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ABSTRACT
To perform image retrieval using a mobile device equipped with
a camera, the mobile captures an image, transmits data wirelessly
to a server, and the server replies with the associated database im-
age information. Query data compression is crucial for low-latency
retrieval over a wireless network. For fast retrieval from large
databases, Scalable Vocabulary Trees (SVT) are commonly em-
ployed. In this work, we propose using distributed image matching
where corresponding Tree-Structured Vector Quantizers (TSVQ)
are stored on both the mobile device and the server. By quantizing
feature descriptors using an optimally pruned TSVQ on the mobile
device and transmitting just a tree histogram, we achieve very low
bitrates without sacrificing recognition accuracy. We carry out tree
pruning optimally using the BFOS algorithm and design criteria for
trading off classification-error-rate and bitrate effectively. For the
well known ZuBuD database, we achieve 96% accuracy with only
∼1000 bits per image. By extending accurate image recognition to
such extremely low bitrates, we can open the door to new applica-
tions on mobile networked devices.

1. INTRODUCTION
Recent advances in Content Based Image Retrieval (CBIR) enable
new applications on mobile devices like Mobile Augmented Re-
ality (MAR) [1] and CD cover recognition [2]. Such applications
typically use a client-server model whereby a mobile client queries
a database at the server. Since it is usually infeasible to store a large
image database on the client, query data must be sent to the server.
Both system latency and communication cost can be reduced by
sending fewer bits. Compression can help to significantly reduce
the amount of data transmitted over the wireless channel and the
backhaul links in a mobile network. Motivated by these considera-
tions, we propose a novel low-bitrate method for CBIR.

1.1 Prior Work
Robust local image features are commonly used for CBIR. Popular
types include Scale-Invariant Feature Transform (SIFT) [3], Gradi-
ent Location and Orientation Histogram (GLOH) [4], and Speeded-
Up Robust Features (SURF) [5]. In scalable retrieval, a fast search
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Figure 1: An example of a Tree Structured Vector Quantizer

(TSVQ) with D = 3 and K = 3. A SVT is obtained by perform-

ing hierarchical k-means clustering of sample feature descrip-

tors. The leaf nodes are marked blue in color, while the interior

nodes are marked gray. The level-by-level scan order is used

for run length coding in the histogram coding scheme proposed

in Section 4.

through a large database can be achieved using a hierarchical bag-
of-words classifier, such as a Scalable Vocabulary Tree (SVT) [6]
or a Pyramid Match Kernel (PMK) [7]. Both the SVT and PMK
train a classification tree using hierarchical k-means clustering of
feature descriptors.

Mobile CBIR entails transmitting query features from a mobile
device equipped with a camera, over a wireless network, to a re-
mote server containing the database. Several schemes have been
proposed for compressing local feature descriptors in recent liter-
ature. Yeo et al. [8] have proposed compression of SIFT features
by random projections. In our work [9], we have studied transform
coding of feature descriptors. In [10], we propose a framework,
CHoG (Compressed Histogram of Gradients), for creating low bi-
trate feature descriptors. In [11], Chen et al. show that storage
of the Tree-Structured Vector Quantizers (TSVQ) which forms the
core of SVTs is feasible on mobile devices and propose tree his-
togram encoding. Chen et al. reduce bitrate significantly by trans-
mitting sets of features as a compressed histogram in lieu of com-
pressing individual features. The codec exploits the fact that a bag
of local image features has no inherent ordering and the tree his-
togram suffices for accurate classification with SVTs.

1.2 Contributions
As an extension to previous work [11], we propose methods for
trading off bitrate against matching performance via optimal tree
pruning BFOS [12] algorithms. Prior work [2, 6, 11] uses a large
TSVQ generated by hierarchical k-means clustering of training fea-
ture descriptors. It is desirable to prune the large TSVQ to a much
smaller size without adversely impacting classification accuracy of
the SVT. A smaller tree has three important advantages: (1) it can
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be stored more easily at both the mobile client and server, (2) it
enables significant bitrate savings in tree histogram coding because
smaller tree histograms are generated and (3) it reduces the pro-
cessing time on the mobile client. In this paper, we show how
to systematically prune a large TSVQ using the BFOS algorithm
[12] with cost functions that perform well for SVT classification.
With tree histogram coding, and optimal tree pruning algorithms,
the number of bits needed to query an entire image is now compa-
rable to the number of bits in a single uncompressed SIFT feature.
For the well known ZuBuD database, we achieve 96% accuracy
with ∼1000 bits per image. For a ∼5500 CD cover image database,
we achieve ∼90% accuracy with ∼2500 bits per image.

