition for cache control invocat

monstrates the expressiveness of TMACS’

model. More complex caching strategies (e.

exploited by utilizing on TMACS provided

and programming abstractions.

6.2. Ad-hoc Auction/Marketplace

EBay-like auction services have proven

successful business model for conducting co

Internet. A MANET provides another ideal pl

type of services. Unlike the Internet, the ad

MANET cannot assume the availability of a

during the transaction; such a disadvantage c

the physical proximity of bidders and sellers

serendipitous nature of MANETs. For instan

extra concert tickets can auction the tickets

hall right before the show starts by forming a

those who are waiting there to purchase the tic

Figure 6: Screenshot of Ad-hoc A

Our ad-hoc auction implementation (see

follows the peer-to-peer model, letting selle

directly engage in the auction process. A

auction by providing the item to sell, the sta

Figure 5: Cache Architecture

Cachin

Content

Source

Service

Consumer

ObjectCache

CacheControl T

CacheProxy

8

pdate the access fre-

will be used as in-

n deciding which

 the cache pool when

coordination patterns

s greatly simplify the

efforts to write low

rocessing. The use of

vocation further de-

ACS’ programming

ies (e.g. [34]) can be

vided system service

roven to be a highly

ing commerce on the

deal platform for such

he ad-hoc nature of a

ty of a trusted broker

tage can be offset by

sellers, the local and

instance, people with

tickets at the concert

ming a MANET with

 the tickets.

hoc Auction

n (see Figure 6 for UI)

g sellers and bidders

. A seller opens an

the starting price and

the closing time. The auction status

potential bidders via TypeCast period

bidding price is updated. Each buy

Unicast to the seller, and the price wi

dated based on the highest bid. Whe

cause the closing time is reached or th

accept a bid, a confirmation messag

highest bidder via Unicast and the

TypeCast to all the bidders.

The TRPC interfaces used for co

lers and bidders are shown below:

The AuctionEventListener is use

bidders about auction status via Type

includes the description of the items

formation such as the private TRPC e

bid, and auction status (e.g. the curren

closing time). The Seller is the TRPC

query the auction status of an item or

der is the interface for the seller to se

the final auction winner. It also prov

seller to query the reachability of the

In the event of network partition or no

the seller can invalid the current high

auction process. The Seller and Bidde

via private unicast end points. These

formation are exposed to the auction

lerInfo and BidderInfo objects exchan

process.

TMACS greatly simplifies the

ad-hoc application: it eliminates the ef

auction protocols as adding a protoc

adding a new TRPC method. The imp

spent primarily to develop the user in

of Java code for the auction applica

and it took a student about 3 weeks to

tion.

Our current implementation uses

to convey information on all ongoing

tension is to have a hierarchical Auctio

buyers can activate a specific type o

kinds of items that he/she is intereste

can have TicketAuctionEventListener

only.

interface AuctionEventListener {
 void auctionStarted(Item item, SellerInfo

 void auctionClosed(Item item, SellerInfo

 void auctionUpdate(Item item, SellerInfo
}

interface Seller {

 void bid (Item item, BidderInfo bidder, i
 Future<AuctionStatus > query(Item item)

}

interface Bidder {
 void confirm(Item item, SellerInfo sell

 Future<Acknowledgement> isAlive();

}

ture

aching Node

status will be advertised to

periodically or whenever the

ch buyer submits its bid via

ice will be automatically up-

 When the auction ends be-

d or the seller has decided to

message will be sent to the

d the closing event will be

 for coordination among sel-

is used by seller to notify

a TypeCast. The notification

 items for sale, the seller in-

RPC end point for submitting

 current bidding price and the

 TRPC interface for bidder to

em or submit a bid. The Bid-

r to send the confirmation to

o provides a method for the

of the current highest bidder.

