A Quantitative Approach to Non-Intrusive Computing

Hao Chen
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
h8chen@uwaterloo.ca

ABSTRACT

One important characteristic of pervasive computing, which
is how to make it non-intrusive so that users can focus on
their tasks, has received little formal attention. Nowadays,
many computing entities, including smart devices and soft-
ware applications, are involved in our daily lives, and users
need to deal with them as well as with other people. Peo-
ple are easy to reach with multiple devices. We believe that
there should be a systematic way to help users avoid intru-
sive interactions.

This paper analyzes the intrusion problem for generic in-
teractions and presents a model for posing and answering
two questions: will an interaction intrude on its receiver if
delivered, and given that the interaction is deliverable, how
can it be delivered effectively and not too overtly? The
essential factors in the model are quantified for compari-
son and computation. We also show how a non-intrusive-
computing system can be implemented based on the model.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development;
D.4.7 [Operating Systems|: Organization and Design—
distributed systems

General Terms

Design, Management

Keywords

ubiquitous computing, pervasive computing, non-intrusive
computing, context awareness

1. INTRODUCTION

In a ubiquitous-computing environment, saturated with
computing devices and applications, users usually have mul-
tiple ways to communicate with each other and their sur-
rounding environments, such as using cell phones, land-line

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiQuitous 2008, July 21-25, 2008, Dublin, Ireland.

Copyright (©)2008 ICST ISBN 978-963-9799-27-1 .

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

James P. Black
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
jpblack@uwaterloo.ca

phones, instant messaging (IM), and so on. Smart devices
and software applications may also initiate interactions that
involve users. Since users may be equipped with several
communication devices, it is easy to reach them and make
them the target of many interactions. If we do not pro-
vide support to help control these interactions, users may
be disturbed often, and be unable to focus on their tasks.
As an example, a chat request may result in a pop-up win-
dow, which not only blocks what a user is looking at, but
also means that the user needs to deal with the interrup-
tion, either by disposing of the window, or by chatting with
a friend on an unrelated topic. Studies [6] show that in high-
tech companies, if a worker is distracted from a task, it takes
an average of 25 minutes to return to that task. In addition,
an interaction may intrude on both the receiver and people
around. For example, a reporter’s cell-phone ringing could
interrupt a news conference and annoy the interviewee.

Current ubiquitous-computing research includes various
aspects of this computing trend, however, dealing directly
with intrusiveness seems to receive little attention. In this
paper, we propose a model to address intrusive interactions
in pervasive computing. The model considers intrusion on
not only the receiver, but also on other users in the same
physical environment. The model also aims at delivering
interactions effectively by using appropriate devices.

The paper is organized as follows. First, we discuss previ-
ous work in Section 2. Then we describe our non-intrusive-
computing model in Section 3. Sections 4 and 5 describe
the architecture of a non-intrusive-computing system and
its implementation. Then we conclude in Section 6.

2. PREVIOUS WORK

Much previous work tends to design the pervasive-com-
puting environments to cooperate with users in an automatic
fashion, so that users can have smooth and uninterrupted
computing experiences, instead of having to worry about
the details of low-level computing facilities and the com-
plexity of environments. An example is the Aura project [3],
which describes tasks in an environment-independent way,
so that tasks can move automatically along with users from
one environment to another. Another example is the Gaia
project [5], which develops a context file system where rele-
vant data can be mounted according to the current context
of users. These systems focus on integrating components
and reducing users’ interventions in a ubiquitous-computing
environment, but they do not address the intrusion problem
of interactions directly.

A more relevant work is an agent-based approach to mini-

mizing intrusiveness in a meeting environment [4]. It mainly
concerns how to display a message when there is a meeting.
If a public whiteboard is chosen, the agents negotiate with
each other on behalf of their users based on the content of
the message and users’ interests, so that all users are com-
fortable with seeing the message on the whiteboard. How-
ever, this work does not address the problem of whether an
incoming message is intrusive to the receiver.

Some existing systems such as electronic mail, telephone,
and instant messaging are relevant to intrusiveness as well.
Electronic mail and telephony rely on distributed commu-
nication systems, which greatly facilitate human interac-
tions. Telephones are usually intrusive, because people do
not know when the phone will ring, who it is from, or what
it is about. Some technologies can alleviate the problem,
such as call forwarding to voice mail, call blocking, or caller
identification. But they are insufficient and inflexible. Call
forwarding redirects all of the calls, even important ones
that do need direct conversation with the user. Call block-
ing only works for the numbers that are blocked, but calls
from others can still be intrusive and disturbing. Displaying
caller ID does not help much when the ID is not recogniz-
able. Fixed telephones notify users only by ringing. Cell
phones have more choices, such as vibrating, visual blink-
ing, or even remaining completely silent. These features are
more useful when cell-phone users are in a public environ-
ment, such as a meeting, a class, and so on, to make them
less intrusive to other people. However, if a phone call is
not what a user wants at the moment, it is still intrusive, no
matter how it notifies the user.

An electronic-mail system tends to be less intrusive, as
receivers decide when to read messages, which is essentially
due to the time-decoupling of the sender and the receiver.
Although many electronic-mail clients can check new mes-
sages at a pre-set frequency and notify people, it is still time-
decoupled because transferring a message from a sender to
a receiver might take a long time, and receivers might not
read messages immediately upon receipt.

IM is becoming more and more popular. Instances are
MSN messenger, AOL messenger, Yahoo messenger, 1CQ),
Google Talk, and so on. In an IM system, users can set
presence describing their availability status, such as “do not
disturb,” and the presence is delivered to users who sub-
scribe to it. Because of the presence, the message sender
knows if the receiver is available and can decide to send or
not. This reduces the intrusiveness if senders respect the
presence. But, if the sender sends a message, it will be de-
livered to the receiver, regardless of her presence.

