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ABSTRACT
We consider a peer-to-peer multicast video streaming system
in which untrusted intermediaries transcode video streams
for heterogeneous mobile peers. Many different legitimate
versions of the video might exist. However, there is the risk
that the untrusted intermediaries might tamper with the
video content. Quality estimation and tampering detection
are important in this scenario.

We propose that each mobile peer sends a digest of its re-
ceived video to a quality monitoring server which has access
to the original video. The digest is a Slepian-Wolf coded
projection of the received video. Distributed source coding
provides rate-efficient encoding of the projection by exploit-
ing the correlation between the projections of the original
and received videos. Two different projections are designed
for quality estimation and tampering detection, respectively.
We show that the projections can be encoded at a low rate
of just a few kilobits per second. Compared to the ITU-T
J.240 Recommendation for remote PSNR monitoring, our
scheme achieves a bit-rate which is lower by at least one
order of magnitude.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Algorithms

Keywords
distributed source coding, video quality estimation, tam-
pering detection, transcoding, peer-to-peer multicast video
streaming

1. INTRODUCTION
Peer-to-peer streaming can efficiently deliver media content
to a large population [3, 7, 9, 13]. A recent extension applies
video multicasting to mobile peers with different decoding
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and display capabilities [7, 8]. A key feature of this system
is that intermediaries transcode the video stream to accom-
modate the heterogeneous capabilities of mobile peers [8].
Therefore, many differently encoded versions of video ex-
ist. On the other hand, the intermediaries might tamper
with the video for many reasons, such as inserting unautho-
rized advertisements or piggybacking unauthentic contents.
Quality estimation and tampering detection are important
tasks and this paper addresses how to efficiently exchange
the information to achieve these goals.

In prior work, we have proposed media authentication sys-
tems in which a server provides Slepian-Wolf coded projec-
tions of original media as authentication data to users so
that they can distinguish legitimate encodings from tam-
pered copies [5, 12]. In an extension, the users can further
estimate the received image quality [4] using a projection de-
rived from the J.240 recommendation [1]. These approaches
are suitable when the received and original videos are at the
same frame rate and resolution, but a more rate-efficient ap-
proach is possible when the mobile peers receive videos that
are at lower resolutions or lower frame rates.

We propose that each mobile peer sends the Slepian-Wolf
coded projection of its received video to a quality monitoring
server via a feedback channel, instead of the server sending
the Slepian-Wolf coded projection as in prior work [5, 12, 4].
The quality monitoring server decodes the feedback data us-
ing the original video as side information. This architecture
is advantageous for two reasons. The mobile peers are re-
sponsible for Slepian-Wolf encoding, which is much less com-
putationally demanding than Slepian-Wolf decoding. More-
over, only the quality monitoring server has access to the
full resolution video. Decoding the Slepian-Wolf coded pro-
jections of lower resolution video using full resolution side
information is more efficient than decoding the coded pro-
jections of full resolution video using lower resolution side
information.

In Section 2, we will describe the proposed quality monitor-
ing schemes and the two classes of projections for quality es-
timation and tampering detection, respectively. Simulation
results in Section 3 will demonstrate the tradeoffs between
performance and feedback data rates for both cases.

2. VIDEO QUALITY MONITORING
Fig. 1 depicts the proposed quality monitoring system using
distributed source coding. We denote the original video as
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Figure 1: Proposed video quality monitoring scheme using distributed source coding.

y and the received video as x. Each mobile peer provides
feedback data consisting of a Slepian-Wolf coded random
projection of the received videos. The quality monitoring
server uses the projection of the original video as side infor-
mation to decode the feedback data. It then analyzes the
projections either to estimate the quality in terms of recon-
struction Peak Signal to Noise Ratio (PSNR) or to detect
possible tampering by an adversary. We first describe the
overall operation of the system, leaving the details of the
random projections and analysis methods to Subsection 2.1
for quality estimation and to Subsection 2.2 for tampering
detection.