 or node leaving the network,

nt highest bid and restart the

dder interface are exported

These private end point in-

ction participants in the Sel-

xchanged during the auction

s the implementation of the

 the efforts to design specific

protocol is the equivalent of

he implementation effort was

user interface. The total line

pplication is just over 1000,

eks to finish the implementa-

n uses AuctionEventListener

going auctions. A future ex-

uctionEventListener so that

type of listener for only the

terested in. For instance, we

ener for auctioning tickets

nfo seller, AuctionStatus state);

nfo seller, AuctionStatus state);

erInfo seller, AuctionStatus state);

dder, int price);
item);

fo seller);

();

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

9

7. Experimentation

Large-scale simulation has been conducted in our earlier

work[16] to study the performance and scalability of Type-

Cast routing protocol. This paper focuses on evaluating the

implementation of the integrated software stack of TMACS

and application on physical test bed.

7.1. Test Bed Setup

 We use eight laptops connected in an IEEE802.11 ad-

hoc network in the topology illustrated in Figure 7. Among

them, five are Dell Latitude D600 and three are IBM Think-

Pad T42. All are configured with the Linux Fedora Core 4

with 2.6.12 kernel. Due to the lack of controlled physical

space for wireless transmissions, iptables[18] are used to

enforce the network topology to guarantee that the packets

go through multiple hops. Packets from non-neighbor nodes

are automatically dropped at the MAC layer based on MAC

address filtering.

 We used the ad-hoc auction application for all our per-

formance measurements.We wrote a Bid Bot software as the

bidder that automatically submit a bid whenever the Auctio-

nEventListener.auctionUpdate() is invoked. To measure the

impact of the type hierarchy, we created four subtypes T1,

T2, T3 and T4 under AuctionEventListener, and they form a

linear hierarchy as AuctionEventListener �T1 � T2 � T3

�T4. We used three bid bots, with types and hosting nodes

as shown in Figure 7. The seller runs on node A; it periodi-

cally calls the actionUpdate() method of the target type and

records the responses in its Seller.bid() method invoked by

the bidders. The target type varies from T1 to T4. According

to subtyping principle, when the target type is T1, all three

bidders should submit bids. For target type T2, two bidders

on node G and F should respond. For T3, only bidder on G

should bid.

The IP payload of the auctionUpdate() method invoca-

tion after marshalling is 661 bytes, and the payload of the

bid() method invocation is 416 bytes. auctionUpdate() uses

TypeCast routing, while bid() is called via unicast.

7.2. Performance of Ad-hoc Auction

The metrics we use are as follows:

• One-way goodput: the percentage of the auctonUpdate

method executed per target bidder.

• Two-way goodput: the percentage of the actual bids

received by the seller out of the expected total bids.

• Call latency: the time difference between the receiving

of bid and the start of the auctionUpdate measured by

the seller. Since the path discovery phase of

AODV/MAODV can take up to a few seconds and has a

distortion effect on the average latency, when calculat-

ing latency, the value within the first 60 seconds will

not be used.

• TypeCast traffic ratio: the number of TypeCast data

packets transmitted per auctionUpdate method call. A

smaller value means better efficiency. The metric meas-

ures whether Bloom filter based TypeCast routing me-

chanism can effectively filter data packets based on the

target type.

In each experiment, the seller invokes auctionUpdate

method of a fixed target type at regular interval for 300

seconds. Each experiment is repeated at least 12 times for

each target type. Figure 8 shows the results when the invoca-

tion rate of auctionUpdate method is 1 per second.

From the graph, we can see that the one-way and two-

way goodput are both above 90% for different target types,

and the two-way goodput is almost identical to the one-way

goodput. This implies that both the TypeCast auctionUp-

date method and the unicast bid method invocation have

very high success ratio. For object types that are lower on

the type hierarchy, the goodput (both one-way and two-way)

increases slightly. This results from the combination effect

of the smaller number of target objects (which should result

in less data traffic) and the shorter average distance between

the seller and the target bidders. The overall call latency is

small, and its distribution along the type hierarchy reflects

the average distance between the seller and the target bidders

identified by the type.

When the target type goes down the type hierarchy from

T1 to T3, the number of target objects shrinks from 3 to 1.

The TypeCast traffic ratio drops proportionally, which con-

firms the effectiveness of the TypeCast filtering mechanism.