Previous work shows that intrusiveness has not been fully
investigated. Existing systems deal with the problem in dif-
ferent ways but with various limitations. There is no sys-
tematic and common approach. Next, we describe our model
and present our quantitative approach.

3. MODELING NON-INTRUSIVE COMPUT-

ING

In general, interactions can be labeled as time- or reference-
coupled or decoupled [1]. Time-coupled interactions are
synchronous; reference-coupled ones have specific respon-
ders. We are only interested in time- and reference-coupled
interactions. Those that are time-decoupled or reference-
decoupled do not pose similar intrusion problems. We also

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

focus on interactions that involve only one interaction initia-
tor (sender) and one responder (receiver) as this is the most
common and basic case for interactions. Omne-to-multiple
interactions are considered future work.

An interaction process extends from when a sender initi-
ates the interaction until it is delivered to some device and
a receiver is notified in some way. For example, a sender
initiates a chat with one of her friends, and the interaction
is delivered to the receiver’s cell phone, which rings softly to
inform the receiver.

This process can be divided naturally into two stages. The
first determines whether an interaction is deliverable to the
receiver. If it is not, it should be prevented, since it will
intrude upon him. The second stage, given the interaction
is deliverable, determines how to deliver it to the right de-
vices and notify the receiver appropriately. We call the first
part the filter stage, and the second the delivery stage, as
illustrated in Figure 1.

" Deli ery stage

Receiver’s | Pop up
lapto, window

Whiteboard | Flash
! in the lounge | screen
Receiver

- Receiver's Ring
) cell phone tone
Receiver's Vibrate
cell phone
Receiver's Blink
cell phone

Other
devices

Sender

N,

Notification

Figure 1: Overall modeling

The filter stage only involves a sender and a receiver, as
we can see in Figure 1. The interaction can be of any form.
For example, it can be an instant message, a file transfer,
a remote procedure call (RPC), a multimedia conversation,
and so on. In order to determine the deliverability of an
interaction, we need to know the importance of the interac-
tion and the willingness of the receiver. A high importance
usually indicates that this interaction should be delivered so
that the receiver notices it, and a low willingness indicates
that the receiver does not want to be disturbed in general.

Once we decide that the interaction is deliverable, hence
not intrusive to the receiver, the interaction takes place
and arrives at the receiver side. This is the delivery stage
in Figure 1. We can see that on the receiver’s side, in a
pervasive-computing environment, there could be multiple
devices available when an interaction happens, such as a lap-
top, a cell phone, or a whiteboard. Each of them may have
one or more mechanisms for notifying users. For example,
a cell phone can ring, vibrate, or blink. In order to choose
one or more proper devices and corresponding notification
methods, we consider two factors.

First, the interaction should be delivered to the receiver
in such a way that it is rare for the user to miss it. We
call this effective delivery. For example, if a user is away
from his office, it is better to deliver interactions to his cell
phone than to his desktop computer. For another example,
if a user is listening to some music when an interaction ar-
rives, she should be notified with a pop-up window instead

of beeping, because she might not hear it. The fact that
we are dealing with time-coupled interactions results in the
necessity of effective delivery.

Second, a user might be in a shared environment with
other people. Choosing inappropriate devices or notification
methods may cause intrusion on them. For example, during
a meeting, if a private interaction for a user is delivered to a
whiteboard or to a phone that rings, other users either see
it on the whiteboard or hear the ringing. We call this the
overtness of the delivery. We want the delivery to minimize
overtness.

Combining these, interactions should be delivered to ap-
propriate destination devices in proper ways, so that re-
ceivers notice them and surrounding people are not dis-
turbed. In the rest of Section 3, we discuss the details of
modeling non-intrusive computing in two stages. In each
stage, we analyze factors that affect intrusion and quantify
them.

3.1 Filter stage

In order to describe the model and its parameters clearly,
we use A and B to represent the sender and the receiver of
an interaction, A — B.

Intuitively, if B does not want to interact, for example
because of being busy, delivering an interaction from A to
B tends to intrude on B. We use willingness to describe this
factor. However, on the other hand, if the interaction is im-
portant enough, B will want to accept it. So the interaction
is still deliverable and does not cause intrusion to B. We use
importance to denote this factor. The willingness and the
importance can be used to decide whether an interaction is
deliverable or not. A non-deliverable interaction is intrusive
to the receiver if delivered; a deliverable one does not cause
such intrusion. The approach we take is to quantify these
two factors and then compare them to deduce a value of
deliverability.

3.1.1 Willingness

To determine if an interaction is intrusive to a receiver, B,
we need to know how willing B is to interact. The willing-
ness changes dynamically, and is entirely at the discretion of
B. We use Wp to denote B’s willingness. The quantization
is the following.

The lower bound of the willingness should indicate that
the entity is completely unwilling to interact, and the upper
bound should indicate that the entity is completely will-
ing. Thus, we need similar values for both “willingness” and
“unwillingness.” These values should be finite. It is also nec-
essary to perform various comparisons and transformations
on these finite ranges of values, from completely unwilling
to completely willing. Thus, we choose [0, 1], which has ap-
pealing intuitive and mathematical properties, such that 0
means completely unwilling, 1 means completely willing, and
unwillingness is equal to 1 minus willingness. Besides, we
can think of the unwillingness as a threshold for importance
so that only those interactions whose importance is greater
than the importance threshold should be delivered. We use
unwillingness and importance threshold interchangeably.

Note that although a willingness of 0 is acceptable, it does
not have any practical value, because 0 would mean the cur-
rent entity does not want to interact at all, and the inter-
action should not, or even cannot, take place, such as when
an IM user is off-line, and so there is no intrusion possible.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

3.1.2 Importance

The importance of an interaction also affects the intru-
siveness. If an interaction is of little importance, it tends
to be intrusive, such as chatting. If an interaction is impor-
tant, such as informing a user of an accident, then it should
perhaps override the unwillingness, even if the receiver does
not wish to interact. For example, Bob is in a meeting, with
little willingness to interact. Bob receives a message that
his mother was sent to the hospital due to health reasons.
Clearly, Bob will not think this interaction is intrusive to
him, rather, he will be grateful to the person who informs
him.