The right-hand side of Fig. 1 shows the mobile peer. It
applies a pseudorandom projection (based on a randomly
drawn seed Ks) to its received video x and quantizes the
projection coefficients X to yield Xq. These quantized co-
efficients are then coded by a Slepian-Wolf encoder based
on low-density-parity check (LDPC) codes [6]. The mobile
peer sends the Slepian-Wolf bitstream S(Xq) as feedback
data back to the quality monitoring server (shown on the
left-hand side of Fig. 1) through a secure channel.

The mobile peer pseudorandomly generates a projection as a
16x16 block P according to a seed Ks. The seed changes for
each frame and is communicated to the quality monitoring
server along with the Slepian-Wolf bitstream. This prevents
a malicious attack which simply confines tampering to the
nullspace of the projection. For each 16x16 nonoverlapping
block Bi of x, the inner product 〈Bi,P〉 is quantized into
an element of Xq . The rate R of Slepian-Wolf bitstream
S(Xq) is determined by the joint statistics of Xq and Y . If
the conditional entropy H(Xq|Y ) exceeds the rate R, then
Xq can no longer be correctly decoded [10]. Therefore, we
choose the rate R to be just sufficient to decode given x at
the worst permissible quality.

Upon receiving the feedback data, the quality monitoring
server first projects the original video y into Y using the
same projections as at the mobile peer. A Slepian-Wolf de-

coder reconstructs X ′
q from the Slepian-Wolf bitstream us-

ing Y as side information. Decoding is via LDPC belief
propagation [6] initialized according to the statistics of the
worst permissible degradation for the given original video.
Finally, the quality monitoring server analyzes the recon-
structed projection X ′

q and the projection Y of the original
video either to estimate video quality in terms of reconstruc-
tion PSNR or to detect tampering.

2.1 Quality Estimation
For quality estimation, we use the projection defined in the
feature extraction module (shown in Fig. 2) of the J.240
recommendation [1]. Each 16x16 block Bi is whitened in
both spatial and Walsh-Hadamard Transform (WHT) do-
mains using pseudorandom number (PN) sequences s and
t, respectively, to yield 16x16 block Fi. From this block, a
single feature pixel Fi(k) is selected. Casting Bi and Fi as
1-D vectors, we can write

Fi = H−1THS
︸ ︷︷ ︸

G

Bi

where H is the WHT matrix (casted from the 2-D WHT),
and S and T are diagonal whitening matrices with entries s
and t, respectively. The projection P that produces Fi(k)
is the kth row of G.

Image Block
Bi

Feature  block
Fi

WHT WHT-1

PN sequence
s

Selection

Selected feature 
pixel Fi(k)

PN sequence
t

Figure 2: Random projection of J.240 feature ex-
traction module.
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The analysis method for quality estimation is similar to that
of J.240. In J.240 estimated PSNR (ePSNR) between x and
y is computed as follows:

eMSEJ240 =
Q2

s

N

N∑

i=1

(Xq(i) − Yq(i))
2

ePSNRJ240 = 10 log10

2552

eMSEJ240
,

where N is the number of samples, Yq is quantized version
of Y , and Qs is the quantization step size of Yq and Xq . But
in our system, the quality monitoring server has complete
information about Y , and we propose maximum likelihood
estimation of the MSE between x and y as follows:

eMSEml =
1

N

N∑

i=1

E[(X − Y (i))2|Y (i), Xq(i)]

ePSNRml = 10 log10

2552

eMSEml

We will compare the quality estimation performance of these
two estimators in Section 3.