When the target type is T4, since there is no matching target

object in the network, the TypeCast traffic ratio is close to

zero, implying that no network bandwidth is wasted on

Seller

Bidder(T3) Bidder(T1) Bidder(T2)

A

H

B C D

G F E

Figure 7: Topology of Testbed

Figure 8: Performance of Ad-Hoc Auction under Different Target Types

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

transmitting such data packets. If the experi

multicast instead of TypeCast, as all nodes

same multicast group, the network traffic wil

by an object’s type, thus wasting significan

critical resource in a MANET.

We repeated the experiments with dif

rates. In general, the goodput will decrease w

rate becomes larger, but the correlation betw

tency, TypeCast traffic ratio and the target ty

same.

Link Failure
A MANET experiences link failures due

variable channel conditions. To evaluate the

the system against such failures, in the next

links from node G are made to fail. As the or

path is A�G�F�E, this will disrupt the pac

route until the tree is reformed (presumably

based on the new topology A�B�C�F/E).

Figure 9 shows the latency of bid respons

the seller for each auctionUpdate issued at

disconnection of G, which happens at t=142s,

ives all three bids per auction request, and

mostly between 20~40 ms. After the disconn

the routing layer about 3s to detect the link

the auctionUpdate invocations issued during

lost. (The duration of the failure detection

mined by HELLO message transmission

number of permitted retransmits by MAODV

Once the disconnection is detected, M

about 7 seconds for the route discovery

process. The current MAODV implementatio

advantage of the expanding ring search algo

in AODV, which will considerably reduce

latency (inclusion of this optimization i

progress). The packets issued during the d

were buffered until the routing tree was rees

long invocation latency observed by seller w

is predominately contributed by the queuing

Figure 9: System Response during Lin

10

experiment runs with

nodes belong to the

fic will not be filtered

nificant bandwidth, a

ith different sending

ase when the sending

n between TRPC la-

rget type remains the

es due to mobility or

ate the robustness of

 next experiment, all

 the original multicast

the packet forwarding

mably using the path

F/E).

esponses observed by

ed at time t. Before

=142s, the seller rece-

t, and the latency is

isconnection, it takes

e link failure, and all

during this phase are

ction period is deter-

ssion frequency and

ODV).

ted, MADOV takes

very and reestablish

entation does not take

algorithm provided

reduce the discovery

tion is currently in

 the discovery phase

s reestablished. The

within this phase

euing delay. There is

also relatively higher ratio of packet l

believe is caused by the burst transmis

buffered packets as the tree is reforme

The new routing tree was success

10 seconds after link failure occurred;

received the bids from the two remain

Dynamic Object Activation

In this experiment, we study s

when a mobile node with a TRPC ser

work. The same network setup and

used as before. However, instead of s

ing bidders, we now activate them inc

of G, F and E. The seller issues the

second continuously. Figure 10 show

served by the seller for each auctionU

Note the delay of approx 8s, between

starts to when it receives the first auc

cy, called activation latency, is almost

route discovery process for the server

cast tree, which was shown in the pre

at least ~7 s based on the current MA

Once the bidder joins the multicast tr

receive the bid from the newly act

introducing a significant drop of good

bidder’s activation.

 It should be noted that the route

only incurred when the first object i

For subsequent object activations o

same multicast tree will be used; only

tion will be updated among the

ANNOUNCE packets. Our experime

here due to space limitation) have s

activation latency for subsequent obje

The graph also shows that the f

newly activated object has a much hig

than the following ones. This is prim

route discovery process for finding th

the bid method. Since AODV implem

Figure 10: System Response for Dyna

g Link Failure

acket loss (>30%), which we

ansmission when flushing the

formed.

uccessfully established about

urred; the seller successfully

emaining connected bidders.

tudy system responsiveness

PC service object joins a net-

p and object distribution is

ad of simultaneously activat-

em incrementally in the order

s the autionUpdate at 1 per

shows the bid latency ob-

Update invoked at time t.