We mention above that the willingness is determined by
the receiver of an interaction. In contrast, the importance
of an interaction is determined by the sender, because the
sender must know the purpose of the interaction, which
makes him capable of determining the importance. We use
14 to represent the importance of an interaction initiated by
a sender A.

The lower bound of 14 indicates the interaction is mean-
ingless, and the upper bound indicates that the interaction
is of the utmost importance, and should occur immediately.
As above, we choose 0 for the lower bound and 1 as the upper
bound for importance, so it is comparable with the willing-
ness. Again, we include 0 for modeling purposes, although
it represents meaningless interactions.

3.1.3 The comparison model

Obviously, the importance and unwillingness are compet-
ing factors that affect the deliverability of an interaction.
The higher the importance, the higher the deliverability;
the higher the unwillingness, the lower the deliverability.
Given an interaction A — B, the importance I4 and the
willingness Wg, the comparison model for determining the
deliverability is shown in Figure 2.

>=
Compare |, and 1-Wg d>=0

d=la-(1-Ws)

d<o0
Y A

Interaction is
deliverable

Interaction is NOT
deliverable

A A J

Interaction is cancelled

. Interaction occurs
or retried later

Figure 2: The comparison model

The model compares the importance 4 against the im-
portance threshold, i.e., 1 — Wpg. The difference is the deliv-
erability, d. If 4 is greater than or equal to 1 — Wg, the in-
teraction is deliverable, otherwise it is not. Non-deliverable
interactions are discarded in the model. However, imple-
mentations will likely provide later or alternate delivery at-
tempts or mechanisms, i.e., changing the interaction to one
that is not time- and reference- coupled. There is a bound-
ary condition where I4 = 1 — Wpg, in which case, we assume
that this interaction is not intrusive.

We also investigated a fuzzy-logic model for determining
deliverability, in which there are fuzzy sets called zero, low,
and high for importance and unwillingness, and negative
high, negative low, zero, positive low, and positive high
for deliverability. We then specify fuzzy-control rules based
on these sets.

Since we are dealing with time-coupled interactions, for
any such interaction, there are only two options, delivering
or not delivering depending on whether the deliverability
is greater than zero. For reasonable parameters and other
choices made in implementing the fuzzy-logic controller, it
turned out that the same decision was always made as in the
much simpler direct comparison model, and so we did not
pursue this further. Although fuzzy logic fits well into this
scenario, as importance and willingness are fuzzy concepts,
the fuzzy-logic controller acts identically to the comparison
one.

We know that the sender and the receiver dictate the im-
portance and the willingness respectively. However, this
may not be precise enough for a number of reasons. For
example, because importance is relative, an interaction may
be important to the sender, but less important to the re-
ceiver, or vice versa. If a sender does not take this into
consideration when specifying importance, receivers will be
annoyed, either by receiving non-deliverable interactions or
by not receiving deliverable ones. As another example, the
willingness describes a general situation, but there are al-
ways exceptions that are unknown to the receiver. A person
may have a low willingness, as he is busy. So this person is
not interested in interactions in general, but only in related
ones. All these situations can amount to saying that senders
and receivers may not have necessary context. Section 3.1.4
discusses modifying raw importance and willingness using
context.

3.1.4 Modifying importance and willingness

As an example of only one way of modifying importance,
consider a failed student who tries to interact with an in-
structor, where the interaction is important to the student
but not the instructor. In this case, the comparison needs
to reduce the importance to prevent the interaction from
happening when the instructor is not very interested in in-
teractions. Or suppose a manager is trying to send out a
meeting notice to his employees. A meeting notice probably
is not the most important interaction among all kinds of in-
teractions in a company environment. So if an employee is
busy, she can present a low willingness to avoid intrusions.
However, this interaction is from the manager, so employees
will not want to miss it. The importance should be increased
so that the comparison model does not otherwise block the
interaction.

In the first example above, the role of the initiator is lower
than the receiver’s, and we need to reduce the importance,
while it is the opposite case in the second example. Obvi-
ously, this particular modifier needs to increase or decrease
importance according to the relative roles of the initiators
and responders.

Assume roles are organized into a tree as in Figure 3.
Given an interaction A — B, the roles of A and B are
R4 and Rp respectively. The distance between A and B is
|Ra — R|. For example the distance between the president
and a professor is 2, while the distance between the deans
of the math and arts faculties is 0. If A is higher than B in

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

President

Dean of
Mathematics

Professor

Graduate student

Dean of Arts

Figure 3: A partial role tree for a university

the role tree, the importance should be increased, otherwise
decreased. The new importance should still be in (0,1]. We
propose the modifier in Algorithm 1.

Algorithm 1 An importance modifier for roles

/*

given the original importance
and a role tree, this returns
the new modified importance

Ra, Rp: integers represent A’s
and B’s roles in the tree

Ra > Rp: if A is at a higher level
than B

if A or B is not on the role tree

return I4;
else if R4 > Rp,
1

RA—R +1
new[A<—IziA BT,

else /* decrease 14 */
Rp—Ra)+1
newly «— If4 B—fta)t
return newla;

/* increase 14 */

Returning to the student-instructor example, the role dis-
tance between a student and an instructor is 1. Suppose
the importance of the interaction is 0.8. It is high, as the
student is desperate. Suppose the instructor’s willingness
is 0.3 (unwillingness 0.7), which means he is working on
something and should only be disturbed for urgent inter-
actions. Without the modifier, the instructor would face
an intrusion due to the exaggerated importance set by the
student. If we apply the algorithm, the new importance be-
comes 0.8'*! = 0.64, which is lower than the instructor’s
unwillingness, which is also the importance threshold, and
the interaction is prevented. One might argue that if the
student sets the original importance to 0.9, the new impor-
tance would be 0.81, which will make the intrusive interac-
tion happen. We think that in a closed environment, users
usually have some shared understanding of the importance
of interactions. One can assume that users will not usually
manipulate importance, as they know each other. Besides,
at the system level, we use the IM presence model to imple-
ment the comparison filtering, which asks the receiver to ap-
prove the sender’s presence-subscription request. It is easy
for the sender to deny requests from those who exaggerate
importance. Furthermore, the sender can completely block
communication from selected users if they are aggressive.