Finally, we argue that compression of Xq using distributed
source coding is much more efficient then using conventional
coding. Fig. 3 depicts the distributions of X and X − Y of
the first 100 frames of Foreman sequence at CIF resolution,
and shows that X has a large variance whereas X and Y

are highly correlated. We model X|Y as a Gaussian with
mean Y and variance σ2

z , which is unknown at the decoder
but can be estimated.
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Figure 3: Distributions of X and X − Y of the first
100 frames of Foreman sequence at CIF resolution

2.2 Tampering Detection
We model the tampering scenario by way of two-state lossy
channel shown in Fig. 4. In the legitimate state, the chan-
nel performs lossy compression, transcoding and reconstruc-
tion using (for example) H.264/AVC, with PSNR of 30dB
or better. In the tampered state, it additionally includes a
malicious attack. Fig. 5 compares a sample input and two
outputs of this channel. The source video y is Foreman in
CIF. In the legitimate state, the channel is H.264 compres-
sion and reconstruction at 30dB PSNR. In the tampered

state, a further malicious attack is applied: a 15x125 pixel
text banner is overlaid on the reconstructed video.

Video
Compression

Malicious
Attack

Video
Compression

Legitimate
State

Tampered
State

Original
Video y

Received
Video x

Original
Video y

Received
Video xVideo

Transcoding

Video
Transcoding

Figure 4: Two-state lossy channel

(a) (b)

(c)

Figure 5: The first picture of Foreman sequence (a)
y original, (b) x at output of legitimate channel, (c)
x at output of tampered channel.

The legitimate channel introduces quantization errors of lim-
ited magnitude due to lossy compression, while the tam-
pered channel additionally introduces much larger devia-
tions such that joint statistics of X and Y vary depending
on the state of the channel. We illustrate this by plotting
in Fig. 6 the histogram of the difference Z = X − Y , where
X and Y are projections of x and y in Fig. 5, respectively.
We found that using block-wise mean as the projection P
works well. To avoid null-space attacks, the elements in P
are drawn from a Gaussian distribution N (1, σ2) and nor-
malized so that ||P||2 = 1.

The analysis method for tampering detection is based on
hypothesis testing. The null hypothesis H0 that the channel
is legitimate is tested against the hypothesis H1 that the
channel is tampered. We use the likelihood ratio test for

the decision:
∏

i

P0(Xq(i)′|Y (i))

P1(Xq(i)′|Y (i))
≶ T , where P0 is the integral

of a Gaussian at mean Y (i) over quantization intervals of
Xq(i)

′, and P1 is a convex combination of P0 and the uniform
distribution, i.e. P1 = (1 − α)P0 + αUq , for some α in [0,1].
Uq is the integral of a uniform distribution over quantization
intervals of Xq . T is a fixed decision threshold.
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Figure 6: The difference distributions between X

and Y (a) in legitimate state, (b) in tampered state.

3. SIMULATION RESULTS
We use original videos consisting of the first 160 frames of
Foreman, Football, News, Mobile, and Coastguard CIF video
sequences at 30 frame per second (fps) for simulation. To
create untampered received videos, the video sequences are
first compressed and reconstructed by H.264 with quanti-
zation parameters (QP) 21, 24 and 26, for I-, P- and B-
pictures, respectively. The group of picture (GOP) coding
structure is IBBPBBP and GOP size is 16 frames. Then
the compressed video is transcoded into CIF or QCIF reso-
lution with GOP structure IPPP, GOP size 16 frames, and
QP at most 38. The reconstruction yields the untampered
received videos. For the experiments on tampering detec-
tion only, we additionally overlay a 15x125 text banner of
random luminance from [0,255] at a random location of each
frame to create the tampered videos.

At the mobile peer, a feedback unit consists of 16 frames. In
the simulations, we vary the quantization of the random pro-
jection coefficients to different numbers of bitplanes. Each
bitplane is coded at the Slepian-Wolf encoder using LDPC
Accumulate (LDPCA) codes [11] with block size of 6336 bits
for each CIF bitplane and 1584 bits for each QCIF bitplane.
At the quality monitoring server, the bitplanes are condi-
tionally decoded as in [2].

