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ABSTRACT
This paper focuses to a problem domain where several im-
perfect context recognition devices with restricted resources
are located in the same context. The main aim of the paper
is to compare different collaborative decision making meth-
ods in this domain. In particular, the focus is on certain
voting mechanisms and confidence evaluation metrics. Also
computational, space, and communication requirements of
the discussed methods are discussed briefly. The methods
are tested with a real-world dataset containing data from
several sport activities. In addition, an online context recog-
nition platform that is capable to make distributed context
recognition decisions is introduced briefly.
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1. INTRODUCTION
Currently several customer products have built-in sensor

units and are therefore capable to make observations about
their context including information about the environment
of the devices and the state of its user. Usually these de-
vices have quite limited computational, space, and power re-
sources. Therefore there exists an urgent need for developing
light-weight context recognition methods for these devices.

The core of a context recognition system is a pattern
classification algorithm that maps observations to context
classes. In real-world environments, the observations are al-
ways imprecise leading to errors in the context recognition
procedures. Also, the model in the pattern classification sys-
tem is not perfect either, which causes additional errors in
the classification. Therefore, the context recognition system
is always imperfect.
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If several imperfect context recognition systems are lo-
cated in the same context and they can utilize information
available from each other, their joint context recognition ac-
curacy can be significantly higher than individual context
recognition accuracies. There are two main reasons for that:
(1) although the environment where the context recognizers
are located is the same, they all observe it in a slightly dif-
ferent way and therefore their internal model for the pattern
classification algorithm can be different. (2) if several imper-
fect context recognizer join their estimates in a clever way,
their joint estimate can be more accurate. In this paper we
focus on the second case.

The research questions motivating this paper are:

• Given that there are several mechanisms for construct-
ing joint estimates of the context, how much advantage
can be got by using these techniques compared to in-
dividual context recognizers?

• Is it tractable, by the means of computational and
space resources, to compute these joint estimates?

Distributed rational decision making mechanisms such as
auctions and voting protocols are extensively studied in the
game theory and machine learning research fields. A good
survey of differerent mechanisms is [5]. Using voting mech-
anisms as a basis for distributed pattern recognition is stud-
ied in [3]. Committee machines provide an alternative way
to combine different classifiers, see e.g. [2]. Combining local
context information with the information from other context
recognizers is studied in [4].

The paper is organized as follows. At first, in Section 2
we introduce a light-weight pattern classification algorithm
suitable for mobile devices. In Section 3, we discuss various
voting mechanisms that are suitable for computating joint
context recognition estimates. In Section 4, we proceed to a
real-world example that is used for empirical testing of the
discussed methods. In Section 5, we introduce a platform for
Symbian S60 mobile phones that can be used in distributed
context recognition. Finally, we conclude the paper in Sec-
tion 6.

2. LIGHT-WEIGHT CLASSIFICATION
SCHEME

In this section, we discuss a pattern classification algo-
rithm that has very small computational and space require-
ments and is therefore especially suitable for mobile devices.
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We start the section by deriving the algorithm and then we
show computational requirements of the algorithm.

2.1 Minimum-distance classifier
Perhaps the simplest way to do classification of samples is

to calculate a distance from a sample to the ideal elements
that represent classes in the best possible way and then se-
lect the class to which the distance is the smallest. If the
samples are represented in an N-dimensional vector space
then there will be N-1 dimensional hyperplane separating
each class. In that case, it would be natural to use mean
value as the ideal element of each class.

More rigorously, the whole classification procedure can be
expressed as follows: consider a classification task where we
have to associate an N-dimensional sample s to one of the
C-classes. For each class j = 1, . . . , C, we have Ij example
samples xj

i , i = 1, . . . , Ij . Further, let cj represent the ideal
vector for the class j, i.e.

cj =
1

Ij

Ij∑
i=1

xj
i .

Now, the classification to the class j∗ can be accomplished
as follows:

j∗ = arg
C

min
j=1
||s− cj ||,

where || · || is a norm, e.g. Euclidean norm.
The above described linear classifier has several advan-

tages. It has small computational and space requirements.
It is easy to implement on various platforms and teaching
the classifier is very efficient. Moreover, the classifier can be
extended to be adaptive easily.