One might also wish to modify willingness. A user’s will-
ingness usually changes over time, so she can only specify a
general willingness, instead of a specific one for everybody
with whom she might interact. However, there are some in-
teractions that will be blocked by the general willingness,
but may actually be wanted by the receiver, and vice versa.
For example, Bob is in a meeting discussing new equipment
to be purchased. Bob presents a low willingness, as he does
not want other people to disturb him. During a meeting,
Bob’s secretary Alice tries to interact with him about some
price information she just found for the equipment. If there
is no willingness modifier, this interaction will not happen,
because it is not an emergency, so it will not have a very
high importance. The role relationship between Alice and
Bob also reduces the importance. However, intuitively, Bob
does want this interaction, as it is related, and is helpful for
his current task.

So in general, we assume an entity presents a willingness
that is suitable for most of the interactions. However, there
are usually some exceptions, such as when Bob wants to in-
teract with Alice if the interaction is related to the meeting.
A receiver should provide such information as the subject of
his current activity. A willingness modifier takes the origi-
nal willingness, and generates a new one based on the extra
information that the receiver provides. We call this a will-
ingness modifier for exceptions.

We describe one importance modifier for roles, and one
willingness modifier for exceptions. However, there could be
many such modifiers for either the importance or the will-
ingness. For example, we can suppose that in a company,
interactions on Monday morning have a higher importance
than the rest of the week, as important decisions or meet-
ings usually happen on Monday morning in this company.
So in this case, we need an importance modifier for time.
Similarly, we might need a willingness modifier for location,
weather, and so on.

Each of these modifiers does the same thing, which is re-
fining the importance or the willingness so they can fit the
situation better and the model can generate more accurate
results. At the same time, each modifier is based on some
context of the system. The availability of the context infor-
mation determines the usability of modifiers. More context
can result in more modifiers becoming practical.

If there are multiple modifiers for importance or willing-
ness, they may affect the willingness independently, i.e. they
can both increase or decrease the willingness, or one could
increase the willingness, while the other decreases it.

3.2 Delivery stage

Once the modified willingness and importance are com-
pared, we know that the sender has decided the interaction
will not intrude upon the receiver. So it is taking place and
should be delivered in such a way that it catches the re-
ceiver’s attention, which we model with effectiveness. At
the same time, an inappropriate delivery may interrupt or
intrude upon other users in the same environment. We use
overtness to model this factor. Obviously, we want delivery
to have low overtness, yet high effectiveness.

A pair consisting of a device and one of its notification
methods is called a delivery candidate. The delivery stage
starts from a collection of known candidates, as shown in
Figure 4. Then we use context to find feasible ones. For ex-
ample, we may use location information to find only those

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

devices that are in the same location as the user. A de-
tailed discussion of this step is in Section 3.2.1. With feasi-
ble candidates, we apply the effectiveness and the overtness
criteria (Sections 3.2.2 and 3.2.3) to ensure effective delivery
with tolerable overtness. In the end, there are one or more
appropriate candidates that will be chosen for delivering the
interaction to the receiver.

r——Known candidates Feasible candidates =

Receiver's | Pop up "
laptop window (M)

Printer Printing

Receiver's | Pop up

laptop window
Avallabihly le:‘\leroird FI?Shn

» » e lounge | scree

Landline
L__phone
Whiteboard | Flash
in the lounge | screen
Receiver's Ring
Lcell phone | tone |

Ring ()capabilty Recenvers | Ring

cell phone tone
User Receiver's Vibrat
preference, cell phone orate

. = Receivers | g

cell phone

Receiver's
Vibrate
cell phone
Receiver's : "
cell phone | BNk (Effectiveness . [Whiteboard | Fiash

in the lounge | screen
(Joveriness Receivers | Ring
cell phone tone

Appropriate candidates = ~_

Other
devices

‘ Notification

Figure 4: Delivery stage

3.2.1 Feasibility criteria

We know that an interaction should be delivered to the
receiver in an effective yet unobtrusive manner. Before we
discuss these in detail, there are a few other criteria that
eliminate infeasible delivery candidates. For example, de-
livery candidates should be available when the interaction
happens. Suppose we decide to redirect a message to a land-
line phone, but it is being used by another user. Obviously,
we should consider this case and avoid it. Figure 4 lists four
such criteria, each of which eliminates infeasible candidates
in some way.

e Location: Candidates should be at the same location
as the receiver.

e Availability: Candidates should be available when the
interaction happens.

e Capability: Candidates should be capable of handling
the interaction, such as a display and a speaker for
multimedia interactions.

e Preference: Users may have preferences in selecting
candidates, and these should be respected if possible.

All these criteria depend on some context whose complexity
varies. For example, the context required by the capability
criterion is easy to obtain, assuming it depends only on static
characteristics of the device. For another example, imagin-
ing a criterion based on the physical modeling of a space, it
would be difficult for a system to provide this type of con-
text, because the physical modeling requires deployment of
many sensors or cameras, which many practical systems do
not yet have. Nonetheless, based on how much context is
available, there may be more or fewer such criteria than in
Figure 4 . The more context we have, the more we are able
to make good choices of delivery candidates.

After applying feasibility criteria, the remaining candi-
dates are subjected to the effectiveness and overtness cri-
teria, as shown in Figure 4. The next two sections discuss
them in detail.