etween when the new bidder

auctionUpdate. This laten-

almost entirely caused by the

server node to join the multi-

the previous experment to be

nt MAODV implementation.

cast tree, the seller is able to

ly activated bidder, without

f goodput during or after the

 route discovery overhead is

bject is activated on a node.

ons on the same node, the

; only the new type informa-

 the neighbors via TYPE-

eriments (results not shown

ave shown that the average

t objects is within 1s.

 the first method call of the

ch higher invocation latency

s primarily due to the cost of

ing the unicast path back for

implementation uses expand-

 Dynamic Object Activation

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

11

ing ring search algorithm, the discovery latency for unicast

is much shorter (< 200ms).

To summarize, the system can quickly react to new mo-

bile nodes/objects joining the network and properly direct

the TRPC calls to the newly joined objects. The activation

latency is ~7 s for the first object on a host and < 1 s for any

subsequent objects.

7.3. Performance of Discovery Service

 In this experiment, we measure the performance of

TMACS’ discovery service. The same network and applica-

tion set up is used. Instead of invoking auctionUpdate me-

thod, the Disocvery Agent on node A invokes discovery

request for a target type periodically, and the discovery res-

ponses via TypeCast are collected. We measure discovery

success ratio, discovery latency, and discovery traffic ratio

(defined as number of TypeCast data packets transmitted per

discovery request).

 Figure 11 shows the result of discovery experimenta-

tion when the invocation rate of discovery requests is 1 per

second. Since the TBF (Target Bloom Filter) of discovery

requests is set to the target type to be discovered, the re-

quests are routed only to the nodes that have the target types.

This can be confirmed from the discovery traffic ratio,

which decreases proportionately down the type hierarchy,

just as it should for invocation of a TRPC method to the

same type. When the network does not have any objects

belonging to the target type (e.g. T4), the discovery traffic is

reduced to almost zero, as before. If multicast is used here

for sending discovery request, the data traffic will be con-

stant even when there is no intended object in the network.

8. Related Work

Jini[27] is a distributed computing platform providing

discovery service and a tuple space[11] based programming

model. Jini’s discovery service relies on dedicated lookup

servers, thus introduces single point of failure. The tuple

space based programming model is a powerful abstraction

for group coordination, but its requirements on global sto-

rage space and strong consistency and persistence semantics

can result in high system and network overhead in MANET.

To address this limitation, Lime[18] has relaxed the seman-

tics of standard tuple space by letting each node or agent

host its own tuple space, and multiple hosts/agents prox-

imate to each other can transiently share tuple spaces with

common names. Though Lime provides explicit abstraction

for data sharing among a group of nodes/agents, its name-

based group scheme is not as rich and flexible as what

TMACS supports. Lime like coordination model can be built

on top of TMACS as a higher level system service.

Publish/Subscribe[9] is a data-centric middleware for

distributed and mobile systems. In this scheme, senders pub-

lish events, which will be routed by a network of event bro-

kers to all receivers subscribed to them. Traditional RPC

model is less favorable than publish/subscribe in mobile

systems due to its point-to-point and synchronous invocation

semantics. TRPC is designed to explicitly address the limita-

tion of RPC while keeping its benefit. Publish/Subscribe is

very useful for in-network processing, filtering and aggrega-

tion based on data content; while TRPC is more suitable

with service-oriented architecture, in which distributed ap-

plications are exposed as services, and the data content is

transparent to the intermediate routers. For many applica-

tions and products already developed with RPC style model,

TRPC provides an easy path to port them from point-to-

point, wired environment to many-to-many wireless envi-

ronment.

Intentional Naming[1] is a naming system targeted for

mobile systems. It builds an overlay network to forward

messages based on high level application names consisting

of arbitrary attribute-value pairs. The routing table stores a

name tree which is disseminated within the overlay network.

Though the naming scheme of Intentional Naming is expres-

sive, the complexity and overhead of building an overlay

network on MANET and storing application specific

attributes directly in the routing table can potentially limit its

broad adoption.