1.3 Overview
In Section 2, we discuss SVTs and the image retrieval pipeline. In
Section 3, we discuss the distributed image matching model where
identical SVTs are available on both client and server. In Section 4,
we describe different schemes for compressing feature data on the
client. In Section 5, we review the BFOS algorithm and propose
different functionals for pruning a large SVT into smaller trees.
Finally in Section 6, we present the bitrate vs. classification-error-
rate trade-offs for the ZuBuD and CD datasets.

2. SCALABLE VOCABULARY TREE
A Scalable Vocabulary Tree (SVT) is obtained by performing hier-
archical k-means clustering of sample feature descriptors. Two im-
portant parameters of the resulting classification tree are its branch
factor, K, and tree depth, D. Initially, k-means is run on all of the
training data with K cluster centers. The quantization cells are fur-
ther divided by recursively repeating the subdivision process until
D levels of the tree are obtained. This idea has long been familiar to
the compression community as a Tree-Structured Vector Quantizer
(TSVQ). The SVT aditionally comprises an inverted file at each
node that references database entries (i.e., images) that contain in-
stances of that feature descriptor.

The maximum number of nodes at the Lth level is KL, correponding
to a balanced tree. Since the tree need not be balanced, we let XL

be the actual number of nodes at level L, and the ith node in level
L be denoted nL

i . Also let the children set of node nL
i be given by

C(nL
i ). An example is shown in Figure 1 for D = 3 and K = 3. In

practice, D = 6 or D = 7 and K = 10 are commonly selected for
good performance [6].

An image I is classified by quantizing its feature descriptors ac-
cording to the SVT by traversing from top to bottom and greedily
choosing the nearest node at each level [13]. Let the visit count InL

i

denote the number of descriptors of I which are quantized to node
nL

i . The image is compactly summarized by the tree histogram,
which is the set of all visit counts. Because a parent node is visited
whenever one of its children is visited, the visit count at level L can
be calculated from the visit counts at level L+1 as

InL
i
= ∑

n j ∈ C(nL
i )

In j
. (1)

Because of the hierarchical relationship of node counts, the en-
tire tree histogram can be reconstructed from the counts of the leaf
nodes. This property enables very efficient coding of the histogram
as shown in Section 4.3.

Dissimilarity between two images is measured by comparing their
tree histograms after entropy weighting. We refer to all the images

with the same label as an image class. Nodes visited by fewer im-
age classes possess greater discriminative value than nodes visited
by many image classes. Nistér [6] recommends assigning to node
nL

i the weight

wL
i =

{

ln
(

|C|/|CL
i |

)

if |CL
i | > 0

0 if |CL
i | = 0

, (2)

where |C| is the total number of image classes in the database and
|CL

i | is the number of database image classes with at least one de-

scriptor having visited node nL
i . The weighted histogram for image

I is a vector of all entropy-weighted visit counts through the entire

SVT:
[

wL
i InL

i

]

. Let the weighted histogram for a query image be

given by Q, and the mth database image by Dm, then their dissimi-
larity score is

d (Q,Dm) =

∥

∥

∥

∥

Q

‖Q‖ 1

−
Dm

‖Dm‖ 1

∥

∥

∥

∥

1

. (3)

By measuring d (Q,Dm) for each database image, the closest mat-
ches can be determined. We return the database image with the
smallest dissimilarity score as the query result. We define classi-
fication-error-rate as the percentage of query images recognized
incorrectly.

In Section 5.1, we prune a large SVT with the BFOS algorithm
to create smaller unbalanced trees. Here, we extend the scoring
method to unbalanced trees. To avoid favoring deeper features over
shallower features in the scoring scheme, we make the path length
of all features down the tree the same. For the paths that terminate
early, we repeat the leaf node count down to the deepest level of
the tree without splitting. However, we note that this causes only a
small difference in the retrieval results.