3.2.2 Effectiveness

As we mentioned, a delivery candidate is a pair of a device
and a notification method. Different candidates may have
different levels of effectiveness when it comes to notifying
users, as they use different mechanisms to capture a user’s
attention. For example, a cell-phone ringing may be more
effective than blinking. As another example, a conventional
land-line phone ringing may be more effective than a cell-
phone ringing, as the former usually rings louder.

We quantify effectiveness in [0,1]. 0 means the device re-
mains unchanged when an interaction is delivered, so the
user receives no notification. 1 means that the notification
always captures the user’s attention. Effectiveness values
also represent the probability of a user perceiving the notifi-
cation. For a given candidate, its effectiveness is predefined
and remains the same for all users. For example, cell-phone
ringing and blinking might have effectivenesses of 0.6 and
0.4 respectively. Note that we exclude the situation where a
delivery candidate could have different effectiveness on dif-
ferent users, such as ringing being less effective for people
with hearing difficulties.

It is possible to combine more than one delivery candidate
to achieve a higher effectiveness. For example, we consider
that a cell-phone ringing at the same time as a land-line
phone is more effective than each of them ringing alone.
From the probability point of view, the combined effective-
ness measures the probability of the user perceiving the no-
tification when using multiple candidates.

Let D be a device, and N be one of D’s notification meth-
ods, then ¢ = (D, N) is a delivery candidate. E(c) € [0,1]
is the effectiveness of ¢, as well as the probability of a user
perceiving it. Let ¢1 and c2 be two delivery candidates,
E(c1 U ¢2) the combined effectiveness of them, Based on
probability theory, we have

E(C1 U CQ) = E(C1) + E(Cz) — E(Cl n CQ)

E(c1 Nce) is the joint effectiveness of ¢1 and co. If we
assume delivery candidates are independent in terms of cap-
turing attention, then E(ci Nec2) = E(c1)E(c2). We cur-
rently make an assumption of independence, but also refine
the implementation to mark candidates as mutually exclu-
sive if they cannot be combined. Also, it is possible to com-
pletely eliminate this assumption by using fuzzy logic. It de-
fines effectiveness of each candidate in fuzzy sets, and then
uses rules to infer the combined effectiveness. This approach
requires us to define rules for any possible combination of
available candidates, which will result in a large number of
rules. This is not the focus of this paper, and we will inves-
tigate this issue in the future.

The notion of the combined effectiveness can be expanded
to a set of delivery candidates. Let o = {c1, ca, ..., ¢n }, then

E(oc) = E(ciUc2U...Ucy) € [0,1]

Intuitively, if an interaction is important enough, or the re-
ceiver’s willingness is high, we should make sure that the re-
ceiver does not miss this interaction. This means we should
use an effective notification. Similarly, if the importance is
not very high but higher than the importance threshold, we
should deliver the interaction effectively but without over-
whelming the receiver. This suggests that the effectiveness
of the chosen delivery candidates should be related to the
deliverability from the filter stage.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

Let S be the set from which we choose delivery candidates,
and SE be a set of sets. Each member in SE is a subset
of S, whose effectiveness should be greater than or equal to
the deliverability, i.e.,

SE={cCS|E(c)>d=1a—(1-Wp)}

We call this the effectiveness criterion, which is that an
interaction should be delivered to those devices with certain
notification methods so that the combined effectiveness is
greater than or equal to the difference between the impor-
tance T4 and the unwillingness (or the importance thresh-
old), 1 — Wg. In the context of effectiveness, the difference
of 14 and 1 —Wp represents the net importance of the inter-
action, and we want the delivery effectiveness to outweigh
it.

This effectiveness criterion only benefits the receiver. How-
ever, as the receiver often shares an environment with other
users, we should consider them as well. The next section en-
sures our delivery choice based on the effectiveness criterion
does not cause intrusion on other users.

3.2.3 Overtness

The discussion in the previous section is based on the ob-
servation that devices and notification methods imply differ-
ent levels of effectiveness. Similarly, each delivery candidate
has a degree of overtness. For example, a cell-phone ringing
has a higher overtness than vibration. As another exam-
ple, popping up a window on a big whiteboard has an even
higher overtness than a cell-phone ringing in a class. We let
overtness values of delivery candidates range from 0 to 1. To
illustrate this, we might assign 0.8, 0.6, and 0 to white-board
displaying, cell-phone ringing, and vibration respectively.

Let ¢ = (D, N) be a delivery candidate, then O(c) € [0, 1]
is the overtness of ¢, and also the probability that some
other users will be aware of the delivery through c¢. We also
expand the overtness notion from a single candidate to a set
of candidates, as in Section 3.2.2. Given o = {c1,¢c2,...,Cn},
then O(c) = O(c1 Uca U ... Ucy,) € [0,1]. The assumption
of two delivery candidates being independent as well as the
related discussion on fuzzy logic in Section 3.2.2 are also
applicable to overtness.

Depending what delivery candidates we choose, the overt-
ness should be low and acceptable. Each environment has
an indication of its overtness requirement. For example, a
meeting situation has a strict requirement on overtness, i.e.,
delivery overtness should be very low, or a lunch-break sit-
uation has a loose overtness requirement where everybody
can make more noise. We use OT (overtness threshold) to
denote the requirement imposed by the environment. The
range of OT is [0,1]. An example assignment of OT to a
meeting and a lunch break would be 0.1 and 0.9. These val-
ues are predetermined based on the environment context. A
lower OT means a more strict overtness requirement. When
OT becomes 0, it means right now there should be no overt-
ness at all.

We define the following overtness criterion.

SO ={oC S|0O(c) <OT}

It says that we should select o, a subset of the set S of all
feasible delivery candidates, such that the overtness of o is
less than the current overtness threshold, OT.