SpatialViews[20] provides a high level programming

notation for MANETs. The core abstraction is spatial view

and spatial view iterator. Spatial view defines a virtual net-

work consisting of services confined to a location-time re-

gion. The spatial view iterator is used to discover the nodes

bound to a spatial view and migrate computation to them.

The requirement of program migration may limit the adop-

tion of SpatialViews on resource or security-sensitive plat-

forms. In TMACS, the mobile nodes are identified via type

and Scope, and the collaboration is achieved via remote in-

vocation instead of mobile code. It is more light-weight with

respect to the requirements on the run-time environment.

SpatialViews-like sophistic programming notation can leve-

rage TMACS as the building block for its run-time imple-

mentation.

Figure 11: Performance of Discovery Service

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

12

M2MI[12] is a Java framework providing interface-

based group communication primitives for ad-hoc collabora-

tion in wireless networks. Comparing to TMACS, it did not

address subtyping, type composition, asynchronous invoca-

tion and service discovery. M2MI uses broadcast to transmit

packets, which is impractical in multi-hop wireless network

due to high contention caused by flooding.

Hood[32] and Abstract Region[31] are programming

abstractions for sensor networks to simplify data sharing,

filtering and processing among neighboring nodes These

data centric notations are different from TRPC’s service-

oriented approach. It will be interesting to exploit TRPC like

group communication paradigm in sensor networks.

9. Conclusion

In this paper, we present the design and implementation

of TMACS, a middleware to support distributed applications

in MANETs. TMACS provides TRPC as the distributed

programming model for invoking a method on a group of

distributed objects. The group is identified by the common

type(s) shared by the objects and can be further constrained

with Scope. The results of an invocation are retrieved asyn-

chronously via Future. TMACS also provides a fully distri-

buted, resilient discovery service.

A physical implementation of TMACS was deployed on

a testbed. We implemented a distributed caching service

and an ad-hoc auction application to demonstrate the expres-

siveness of TMACS and implemented TypeCast routing

protocol to efficiently support TRPC and discovery service.

Our experiments demonstrate the feasibility and effective-

ness of TMACS as a potential distributed platform for build-

ing ad-hoc applications in MANET. Our future work is to

conduct experimental study on a larger-scale test bed with

more realistic mobility patterns.

10. Acknowledgement

 This work is funded by the National Science Founda-

tion under NR grant ANI-0335302 WHYNET: Scalable

Testbed for Next Generation Mobile Wireless Networks

Technologies and US Army Research Grant W911NF-05-1-

0246 DAWN: Dynamic Ad-hoc Wireless Networking.

11. References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, “The design

and implementation of an intentional naming system”, in SOSP’99, pp186-
201.

[2] A. L. Ananda , B. H. Tay , E. K. Koh, A survey of asynchronous re-

mote procedure calls, ACM Operating Systems Review, v.26 n.2, p.92-109,
April 1992

[3] AODV-UU, http://core.it.uu.se/core/index.php/AODV-UU
[4] A. Bakre , B. R. Badrinath, “M-RPC: a remote procedure call service

for mobile clients”, Proceedings of the 1st annual international conference

on Mobile computing and networking, p.97-110, November 13-15, 1995
[5] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors”,

Communications of ACM, 13(7), July 1970, pp 422-426.

[6] A. Birrell , B. Nelson, Implementing remote procedure calls, ACM

Transactions on Computer Systems (TOCS), v.2 n.1, p.39-59, Feb. 1984
[7] C.Campo, M.Munoz, J.C.Perea, A.Marin, C.Garcia-Rubio,”PDP and

GSDL: a new service discovery middleware to support spontaneous interac-

tions in pervasive systems”, in PerCom’05.
[8] E. C. Cooper, “Replicated distributed programs”, Proceedings of the

tenth ACM symposium on Operating Systems Principles, p.63-78, Dec.