3. CLIENT-SERVER MODEL
Many applications of CBIR require that a query be transmitted
to a server for matching against a large database. One straight-
forward approach simply transmits the query image itself, usually
with some compression (such as JPEG). In more recent work, local
features descriptors are extracted at the client and these are trans-
mitted [1, 2, 11]. Upon receipt, the server processes these feature
descriptors to perform matching against a database using an SVT.
In this work we propose SVT matching that is distributed between
client and server. Both the client and server hold a copy of the same
TSVQ, but only the server stores the inverted files. It was shown in
Chen et al. [11] that it is feasible to store TSVQs in RAM on cur-
rent mobile devices. Using our tree pruning technique, storage of
the smaller pruned trees will become even more practical on mobile
devices with limited RAM.

A block diagram of the proposed distributed SVT is shown in Fig-
ure 2. It allows us to compress and transmit only the information
essential for the SVT matching and thereby achieves very low bi-
trates, while maintaining high accuracy.

4. FEATURE COMPRESSION
Since feature descriptor data must be sent over a wireless network
we wish to compress these data. In this section, we discuss different
schemes for transmitting features for the distributed SVT approach
discussed in Section 3. For each of the schemes, features are first
quantized by TSVQ.
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Figure 2: Distributed image matching where identical trees are

used at both client and server.

4.1 Fixed-Length Coded TSVQ
We represent quantized features using a fixed-length code. If the
number of leaf nodes in the SVT is Nleaf, each feature is represented
with dlog2(Nleaf)e bits. Each feature is encoded individually and
the order of features is maintained.

4.2 Entropy-Coded TSVQ
We represent quantized features using variable-length codes. Var-
iable-length Huffman codes are trained for the alphabet of leaf
nodes of the TSVQ using the statistics of the database features.
Similar to Section 4.1, each feature descriptor is encoded individu-
ally.

4.3 Tree Histogram Coding
Neither of the codes in Section 4.1 and Section 4.2 exploit the fact
that a "bag-of-words" approach is used and the tree histogram suf-
fices for accurate classification. The compactness of the histogram,
which enables fast search, additionally provides significant bitrate
savings compared to the fixed-length and entropy coding schemes
proposed in Sections 4.1 and 4.2. The gain arises since the order
among the feature descriptors can be discarded.

Here, we extend the rate-efficient lossless encoder for tree his-
togram coding proposed in Chen et al. [11]. The tree histogram
codec exploits the hierarchical relationship between the nodes dis-
cussed in Section 2. The histogram of leaf node counts suffices
for reconstructing the entire tree histogram at the decoder. Hence,
the proposed encoder transmits only the leaf histogram, while the
decoder can easily reconstruct histograms at higher levels.

A typical query image produces several hundred features. In con-
trast, a typical SVT has a number of leaf nodes much larger than the
number of features in a query image, which motivates the encod-
ing of the length of zero-runs between positive-count nodes. SVTs
need not be balanced, as illustrated in Figure 1. We traverse the
leaf nodes level by level in the scan order shown in Figure 1 and
run-length encode the zeros in the sequence. For example, for the
tree shown in Figure 1, the sequence [In1

1
, In2

0
, In2

1
, In2

2
, In2

3
, In2

4
, In2

5
] is

run length encoded where InL
i

is the node visit count for nL
i . The

zero-run lengths and and non-zero node counts are encoded inde-
pendently by an arithmetic coder.

Since the tree histogram is a bag-of-words representation, the or-
der among the feature descriptors is arbitrary. The number of bits
saved by not transmitting the order can be significant at low bi-
trates. For N distinct descriptors, there are N! different orderings.
If each order is equally likely, it requires log2(N!) bits to commu-
nicate a particular order. Using Stirling’s approximation for large
N, we find

log2(N!) ≈ N(log2(N)−1/ ln2)+1/2log2(N). (4)

Any codec that represents the node identity for each descriptor
would have to spend this extra number of bits, which our codec
successfully avoids. We show in Section 5 that the gains from his-
togram coding are significant.