——

Filter stage

Y

Delivery stage

Conceptual
view of two .
stages Sender - Receiver ‘
-

"y

‘ Cellphone ‘ Cellphone Whiteboard ‘
ring tone vibrate flash Other
delivery
Laptop ‘ ‘ Land line phone ‘ Printer ‘ candidates
pop up window ring print

etermines

Qﬁtermines

<input

% Filter stage Delivery stage
I rt; N <« Unwilli . .
Model view of mportance Vj' nwillingness Feasibility criteria Feasible candidates
two stages Net importance < linkage Effectiveness criterion
] Appropriate candidates

§= =]
o o
Supporting =1 5
Context hd @

GO

= = o= Availability Capabiity > () (0T

Figure 5: Different views of non-intrusive computing

We have discussed selection criteria for feasibility, effec-
tiveness, and overtness. The next section describes how to
perform the selection and summarizes the modeling of non-
intrusive computing.

3.2.4 Delivery-candidate selection

The aim of the delivery stage is to select proper candi-
dates. As shown in Figure 4, the feasibility criteria are ap-
plied first, then the effectiveness and overtness ones. Apply-
ing the feasibility criteria is straightforward given the nec-
essary context. At the model level, we simply use context.
Then at the system level (see Section 4), we describe how we
manage it and discuss its representation and access mecha-
nism.

The result of the feasibility criteria is the feasible set, F'S.
Conceptually, when the effectiveness and overtness criteria
are applied to F'S, they produce SE and SO; then their
intersection, RF, is the final result. Each member of RFE is
a delivery choice (a set of candidates). For the delivery, we
only need one such choice.

SE = {0 CFS|E(o)>d=1I14—(1—-Wg)}
SO = {ocCFS|O(o) 0T}
RE SENSO

Applying the effectiveness and overtness criteria to F'.S
requires the combined overtness of the result to be less than
OT, and the combined effectiveness of that result to be
greater than the net importance. This problem is essen-
tially a knapsack problem [12], where there is a set of items,
each of which has a value and a cost. The knapsack problem
is to determine a collection of items whose total cost is less
than a given limit, i.e., the capacity of the knapsack, and
the total value is as large as possible. In our case, the overt-
ness threshold is analogous to the capacity of the knapsack.
The effectiveness of each candidate is the value of each item,
and the combined overtness of the result is analogous to the
total cost of selected items.

The difference is that in the knapsack problem, the cost
or the value of multiple items is the sum of individuals,
whereas in this candidate-selection problem, the effective-
ness or overtness of multiple candidates is the combined
probability of individuals. Also, the selection problem has a

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

lower bound on the effectiveness, the net importance, while
the knapsack one does not. Despite these differences, the
selection problem is a 0 — 1 knapsack problem, which is NP-
complete [12]. Dynamic programming [11] can be used to
solve these problems [12]. However, it requires much space
to compensate for the run-time complexity, which may be
a constraint on mobile devices if that is where the selection
takes place. Since the number of feasible candidates in an
environment is limited, say less than 20, it is possible to use
exhaustive search.

In addition, there is a relationship between effectiveness
and overtness that can be exploited to simplify the prob-
lem. For example, a whiteboard in a meeting environment
has the same effectiveness and overtness, since everybody
sees it. For another example, a cell-phone vibration has a
high effectiveness and little or even negligible overtness. We
are able to use these relationships to simplify the selection
problem in many situations. However, we do not discuss
these details here.

We have analyzed and modeled the intrusion problem as-
sociated with a time- and reference-coupled interaction, in-
cluding deciding whether it is deliverable, and if it is, how to
choose destination devices. Figure 5 summarizes the mod-
eling of non-intrusive computing.

4. SYSTEM ARCHITECTURE

Section 3 describes a model for non-intrusive computing.
We need to develop a system to reflect the model. We first
articulate a few system requirements implied by the model.

e The system has to support time- and reference-coupled
communications, and in multiple formats, so that it
can take advantage of the generic nature of the model
in this regard.

e Importance and willingness, although determined by
separate entities, should be brought together for com-
parison.

e The system should manage context and provide flexi-
ble access to it.

e It should also integrate devices so that interactions can
be delivered.

Besides these requirements, in order to make the system
practical, there are some general system issues, such as se-
curity, user interface, and so on.

Clients
K—Audio— K—Chat— K—RPC—
User User Device : App.
K—File— K—Video—

Non-intrusive-computing middleware

Willingness Context <>
Security propagation access Context
. T store
‘ Naming ‘ ‘ Communication ‘
Context sources
‘ Sensor ‘ ‘ Sensor ‘

Figure 6: System architecture

Given these system requirements, our non-intrusive-com-
puting system has an architecture illustrated in Figure 6. At
the bottom level, sensors provide context, which is needed in
both stages of the model, as summarized in Figure 5. Then
there is middleware for non-intrusive computing. The core
of the middleware is the communication and naming mod-
ules, which provides a communication platform to support
interactions between any two entities within the system.

Sensor data is collected and aggregated into the context
store. The middleware offers a flexible mechanism for users
and applications to access context. A client may “pull” con-
text by querying ontologies; the system may also “push” con-
text to clients when it becomes available.

Willingness propagation addresses the filter stage in our
model. It is where the importance and willingness meet and
are compared with each other.

The security module protects the system at different lev-
els. At the lower level, it ensures secure communication, for
example, using SSL, among different system components. It
also authenticates clients to the system. At a higher level,
it provides access control for clients. Each client is able to
specify a whitelist or blacklist of entities for communication.

The non-intrusive computing model does not constrain
the format of communication. Thus on top of the middle-
ware, clients may interact with each other in different ways.
The communication module only establishes connections for
two clients and provides transport support. It is the clients
themselves who are responsible for handling the semantics
of interactions.

The implementation of this system is influenced by exist-
ing technologies and software components. By reusing them,
we need not build the system from scratch. The next section
discusses the implementation details.

5. IMPLEMENTATION

We choose Jabber as the communication platform, a se-
mantic-web ontology as the context representation format,
and a publish/subscribe (pubsub) facility as a way to access
context.