3.1 Quality Estimation Performance
Fig. 7 shows the average PSNR estimation error as we vary
the number of bits in quantization, comparing the maximum
likelihood and J.240 PSNR estimation methods. Each point
represents the average PSNR estimation error |ePSNR −
PSNR| of the luminance component over 350 measurements
using 5 video sequences, 10 GOPs per sequence, and 7 trans-
coding QPs from the set (26, 28, ..., 38). Fig. 7 indicates we
can get PSNR estimation error of just 0.3 dB with maximum
likelihood estimation using 7-bit and 8-bit quantization for
CIF and QCIF, respectively. This compares favorably with
using 10-bit quantization for 0.3 dB PSNR estimation error
with J.240 estimation.

Fig. 8 compares the rate of the Slepian-Wolf coded feedback
data and the entropy of the quantized coefficients Xq , as we
vary the number of bits in quantization. Each rate point
represents the rate R required to decode X ′

q given x at the
worst permissible quality (transcoding QP 38) for all GOPs
in all test video sequences. These results indicate that, at a
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Figure 7: Average PSNR estimation error versus
the number of bits in quantization.

rate of 0.006 bits per pixel of the received video, the mobile
peers can send X in 7-bit precision using distributed source
coding, but in less than 2-bit precision using conventional
coding.

Fig. 9 combines the results of Figs. 7 and 8, comparing dif-
ferent combinations of estimation and coding methods. We
plot the average PSNR estimation error versus the feedback
data rate in kilobits per second (kbps), for videos at 30 fps.
At average PSNR estimation error of 0.3 dB, maximum like-
lihood estimation and distributed source coding can reduce
the feedback data rate up to 85% compared to J.240. This
means that a feedback data packet of size 1500 bytes can
provide PSNR estimation with less than 0.3 dB error for up
to 0.7 second of CIF or 1.1 seconds of QCIF video at 30 fps.

3.2 Tampering Detection Performance
The tampering detection performance is evaluated per frame
using a 5600 legitimate frames and 5600 tampered frames.
We measure the false acceptance rate (the chance that a
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Figure 8: Minimum decodable rates versus the num-
ber of bits in quantization for X at the worst per-
missible quality.

tampered frame is falsely accepted as a legitimate one) and
the false rejection rate (the chance that a legitimate frame
is falsely detected as tampered one.)

Fig. 10 compares the receiver operating characteristic (ROC)
curves for tampering detection with different numbers of bits
in quantization by sweeping the decision threshold T in the
likelihood ratio test or the likelihood test. In the likelihood
ratio test, we set the variance of the Gaussian in P0 to be
2 and α (the convex combination parameter in P1) to be
0.01. The likelihood test, which ignores the statistics of
the alternative hypothesis H1, makes a decision based on
∏

i
P0(Xq(i)

′|Y (i)) only. The results justify our choice to
use the likelihood ratio test.

Fig. 10 also indicates that higher quantization precision of-
fers better detection performance, but this comes at the cost
of higher feedback data rate. Fig. 11 plots the ROC equal
error rate versus the feedback data rate in kbps (for video
at 30 fps) for different combinations of hypothesis testing
and coding methods. The equal error rates are interpolated
from the ROC curves as the points where the false accep-
tance rate equals the false rejection rate. Distributed source
coding reduces the feedback data rate by 75% to 83% com-
pared to conventional source coding at the same ROC equal
error rates less than 10%.

4. CONCLUSIONS
We developed a rate-efficient quality monitoring scheme for
mobile peers in peer-to-peer multicast video streaming us-
ing distributed source coding. In our scheme, each mobile
peer sends a Slepian-Wolf coded projection of its received
video to a quality monitoring server. We designed projec-
tions and analysis methods for the server to perform one of
two tasks: quality estimation in terms of PSNR and tam-
pering detection. Distributed source coding offers up to 85%
feedback data rate savings compared to conventional source
coding at the same performance. This means that a feed-
back data packet of size 1500 bytes can accurately estimate
reconstructed PSNR or verify the integrity of at least 0.7
second of CIF video at 30 fps.
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Figure 9: Average PSNR estimation error versus
feedback data rates for videos at 30 fps.
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Figure 11: ROC equal error rates versus feedback
data rates for videos at 30 fps.
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