4.4 Data Sets
Our experiments use two image databases. The first database is the
Zurich Building Database (ZuBuD), consisting of 1,005 database
images representing five views of CZuBuD = 201 different building
facades in Zürich [14]. The ZuBuD query set consists of 115 im-
ages that are not contained in the training set. On average, each
ZuBuD query image produces N ≈ 800 SURF features. The sec-
ond database is a CD Database (CDD), consisting of 5508 database
images (500 × 500 pixels resolution) representing three different
perspective views of CCDD = 1836 different CD covers [15, 16]. In
Chen et al. [16], we have shown how maintaining multiple perspec-
tively distorted views of each CD image in the database improves
retrieval performance. Out of this database, 100 CD covers are
randomly chosen, printed on paper, inserted into jewel cases, and
photographed in different environments, resulting in 100 query im-
ages [15]. On average, each CDD query image produces N ≈ 400
SURF features.

4.5 Coding Results
In this section, the bitrate savings of histogram coding versus fixed-
length and entropy coding are demonstrated with the ZuBuD dataset.
We build an SVT with branch factor K = 10 and depth D = 5 with
the ZuBuD training database. This yields a tree with 104 leaf nodes.
Using the resulting tree and the dissimilarity metric from Section 2
we compute the error rate. The resulting classification-error-rate
is ∼2%. Note that, once the tree is determined, the classification
results and the error rate do not depend on which coder is used.
We observe that fixed length coding takes ∼11000 bits/image, the
entropy coding scheme achieves ∼10000 bits/image, while the his-
togram coding scheme achieves ∼3000 bits/image. These data are
shown in the right-most point on the bitrate vs. classification-error-
rate curves in Figure 4. Note that the performance of the histogram
coding scheme is close to that predicted by Stirling’s approximation
in Equation 4. The histogram coding scheme provides a significant
bitrate reduction.

5. TREE PRUNING
We have shown that we can save significant bitrate with tree his-
togram coding. We now wish to provide a mechanism for trad-
ing off classification-error-rate and bitrate so that even under the
most stringent bandwidth constraints, speedy, but possibly less ac-
curate, classification is performed. A trade-off can be provided by
reducing the size of the SVT. To provide a smaller SVT that is
well-suited for classification, we first build a large SVT with the
standard method. This tree provides small classification-error-rate
and a relatively larger bitrate. Using the BFOS [12] algorithm, we
then prune the nodes which contribute the least to classification ac-
curacy.

In addition to varying the bitrate, tree pruning also provides other
benefits. Pruning prevents over-fitting and can also reduce the mem-
ory resource burden placed on the client. By creating a large tree
and pruning it back so long as the classification-error-rate remains
low, we can simultaneously prevent over-fitting and reduce the re-
quired memory usage. Additionally, since the optimal trees from
the pruning algorithm are nested, we need to store only one tree
at the client and can load the tree that suits the RAM and bitrate
requirements.
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We review the BFOS algorithm in Section 5.1 and discuss differ-
ent functionals for pruning the SVT in Sections 5.2, 5.3 and 5.4.
Finally, we discuss the bitrate vs. classification-error-rate trade-off
for the different functionals in Section 6.

5.1 BFOS Algorithm
Here, we provide a brief review of the BFOS algorithm. We re-
fer the reader to [12] for details. The BFOS algorithm was ini-
tially introduced in the context of classification and regression trees
[17], but extended to variable rate TSVQ in [12]. For variable rate
TSVQs, the algorithm begins with an initial tree, and prunes it back
until it reaches the subtree with the fewest number of leaves that
achieves a given rate distortion trade-off.

First, we define the notation that will be used in this paper. More
rigorous definitions of tree, node, root, etc., can be found in [12].
We define T as the full tree structure. Let t be a node of the tree,
and t0 denote the root of the tree. We define S to be a pruned
subtree of T if they share the same root node, and denote this as
S 4 T . We denote the set of leaf nodes of a tree S as S̃. If a sub-
tree consists of only the single node t, then with a slight abuse
of notation, we use t to refer to the subtree t itself. We define
ψS̃ to be a random variable that takes the node value t ∈ S̃ with
probability P(t). The entropy of a pruned subtree S is denoted
by H(ψS̃) = E[− log2 P(ψS̃)] = −Σt∈S̃P(t) log2 P(t) The entropy
of the entire tree T is denoted by H(ψT̃ ). Similarly, if d(t) is the
distortion at node t, then the expected distortion of a pruned sub-
tree S is E[d(ψS̃)] = Σt∈S̃P(t)d(t), and the expected distortion of
the entire tree is given by E[d(ψT̃ )].