Jabber (www.jabber.org), based on the Extensible Mes-
saging and Presence Protocol (XMPP), is a standardized IM

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

system that enables the exchange of messages and presence
information in near real time. Jabber has been extended
with many more communication mechanisms than instant
messaging (see www.xmpp.org/extensions/). To name a
few, Jabber supports ad-hoc commands, RPCs, audio/video
conversations, SOAP over XMPP, and so on. Jabber enti-
ties include human users, devices, and software applications.
They all use XMPP to communicate with each other. The
data exchanged in Jabber is in XML.

As an IM system, Jabber provides a presence model, where
a user can specify his presence such as “away” or “do not
disturb,” and allow or deny subscription requests from other
users. Once there is a presence change, the Jabber server
notifies all subscribers. Jabber also extends traditional pres-
ence to include additional attributes such as the user’s loca-
tion, activities, and mood. In our case, we add willingness
as part of the presence, so that the sender receives it as a
presence subscriber and can compare it with the importance.

Some other features of Jabber are also important. It has a
multi-tier security model; it provides server-side storage for
clients that may be used to save user-specific information,
such as preferences.

‘When modeling non-intrusive computing, we mention that
in the filter stage, importance and willingness need to be
modified so that they are more appropriate, and that in
the delivery stage, there are a number of feasibility crite-
ria that eliminate infeasible candidates. Both procedures
require context as summarized in Figure 5, and the use of
more and better context can yield better results.

The Web Ontology Language (OWL) [7] provides a stan-
dard mechanism for representing context. The underlying
data model of OWL is the Resource Description Frame-
work (RDF) [8]. RDF describes knowledge using triples of
a subject, a predicate, and an object. The object in one
triple may be the subject of another. Using web ontologies
is a significant trend, as both OWL and RDF are open and
standardized by W3C. Furthermore, they are designed to be
exploited by computers.

SPARQL [9], also standardized by W3C, is a query lan-
guage for RDF data. It uses a syntax similar to SQL.
The following query example returns all devices in room
DC3552D. SPARQL allows multiple where clauses to form
a complex query.

select 7device
from devices.owl
where
{
?device subsumedBy "DC3552D"
¥

With OWL and SPARQL, programs can retrieve desired
context by issuing appropriate queries. However, in a ubiqui-
tous-computing environment, some context changes often,
such as the number of users in a room, the queue length of
a printer, and so on. It is more efficient to push the changed
context to applications than to require them to request it
every time. We use pubsub for this purpose. If the object
of an RDF triple is dynamic, then a URI is placed in the
RDF triple, pointing to the corresponding node in a pubsub
facility where the actual data can be obtained.

Our implementation has two major parts. One is a con-
text manager that provides context support for the non-
intrusive-computing model; the other embeds the model into

a Jabber client. For the context manager, we developed
iContext, a Jabber server component. The ontology scheme
is adopted and extended from SOUPA (Standard Ontology
for Ubiquitous and Pervasive Applications) ontologies [2].
iContext accepts SPARQL queries from clients. Results are
returned in the XML format defined by [10]. The pubsub
facility uses Openfire (www.igniterealtime.org/projects/

openfire/index. jsp), an open-source Jabber/XMPP server.

We then modified Spark, a Jabber client from the same
company as Openfire. For the filter stage, we add impor-
tance and willingness at the sender and the receiver sides
respectively. Willingness is treated as part of the presence.

Figure 7 shows screenshots of a modified Spark Jabber
client. The upper picture shows that the receiver is set-
ting his willingness from an editable combo-box. Then this
willingness is propagated to the sender (the middle part in
Figure 7), because the sender subscribes to the receiver’s
presence.

The bottom part shows the sender composing a message
with importance 0.5. The message is dropped if the impor-
tance is less than the unwillingness. Otherwise, the message
is sent to the receiver. The net importance is appended at
the end the message and also sent to the receiver, as the
effectiveness criterion in the delivery stage needs it.

Note that it is inconvenient to always set willingness man-
ually. We developed an algorithm to obtain willingness val-
ues. In the “set status message” window, there is a check box
to “infer willingness automatically.” Once selected, we check
the receiver’s Google calendar, door status, and IM presence,
each of which is mapped to some value in [0, 1]. If the calen-
dar entry is free, the value is 0, and 1 otherwise. The door
angle measurement can be normalized to range over [0, 1],
and discrete values can be assigned to different presence set-
tings. Then the three values are averaged as the willingness.
This mechanism may not be always accurate, however, it
serves as an example to illustrate possible automation using
context. For the importance, the sender will set it for indi-
vidual interactions, similar to the priority level in electronic
mails. This is just one way to set willingness and impor-
tance. We imagine that different applications and systems
will use different algorithms or inference mechanisms to de-
termine the values for importance and willingness.

For the delivery stage, when the modified Spark client re-
ceives an interaction, it sends SPARQL queries to iContext.
A simplified version of such a query is the following.

select 7d 7effectiveness 7overtness
from [...]
where
{
?d EFFECTIVENESS 7effectiveness .
?d OVERTNESS 7overtness
?d subsumedBy "DC3552D"
?d AVAILABLE "true"
T

The query retrieves the effectiveness and overtness of de-
livery candidates that are in DC3552D and available currently.
We then use exhaustive search to determine the appropriate
delivery candidates and forward the interaction. Next, we
illustrate how a non-intrusive-computing system works.

When the system starts up, the static context of each de-
vice is placed into the ontology by the system administrator,
and the dynamic context is updated by the Jabber wrappers

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

Presence | © Available -
Message | I'm Available |
Willingness | 0.6 [+
Priority [1 |

Save for future use

["] Infer willingness automatically

Ok | | Cancel

Spark Contacts Actions Help

x10agent
O Available -

2 %0 DRI AW

¥ Friends {1 onling)

& h8chen -|'ni Available Willingriess: 06
= Offline Group
c_;'f\ Contacts * Conferences Iy location
|‘EJ Search for other people onthe server i £l

@ xlOagent

@ | x10agent &=
i

(9:15 PM) x 10agent: hi

(2;15 PM) Hao: hello

(9:15 FM) % 10agent: hello

(9:16 FM) Hao: please turn on the lamp
(9. 15 PM) x 10agent: okay

() Importance: |D.5 =i %
|

Figure 7: Filter-stage implementation on Spark

of devices.