1985.
[9] P. Eugster, P. Filber, R. Guerraoui, A. Kermarrec, "The Many Faces of

Publish/subscribe", ACM Computing Surveys", Vol. 35, Issue 2, 2003,

pp.114-131
[10] H. Frey, D, Görgen, J. K. Lehnert, P. Sturm, “Auctions in Mobile Mul-

tihop Ad-hoc Networks Following the Marketplace Communication Pat-

tern”, in ICEIS'04.
[11] D. Gelernter, “Generative Communication in Linda”, Trans. On Pro-

gramming Languages and Systems, vol 7, no. 1, Jan. 1985, pp80-112.

[12] A. Kaminsky and Hans-Peter Bischof, “Many-to-Many Invocation: A
new object oriented paradigm for ad hoc collaborative systems,” in

OOPSLA’02.

[13] W. Gao, "Towards Scalable and Robust Service Discovery in Ubiquit-
ous Computing Environments via Multi-hop Clustering," in mobiquit-

ous‘07

[14] S. Helai, N. Desai, V. Verma, C.Lee, “Konark-A Service Discovery
and Delivery Protocol for Ad-hoc Networks”, in WCNC’03, pp2107-2113.

[15] U. Kozat and L. Tassulas, “Network Layer Support for Service Discov-

ery in Mobile Ad Hoc Networks,” in INFOCOM ’03.
[16] J. Lin, T. Phan and R. Bagrodia,"TypeCast -- Type-based Routing in

Wireless Adhoc Networks", in Mobiquitous’06.
[17] MAODV-UMD, http://www.hynet.umd.edu/research/maodv/MAODV-

UMD.html

[18] A. L. Murphy, G. P. Picco, and G. Roman. "Lime: A Coordination
Middleware Supporting Mobility of Hosts and Agents". ACM Transactions

on Software Engineering and Methodology, vol. 15, no. 3, pp. 279-328,

July 2006
[19] Netfilter, http://www.netfilter.org

[20] Y. Ni, U. Kremer, A. Stere, and L. Iflode, “Programming Ad-hoc Net-

works of Mobile and Resource-Constainted Devices”, in PLDI’05.

[21] Object Management Group, “Common Object Request Broker Archi-

tecture”, http://www.omg.org/
[22] C. E. Perkins and E. M. Royer. "Ad hoc On-Demand Distance Vector

Routing." Proceedings of the 2nd IEEE Workshop on Mobile Computing

Systems and Applications, February 1999, pp. 90-100
[23] M. Petrovic, V. Muthusamy, H. Jacobsen, "Content-Based Routing in

Mobile Ad Hoc Networks," mobiquitous’05, pp. 45-55,

[24] E.M.Royer and C.E.Perkins, “Multicast Operation of the Ad-hoc On-
Demand Distance Vector Routing Protocol”, Mobicom’99, pp.207-218

[25] M. Satyanarayanan, E.H. Siegel, "Parallel Communication in a Large

Distributed Environment," IEEE Transactions on Computers,
vol. 39, no. 3, pp. 328-348, Mar., 1990

[26] F. Salihan, V. Issarny, “Scalable Service Discovery for MANET”, in

PerCom’05
[27] Sun Microsystems Inc. “Jini Specification”,

http://www.sun.com/software/jini

[28] Sun Microsystems Inc., “Java RMI Specification”,
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

[29] B. H. Tay , A. L. Ananda, A survey of remote procedure calls, ACM

SIGOPS Operating Systems Review, v.24 n.3, p.68-79, July 1990

[30] E.F. Walker, R. Floyd and P. Neves, Asynchronous remote operations

in distributed systems, Proc. 10th International Conference on Distributed

Computing Systems (ICDCS-10) , Paris, France (1990) pp. 253-259
[31] M. Welsh , G. Mainland, “Programming sensor networks using abstract

regions,” in NSDI’04

[32] K. Whitehouse , C. Sharp , E. Brewer , D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” in Mobisys’04, p99-110

[33] The World Wide Web Consortium (W3C), “Simple Object Access
Protocol”, http://www.w3.org/TR/soap/

[34] L. Yin and G. Cao, "Supporting Cooperative Caching in Ad Hoc Net-

works,'' IEEE Transactions on Mobile Computing, January, 2006, p77-89

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3512
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3512