Real valued functions on trees and their subtrees are called tree
functionals [12]. We define a tree functional on a tree S as u(S).
The tree functional for a node t is defined as u(t). Two impor-
tant properties that tree functionals may possess are linearity and
monotonicity. A tree functional is linear if its value is the sum of
the leaves, u(S) = Σt∈S̃u(t). A tree functional is montonically in-
creasing (or decreasing) if it increases (or decreases) monotonically
as the tree grows. More precisely, a tree functional is monotoni-
cally non-decreasing if u(S1) ≤ u(S2) for S1 4 S2 and monotoni-
cally non-increasing if u(S1) ≥ u(S2) for S1 4 S2.

If the overall cost function of a tree (and any of its subtrees), S can
be expressed as

u1(S)+ µu2(S) (5)

where µ > 0, u1(S) is linear and monotonically non-increasing,
and u2(S) is linear and monotonically non-decreasing, then the sub-
tree of S minimizing Equation 5 can be found in linear time in the
number of nodes using the BFOS algorithm [12]. The BFOS al-
gorithm stems from the fact that, when linearity and monotonicity
assumptions hold true, the optimum subtrees which minimize the
Lagrangian sum of u1 and u2 for increasing values of µ are nested.
In other words, it is possible to start with the full tree at u(T ) and
prune back to the root at u(t0), producing a list of nested subtrees
t0 4 Sn 4 ... 4 S2 4 S1 4 T which trace out the vertices of the lower
boundary of the convex hull in the u1 −u2-plane.

5.2 Distortion Based Functional
In the source coding formulation of BFOS in [12], the design goal
is to minimize the quantization distortion for a given rate constraint.
In this case, u1(t) is chosen to be the average distortion of t, and
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Figure 3: Classification-error-rate versus average distortion

for ZuBuD dataset. We start with a tree of K = 10 and

D = 5 and prune the tree back with BFOS algorithm with

u1(t) = − log2 P(t)P(t) and u2(t) = P(t)d(t). We observe

that classification-error-rate increases as average distortion in-

creases.
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Figure 4: Bitrate vs. classification-error-rate trade-off for

ZuBuD data set. We start with a tree of K = 10 and D = 5
and prune the tree back with BFOS algorithm with the dis-

tortion based functional. There are significant gains from his-

togram coding compared to entropy coding the quantized fea-

tures. Note that the histogram coding rate is close to the bound

provided by Stirling’s approximation. The Stirling bound is

obtained by subtracting the ordering rate in Equation 4 from

the entropy.

u2(t) is chosen to be the entropy contribution of t.

u1(t) = P(t)d(t) (6)

u2(t) = −P(t) log2 P(t) (7)

Note for u2(t), H(ψS̃2
) ≤ H(ψS̃1

) for S2 4 S1. And for u1(t),

E[d(ψS̃2
)] ≥ E[d(ψS̃1

)] for S2 4 S1.

Intuitively, we expect classification-error-rate to increase as distor-
tion increases. We observe that this is indeed the case in Figure 3.
The experiments are carried out on the ZuBuD dataset. We observe
that classification-error-rate increases from 4% to 20% as the aver-
age MSE distortion increases from 0.12 to 0.21. Similar trends are
also observed for the CDD data set.

We prune the SVT with the distortion functional and plot the trade-
off of bitrate vs. classification-error-rate for the coding schemes
proposed in Section 4 for the ZuBuD dataset. As expected, the
classification-error-rate decreases as the bitrate increases in Fig-
ure 4. Entropy coding the quantized features yields upto a 33%
gain in bitrate to fixed-length coding at a given classification-error-
rate. We observe that there are significant gains from histogram
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Figure 5: Effect of varying λ on average distortion (a) and con-

ditional node entropy (b) for the ZuBuD dataset. We use BFOS

with the node entropy based functional. We observe that as λ
increases, distortion increases at a given entropy, and the con-

ditional node entropy decreases.

coding compared to entropy coding the quantized features. Fur-
thermore, we observe that the histogram coding rate is close to
the lower bound provided by Stirling’s approximation. With his-
togram coding, we achieve a ∼4% classification-error-rate at bi-
trates as low as ∼1000 bits/image for the ZuBuD dataset. All bi-
trate classification-error trade-off curves hereon are shown for the
histogram coding scheme. The bitrate classification-error trade-off
for histogram coding scheme for the CDD dataset is shown in Fig-
ure 7 in the curves labeled λ = 0.