The receiver reflects her willingness explicitly or the client
software infers it automatically. The sender will obtain it
through Jabber presence after subscribing to the receiver’s
presence. Thus the sender’s Jabber client can compare the
importance of the interaction with the importance thresh-
old when it attempts an interaction. If it decides that the
interaction, such as a message, is deliverable, it appends
the net importance to the body element of the message’s
XML stanza and delivers the message to the receiver’s client.
Stage 1 in Figure 8 shows this process.

In Stage 2, upon receiving a message, the receiver client
first truncates the net importance from the XML message
body and then sends SPARQL queries to the context man-
ager, iContext. The queries ask for feasible delivery can-
didates at the receiver’s location. iContext executes the
queries and returns XML results. The receiver client is then
able to apply the effectiveness and overtness criteria on fea-
sible candidates. The last step is to forward the message
without the net importance to the selected delivery candi-

Stage 1:
filtering

B B interact------._. .
Sender | Receiver
client [T .| client

Jabber
server

——
Stage 2:
delivering o emamemeemTenn ST meesneen e
Receiver | ™.
XML result I 1 client [
Jabber N
server H L request
i deliver /
__ Transport connection
—————————— Logical connection
Figure 8: System illustration
dates.

Some of the devices in this scenario are public, such as the
whiteboard and the printer in Figure 8. To prevent users,
such as newcomers, from abusing them, and also increase se-
curity, we implemented a light-weight authentication mech-
anism, where the receiver client has to be authenticated be-
fore it can deliver any interaction to those devices. With
this mechanism, a user first sends a subscription request to
the Jabber wrapper of the device. If it is approved, the de-
vice’s Jabber wrapper adds the subscriber to its privacy list,
so that all further communications are allowed.

The above procedure may happen in one of two ways. If
a user is known to an environment, such as Alice to her lab,
then the system administrator may set up the subscription
and the privacy lists statically, so that she is allowed to use
all public devices at any time. If a user is new to an en-
vironment, for example, when Bob comes to Alice’s lab for
a meeting, then Bob has to be authenticated by the white-
board in Alice’s lab. There is a password that Alice can tell
Bob to include in his subscription request to the whiteboard,
to establish the subscription.

Once the receiver client determines the final delivery can-
didates, and authenticates to public ones, it delivers the in-
teraction.

If there are changes in context, such as a sensor sensing
movement, a printer load becoming heavy, or no available
display space on the whiteboard, information is updated and
pushed by devices and their wrappers to context subscribers
through the pubsub facility. Then for new interactions, the
receiver client retrieves updated feasible candidates.

6. CONCLUSIONS

In pervasive computing, users can be disturbed by unnec-
essary interactions. The major contribution of this paper
is a model to address the intrusion problem for the receiver
and other users. The model involves four essential factors
in two stages: importance and willingness in the filter stage
and effectiveness and overtness in the delivery stage. We

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3473
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3473

quantify these factors and link the two stages through the
net importance.

We choose existing technologies and frameworks in build-
ing our system so that we can leverage their features and
benefit from their standards.

For future work, we should expand to one-to-many inter-
actions. A natural approach is to treat a one-to-many inter-
action as many one-to-one interactions and use the existing
model to filter and deliver them sequentially. However, this
may result in some interactions being delivered while others
are not, depending on the willingness of individual receivers.
A different approach is to group receivers together, and con-
sider the aggregated willingness.

Although our system has been used mainly by develop-
ers, we will also deploy it for others, and investigate such
issues as how many intrusive interactions can be filtered,
how effective the chosen delivery candidates are, what is an
appropriate overtness threshold, and so on.

7. REFERENCES

[1] G. Cabri, L. Leonardi, and F. Zambonelli.
Mobile-Agent Coordination Models for Internet
Applications. Computer, 33(2):82-89, 2000.

[2] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA:
Standard Ontology for Ubiquitous and Pervasive
Applications. In International Conference on Mobile
and Ubiquitous Systems: Networking and Services,
Boston, MA., pages 258—267, August 2004.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and
P. Steenkiste. Project Aura: Toward Distraction-Free
Pervasive Computing. IEEE Pervasive Computing,
1(2):22-31, April-June 2002.

[4] S. D. Ramchurn, B. Deitch, M. K. Thompson,

D. C. D. Roure, N. R. Jennings, and M. Luck.
Minimising Intrusiveness in Pervasive Computing
Environments using Multi-Agent Negotiation. In First
Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services
(MobiQuitous’04), pages 22 — 26, Boston,
Massachussets, USA, August 2004.

[5] M. Romadn, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. A Middleware
Infrastructure for Active Spaces. IEEE Pervasive
Computing, 1(4):74-83, October-December 2002.

[6] C. Thompson. Meet the Life Hackers. The New York
Times Magazine, pages 40—45, October 2005.

[7] W3C. OWL Web Ontology Language Overview,
February 2004. http://www.w3.org/TR/owl-features/.

[8] W3C. Resource Description Framework (RDF), 2004.
http://www.w3.org/RDF/.

[9] W3C. SPARQL Query Language for RDF, January
2008. http://www.w3.org/TR /rdf-sparqgl-query/.

[10] W3C. SPARQL Query Results XML Format, January
2008. http://www.w3.org/ TR /rdf-sparql-XMLres/.

[11] Wikipedia. Dynamic programming, March 2008.
http://en.wikipedia.org/wiki/Dynamic_programming.

[12] Wikipedia. Knapsack problem, February 2008.
http://en.wikipedia.org/wiki/Knapsack_problem.