In reality the data is rarely linearly separable and there-
fore linear classifiers lead to the suboptimal performance.
However, selecting a suitable set of features, i.e. the fea-
tures that maximize linear separativity of the classes, it is
possible to achieve a good classification accuracy also with
linear classifiers.

2.2 Computational requirements of Minimum-
distance classifier

The major advantage of the Minimum-distance classifier
is its small computational and space requirements. Let us
assume that we have C classes. Each of these classes is rep-
resented by an ideal vector in N-dimensional vector space.
Then we have to store C N-dimensional vectors for the clas-
sifier. For each sample to be classified, we have to compare
the sample with C ideal vectors to be able to select the
nearest class. Usually C is quite a small number and hence
computational and space requirements are small. Of course,
the ideal vectors should also be calculated, which requires∑C

j=1 Ij additions but this can be done off-line.

3. DISTRIBUTED DECISION MAKING
Decision making is an old and mature research area. Usu-

ally the goal is to make optimal decisions with respect to a
utility function modelling preferences of the decision maker.
However, if there are multiple decision makers and they only
maximize their own utility value, the final outcome for all
decision makers can be suboptimal. There are several possi-
ble ways to model other decision makers, for example game
theory, probabilistic models, etc. In this paper, we will

adopt a strategy where all the decision makers are acting
individually but they also agree with a common interaction
mechanism, voting mechanisms in this paper. We start the
section by introducing a few voting mechanisms and then
we proceed with providing some theoretical results for these
mechanism. At the end of the section we situate voting in
the area of context recognition and discuss communication
requirements of the voting mechanisms.

3.1 Voting
In the voting mechanisms the basic setting is as follows.

Several independent voters vote on the common subject. In
addition, all the voters are assumed to agree with the voting
mechanism. Different voting mechanisms include:

• Borda count. Let us assume that we have m alterna-
tives. Each voter gives m votes to its first choice, m−1
votes to the second choice and proceeds similarly until
the last one gets only 1 vote. Finally, the alternative
with the maximal number of votes is selected to be the
final outcome of the mechanism.

• Majority voting. Each voter gives a vote to its pre-
ferred option, the final outcome of the mechanism is
the alternative with the highest number of votes.

• Weighted majority voting. Each voter gives a confi-
dence value for its preferred option. Then the con-
fidence values are summed for each alternative. The
final outcome of the mechanism is the alternative with
the highest summed confidence value.

• Binary protocol. All the options are presented to the
voters pairwise. Each voter selects one of two options
and the winner is compared against a new, unseen op-
tion. The process is continued until there are no new
options left. The undesirable property of the binary
protocol is that the final outcome of the mechanism is
depended on the order in which the options are pre-
sented to the voters. Therefore we decided to leave this
mechanism outside of our inspections in this paper.

In these protocols, it is assumed that all the voters make
give their votes in the sincere way. If this not the case, i.e.
we have a voting among insincere voters, the function of a
voting mechanism can change in a drastic way. There is a
lot of research on this are in the game theory literature, see
e.g. [5].

3.2 Voting in context recognition
In the context recognition research field, a context recog-

nition system can be seen as a voter that votes on different
contexts. Although there can be several context recognizers
in the same context, they all might have a slightly different
model of the context and therefore they ability to select the
right context is also different.

As an illustrative example, consider a simple case where
we have two possible contexts and N context recognizer de-
vices located in the same context. Let us further assume
that all the context recognizers share the same probability
P to select the right context class. If we apply the majority
voting mechanism, we can identify two distinct cases, one
with odd number of context recognizers and one with even
number of recognizers. Then the total probability for select-
ing the right context class is given by the Eq. (1) for the



first case and Eq. (2) for the latter case. In the latter case,
if both options get the equal number of votes, we select the
context class randomly.

N−1
2∑

i=0

(
N
i

)
P N−i(1− P )i (1)

N−2
2∑

i=0

(
N
i

)
P N−i(1− P )i

+
1

2

(
N
N
2

)
P

N
2 (1− P )

N
2

(2)

The total probability the obtain the right context recogni-
tion result, defined in Eqs. (1) and (2), is plotted against the
number of context recognizer in Fig. 1. It can be seen that
the joint context recognition accuracy increases drastically
if the individual context recognizers are reasonable good, i.e.
their context recogntion accuracy is more than 80%. If the
context recognizers perform very badly, i.e. their accuracy is
below 0.5, the majority voting decreases the joint accuracy
further. The reason is that then the wrong context class
has the bigger change to get selected that the right one.
Fortunately, if there exist more classes, the change that the
wrong context gets majority of votes is very small. This can
be seen in Fig. 2 where there exits nine context classes.