5.3 Node Entropy Based Functional
To improve the classification accuracy, we propose a node-entropy
functional for pruning the SVT. The functional is based on the idea
that nodes which are visited by feature descriptors from many dif-
ferent database images have less discriminatory power. Each in-
coming feature is quantized to one of the t ∈ T̃ leaf nodes. As
stated in Section 5.1, let ψS̃ be a random variable that takes the

node value t ∈ S̃ with probability P(t). Let C be a random variable
representing a class, and |C| be the total number of classes. We
then define the following probabilities for a pruned subtree S.

• P(ψS̃ = t) = p(t) for t ∈ S̃; the total probability that a feature
descriptor is quantized to leaf node t.

• P(C = c) = p(c) for c = 1, ..., |C|; the prior probability of
class c.

• P(C = c|ψS̃ = t) = p(c|t) for c = 1, ..., |C| and t ∈ S̃; the
probability that a feature descriptor is quantized to leaf node
t belongs to class c.

• P(ψS̃ = t|C = c) = p(t|c) for c = 1, ..., |C| and t ∈ S̃; the
probability that a feature descriptor from an image belonging
to class c is quantized to leaf node t.

Given a tree and a sufficiently large training set, we can easily com-
pute the above quantities. We now define the node entropy of leaf
node t as

H(C|ψS̃ = t) = H(C|t) = − ∑
c∈C

p(c|t) log p(c|t). (8)

When cluster t only has features from one class, H(C|t) = 0. In

general, 2H(C|t) is a lower bound on the number of classes visiting
leaf node t. The larger the value of H(C|t), the less discriminative
the feature cluster.

We define the new functionals as:

u1(t) = P(t)d(t)+λH(C|t)P(t) (9)

u2(t) = −P(t) logP(t) (10)

When λ = 0, u1(t) reverts back to the average distortion functional
proposed in Section 5.2. The conditional node entropy of a pruned
subtree S is obtained as the expectation of the node entropy of its
leaf nodes.

H(C|ψS̃) = ∑
t∈S̃

P(t)H(C|t). (11)

The conditional entropy functional is monotonic and non-increasing
i.e. H(C|ψS̃1

) ≥ H(C|ψS̃2
) for S1 4 S2 [12]. Since average distor-

tion is a monotonic non-increasing functional, the linear combina-
tion in Equation 9 is also monotonic and non- increasing.

Intuitively, the functional is chosen so that discriminative nodes, as
quantified by the node entropy metric in Equation 8, are preserved
in the pruning process. Between pruning two nodes that give a
similar trade-off in rate-distortion, we wish to preserve the node
that provides a better trade-off in node entropy.

We study the effect of varying λ and pruning the tree with the pro-
posed functional in Equation 9. For ZuBuD, we sweep across the
values of λ and study the trade-offs in average distortion E[d(ψS̃)],
conditional node entropy H(C|ψS̃) and entropy H(ψS̃). We observe
in Figure 5, that as λ increases the average distortion increases for
a given entropy, but the conditional node entropy decreases. With
values of λ > 0, a reduction in conditional node entropy H(C|ψS̃)
at a given entropy is obtained at the expense of a higher average
distortion E[d(ψS̃)].

Relationship to Nistér Entropy Weighting

We show the relationship of node entropy to the entropy weighting
proposed by Nistér [6], as described in Section 2. Let |Ct | = |Ci

L|
be the number of classes that have at least one descriptor visiting
node t or node nL

i . If the prior probabilities of all classes |Ct | visit-
ing node t are equal then H(C|t) = log |Ct |. The larger the value of
log |Ct |, the less discriminative the feature cluster. Nistér’s weight-
ing scheme then assigns a positive weighting value inversely pro-
portional to log |Ct | given by:

w(t) = log(|C|/|Ct |) (12)

An alternative weighting scheme that takes class probabilities into
account chooses

w(t) = log(|C|)−H(C|t) (13)

which in practice performs better than Nistér’s weighting scheme [6]
and is used for all results presented in this work. If the prior class
probabilities are the same, the weighting scheme reverts back to
Nistér’s weighting scheme [6].

5.4 Feature Error Rate Functional
In this section, we explore a feature error rate functional for prun-
ing the SVT. Feature error rate has been defined in prior work in the
context of Classification and Regression Trees (CART) [17]. Each
node in the tree is assigned to the class with the highest number of
features quantized to the node. The features that do not belong to
the most dominant class are considered misclassified and the fea-
ture error rate Pe(t) is defined as:

Pe(t) = 1− max
c=1...|C|

p(c|t) (14)
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We define the new functionals as:

u1(t) = P(t)d(t)+λPe(t)P(t) (15)

u2(t) = −P(t) logP(t) (16)

When λ = 0, u1(t) reverts back to the average distortion functional
proposed in Section 5.2.

Intuitively, the functional is chosen so that nodes having a smaller
feature error rate as quantified by the Pe metric in Equation 15, are
preserved in the pruning process. Between pruning two nodes that
give a similar trade-off in rate-distortion, we wish to preserve the
node that provides a better trade-off in feature error rate.

The feature error rate of a pruned subtree S is obtained as the ex-
pectation of the feature error rate of its leaf nodes.

Pe(ψS̃) = ∑
t∈S̃

P(t)Pe(t). (17)

The feature error rate functional is monotonic and non-increasing
i.e. Pe(ψS̃1

) ≥ Pe(ψS̃2
) for S1 4 S2 [17]. Since average distortion is

a monotonic non-increasing functional, the linear combination 15
is also monotonic and non- increasing.

We study the effect of varying λ and pruning the tree with the
new proposed functional in Equation 15. For ZuBuD, we sweep
across the values of λ and study the trade-offs in average distortion
E[d(ψS̃)], feature error rate Pe(ψS̃) and entropy H(ψS̃). Similar to
the node entropy functional in Section 5.3, we observe that as λ
increases, the average distortion increases for a given entropy, but
the feature error rate decreases. With values of λ > 0, a reduction
in feature error rate Pe(ψS̃) at a given entropy is obtained at the
expense of a higher average distortion E[d(ψS̃)].

6. MATCHING RESULTS
We consider both CDD and ZuBuD datasets, and plot the bitrate
classification-error trade-off for both entropy coding and histogram
coding schemes. For CDD, we start with a tree with K = 10 and
D = 6 (∼ 105 leaf nodes), while for ZuBuD we start with a tree
with K = 10 and D = 5 (∼ 104 leaf nodes), and prune the tree with
the proposed tree functionals.

First, we study the bitrate classification-error trade-off for different
values of λ for the ZuBuD data set in Figure 6. We use λ = 0 as
the baseline for comparison in which case u1(t) = P(t)d(t). For
the node entropy functional, we observe that as we increase λ = 0
from 0 to 1/30, the bitrate classification-error trade-off improves.
For λ = 1/30, we obtain up to a 66% decrease in bitrate at a given
classification-error-rate compared to λ = 0. We observe similar re-
sults for the feature error rate functional as we increase λ from 0 to
1. Alternately, we get up to a 5% decrease in classification-error-
rate at a given bitrate, for both node entropy and feature error rate
functionals. The improvement in performance can be attributed to
the lower H(C|ψS̃) or Pe(ψS̃) at a given rate. For both node en-
tropy and feature error functionals, we observe that the BFOS al-
gorithm prunes off the root node early in the pruning process, for
large values of λ . To obtain the points on the trade-off curve for
large λ , we randomly subsample the feature set and plot the bitrate
vs. classification-error-rate trade-off. For the ZuBuD data set, ran-
dom subsampling performs better than the distortion based func-
tional for λ = 0. However, the drawback of random subsampling
is that the full SVT needs to be stored on the client. In addition to
the bitrate savings, significant savings in memory can also be ob-
tained by using the node entropy or feature error rate functionals
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Figure 6: Rate classification-error trade-off for ZuBuD data set