Figure 1: Two-class context recognition example.

3.3 Confidence in Majority Voting
A crucial question with the weighted majority is how to

define weights for the context estimates. In context recog-
nition systems, a core component is a pattern classification
method that maps the observations to the context estimates.
Therefore there should be a way to measure how well the
pattern classifier is able to accomplish estimation, i.e. how
well the internal model of the context recognition system is
able to capture relationship between the observation and the
contexts.

Such reliability information is not available from all pat-
tern classification methods. However, the minimum-distance
classifier compares the sample to be classified to the class
centers and therefore we can identify the following extreme
cases:

Figure 2: Nine-class context recognition example.

• A sample is located very near of a class mean vector.
In this case, the sample belongs almost surely to the
class.

• Distances between a sample and the mean vectors are
almost identical. In this case, we cannot distinguish
between the classes.

So it seems plausible that we can use the distance as a basis
for the confidence evaluation. A distance between a sample
s and the class mean vector ci is shown in Eq. (3).

di = ||s− ci||. (3)

It would also be a desirable property to limit the confidence
values to the fixed interval, e.g. to the unit interval. This
can be accomplished by dividing all the distances by the
maximal distance value. The procedure is shown in Eq. (4).

d̃i =
di

maxj=1...C dj
. (4)

In this paper, we use an absolute difference between the
maximal and the minimal scaled distance value as a weight-
ing function. The weight w for the estimate is therefore:

w = 1− min
i=1...C

d̃i. (5)

3.4 Communication requirements of the vot-
ing

One crucial aspect of using voting as a basis for distributed
context recognition is a communication requirements of the
voting mechanisms. As all the voters need to be aware of
votes of other voters in the system, all context recognition
estimates need to be broadcasted to all context recogniz-
ers. However, amount of broadcasted information is not
large and therefore if the number of context recognizers is
moderate, communication overhead stemming from voting
mechanism is not remarkable.

In Borda count, each context recognizer has to order pos-
sible context classes and broadcast this ordering to other
context recognizers in the system. Hence, is we have m
context classes, all context recognizers should broadcast m-
dimensional vectors. In the plain majority voting, each con-
text recognizer broadcasts only its estimate to other context
recognizers in the system. Correspondingly, in weighted ma-
jority voting also a confidence value is broadcasted.



4. CONTEXT RECOGNITION EXAMPLE
A realistic collaborative context recognition example is

presented in this section. We start the section by introducing
the Palantir-dataset, which is used for empirical testing in
this paper. Then we discuss test settings in general and
show numerical results from the test runs.

4.1 Dataset in empirical testing
We use the dataset described in detail in [1] as an off-line

data collection for testing methods discussed in this paper.
It is a large data library of realistic context information col-
lected by using various sensors such as accelerometers and
physiological sensors. The data were collected in various
sport activities such as running and walking. In addition to
these simple activities, also a number of combined activities
were recorded, e.g. shopping, eating in the restaurant, sim-
plified soccer playing (passing a ball between two persons)
etc. In this paper we focus only on the simple activities and
soccer playing.

Twelve persons took part in the data collection as test
persons. Most test persons were university students, their
age range was from 19 to 49 years (average 27). The whole
test session for each test subject was several hours long,
average almost 7 hours, and it was divided into two sections:
fixed pre-defined activities and free section. During fixed
activities, there was a particular person present who made
annotations. During free section, persons were allowed to
do freely activities they were interested in and annotations
were done by test persons themselves. In this study we do
not make difference between these two annotation schemes.

Sensors in the system collect both physiological and envi-
ronmental information. The system has four main compo-
nents:

• Embla A10 19-channel recorder device

• Garmin eTrex Venture GPS device

• Suunto X6HR wrist-top computer

• iPaq PDA

Data were stored in the PCMCIA card attached to the Em-
bla device. In this paper, we only use acceleration and heart
rate signals. Overview of the relevant component placement
is depicted in Fig. 3.

The sampling frequency for acceleration sensors was 20
Hz. In addition to the raw signals directly gathered from
sensors, the data library contains several features computed
from the raw data. The features are calculated by win-
dowing the corresponding raw signal with different window
lengths (e.g. 10 seconds) and they include both time-domain
(e.g. maximum and minimum values) and frequency domain
features (e.g. power spectrum entropy). Feature values are
then interpolated so that time resolution for features is 1
second.

In the tests carried out in this paper, we have selected
a subset of ten features leading to the best classification
accuracy from all available features by using the sequential
forward selection method [6]. The selected features were
based solely on the acceleration signals.

4.2 Test settings
During the data collection phase of Palantir-data library,

several people collected data independently. However, the

Figure 3: Overview of the sensor placement.

activities they performed were the same and the environ-
ments were almost the same. In this study we need several
independed people doing the same activity at the same time
and therefore we make an assumption that environments do
not change between different data collection sessions and we
also assume that the subjects did the activities at the same
time.

In empirical tests we have a subject pool of 6 people. From
this pool we select randomly a number of subjects to be
placed to the same environment. A number of people varied
from only 1 person to all 6 persons. The activities used in
this study are enlisted in Table 1.

Table 1: Activities used in the context recognition
test settings in this paper. Simplified soccer in-
cluded walking, running, and passing a ball between
two test subjects.

Bicycling
Simplified soccer
Lie
Nordic walking
Rowing
Running
Sitting
Standing
Walking

4.3 Empirical results
The joint context recognition accuracies are shown in Fig. 4.

In all cases, the joint recognition accuracy increased with the
number of context recognizers. Borda count leads clearly the
worst joint accuracy although with only two recognizers it
is performing better than the majority voting mechanism.
The difference between the plain and the weighted version
of the majority voting is that the uncertain context recog-
nizers do not contribute significantly to the joint recognition
result. In these test runs, in almost all cases, there exist at
least one context recognition with very small contribution
to the joint recognition result. In Table. 2, the results are
shown in the numeric form.



Figure 4: Different voting mechanisms in the con-
text recognition applied to the Palantir-data.

Table 2: Context recognition accuracies with differ-
ent voting mechanisms and number of voters.

Borda Majority Weighted majority
1 0.73 0.73 0.73
2 0.77 0.72 0.78
3 0.77 0.80 0.82
4 0.81 0.84 0.85
5 0.81 0.87 0.89
6 0.83 0.88 0.91

5. DISTRIBUTED CONTEXT
RECOGNITION PLATFORM

For testing distributed context recognition methods on-
line we have implemented context recognition platform for
Symbian S60 mobile phones. The platform includes the
light-weight pattern classification method discussed in this
paper and it can employ sensor data from various sensors,
either built-in or via bluetooth interface. It is easy to plug
in different feature calculation algorithms to the platform.

The platform is also able to send information on differ-
ent levels to an external server. In the current version of
the platform, the information includes raw data, calculated
feature values, and context estimates. The server side is im-
plelemented by using the Apache Tomcat server. The server,
in its turn, can send the information to other connected
context recognizers providing necessary information for dis-
tributed decision making. As the platform sends all the
relevant information for context recognition to the server,
it is possible to apply more elaborated and complex data
mining and pattern classification algorithms to the data. A
schematic view of the system is depicted in Fig. 5. All mobile
phones are able to act as clients sending their decisions and
data to the server or terminals observing context estimates
of other devices in the system. Data is sent to the server
by using HTTP-protocol and the context estimates are sent
to the mobile phones by using TCP-protocol. As all com-
putation is performed in the mobile devices, the platform
can also be extended to use some other connection type for
broadcasting relevant data for distributed context recogni-
tion to its peers, for example Bluetooth connection between
devices. However, service discovery times are quite long

in the current Bluetooth implementations and the range of
Bluetooth communication is small limiting communication
only to nearby devices.

Figure 5: A schematic view of the distributded con-
text recognition platform.

6. CONCLUSIONS
Multiple voting mechanisms were compared in the domain

of mobile devices with restricted resources. The mechanisms
were tested with off-line data library consisting data from
sport activities. In addition, a context recognition platform
form Symbian S60 mobile phones that is based on the meth-
ods discussed in this paper was introduced briefly.

The future research directions include user testing of the
context recognition platform in collaborative context recog-
nition tasks. Another interesting way to develop discussed
methods further is to add adaptivity to the classifier and
test how good context recognition accuracies can be get with
adaptive and distributed context recognition system.
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