for the histogram coding scheme for the node entropy func-

tional (a) and feature error rate functional (b). A tree with

K = 10 and D = 5 is pruned with the BFOS algorithm and node

entropy and feature error rate based functionals for different

values of λ . For a given classification-error-rate, upto ∼66%
reduction in bitrate is obtained using node entropy and feature

error rate functionals compared to the distortion functional for

λ = 0.
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Figure 7: Rate classification-error trade-off for CDD data set

for the histogram coding schemes for the node entropy func-

tional (a) and feature error rate functional (b). A tree with

K = 10 and D = 6 is pruned with the BFOS algorithm and node

entropy and feature error rate based functionals for different

values of λ . For a given classification-error-rate, upto ∼25%
reduction in bitrate is obtained using node entropy and feature

error rate functionals compared to the distortion functional for

λ = 0.

as shown in Figure 8. At one operating point, we achieve a ∼4%
classification-error-rate at ∼1000 bits/image.

Similar observations are made for the CDD database in Figure 7.
The CDD data set is more challenging because of the larger database
size and more difficult query images. For the node entropy func-
tional, at λ = 1/40, we achieve upto ∼25% decrease in bitrate at a
given classification-error-rate, compared to λ = 0. For the feature
error rate functional, at λ = 2, we achieve upto ∼25% decrease in
bitrate at a given classification-error-rate, compared to λ = 0. Ran-
dom subsampling corresponding to large λ performs on par with
node entropy functional for λ = 1/40 and the feature error rate
functional for λ = 2. However, we can save up to 2× in memory
compared to storing the full tree as shown in Figure 8. At one oper-
ating point, we achieve a ∼10% classification-error-rate at ∼2500
bits/image.

Finally, we plot the memory classification-error trade-off for the
node entropy functional for λ = 1/30 and λ = 1/40 for the ZuBuD

and CDD datasets respectively. Similar memory classification-error
trade-off curves are obtained for the feature error rate functionals.
The memory required to store the SVT on client is directly propor-
tional to the number of nodes in the tree. Compared to storing the
full tree, we can obtain a 2-3× reduction in memory on the client,
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Figure 8: Memory classification-error rate trade-off for the

ZuBuD dataset (a), and the CDD dataset (b). We prune the

tree with the BFOS algorithm with the node entropy function-

als with λ = 1/30 for the ZuBuD dataset and λ = 1/40 for the

CDD dataset. Note that we can get a 2-3× reduction in mem-

ory with little increase in classification-error-rate.

with little increase in the classification-error-rate. The savings in
memory can be critical if the client is a mobile device with very
limited RAM.

7. FUTURE WORK
In this work, we calculate the classification-error-rate by only con-
sidering the closest database candidate. Typically, top database
candidates are further subjected to pairwise comparison using a
ratio test and Geometric Consistency Checking (GCC) [3] with
RANSAC[18]. The classification-error-rate rate can be further re-
duced by carrying out GCC. However, for GCC, we need to com-
municate the locations of all the features in the image to the server.
In [19], we discuss how feature location information can be effi-
ciently compressed using histogram map coding. In future work,
we wish to study the bitrate vs. classification-error-rate trade-offs
when the feature location information is also transmitted.

8. CONCLUSION
We have been able to provide high-accuracy image matching re-
sults at very low bitrates. This is possible by redefining what in-
formation shall be transmitted between the client and the server in
a CBIR system. By having an identical SVT maintained at both
client and server, we can eliminate bits by discarding ordering in-
formation. The resulting tree histogram coding scheme provides
significant reduction in bitrate without affecting the matching ac-
curacy. We further extend this system to operate at various bitrates
by pruning the SVT using the BFOS algorithm. Performance is
improved by using the proposed highly effective pruning functions
based on node entropy and feature error rate. In addition to bi-
trate savings, the proposed pruning methods reduce the memory
requirements of the client and prevents over-fitting. For the ZuBuD

database, the resulting system can achieve 96% matching accuracy
with only ∼1000 bits per image. This is a comparable amount of
data as storing one SIFT feature conventionally. By extending ac-
curate image recognition to such extremely low bitrates, we can
open the door to new applications on mobile networked devices.
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